tornavis/source/blender/imbuf/intern/rectop.c

1259 lines
33 KiB
C
Raw Normal View History

/*
2002-10-12 13:37:38 +02:00
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
2002-10-12 13:37:38 +02:00
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 14:34:04 +01:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
2002-10-12 13:37:38 +02:00
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
* allocimbuf.c
*/
/** \file
* \ingroup imbuf
2011-02-27 21:23:21 +01:00
*/
#include <stdlib.h>
2011-02-27 21:23:21 +01:00
#include "BLI_utildefines.h"
#include "BLI_rect.h"
#include "BLI_math_base.h"
#include "BLI_math_color.h"
#include "BLI_math_color_blend.h"
#include "BLI_math_vector.h"
2002-10-12 13:37:38 +02:00
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 12:05:07 +02:00
#include "IMB_colormanagement.h"
#include "MEM_guardedalloc.h"
void IMB_blend_color_byte(unsigned char dst[4],
const unsigned char src1[4],
const unsigned char src2[4],
IMB_BlendMode mode)
{
switch (mode) {
case IMB_BLEND_MIX:
blend_color_mix_byte(dst, src1, src2);
break;
case IMB_BLEND_ADD:
blend_color_add_byte(dst, src1, src2);
break;
case IMB_BLEND_SUB:
blend_color_sub_byte(dst, src1, src2);
break;
case IMB_BLEND_MUL:
blend_color_mul_byte(dst, src1, src2);
break;
case IMB_BLEND_LIGHTEN:
blend_color_lighten_byte(dst, src1, src2);
break;
case IMB_BLEND_DARKEN:
blend_color_darken_byte(dst, src1, src2);
break;
case IMB_BLEND_ERASE_ALPHA:
blend_color_erase_alpha_byte(dst, src1, src2);
break;
case IMB_BLEND_ADD_ALPHA:
blend_color_add_alpha_byte(dst, src1, src2);
break;
case IMB_BLEND_OVERLAY:
blend_color_overlay_byte(dst, src1, src2);
break;
case IMB_BLEND_HARDLIGHT:
blend_color_hardlight_byte(dst, src1, src2);
break;
case IMB_BLEND_COLORBURN:
blend_color_burn_byte(dst, src1, src2);
break;
case IMB_BLEND_LINEARBURN:
blend_color_linearburn_byte(dst, src1, src2);
break;
case IMB_BLEND_COLORDODGE:
blend_color_dodge_byte(dst, src1, src2);
break;
case IMB_BLEND_SCREEN:
blend_color_screen_byte(dst, src1, src2);
break;
case IMB_BLEND_SOFTLIGHT:
blend_color_softlight_byte(dst, src1, src2);
break;
case IMB_BLEND_PINLIGHT:
blend_color_pinlight_byte(dst, src1, src2);
break;
case IMB_BLEND_LINEARLIGHT:
blend_color_linearlight_byte(dst, src1, src2);
break;
case IMB_BLEND_VIVIDLIGHT:
blend_color_vividlight_byte(dst, src1, src2);
break;
case IMB_BLEND_DIFFERENCE:
blend_color_difference_byte(dst, src1, src2);
break;
case IMB_BLEND_EXCLUSION:
blend_color_exclusion_byte(dst, src1, src2);
break;
case IMB_BLEND_COLOR:
blend_color_color_byte(dst, src1, src2);
break;
case IMB_BLEND_HUE:
blend_color_hue_byte(dst, src1, src2);
break;
case IMB_BLEND_SATURATION:
blend_color_saturation_byte(dst, src1, src2);
break;
case IMB_BLEND_LUMINOSITY:
blend_color_luminosity_byte(dst, src1, src2);
break;
default:
dst[0] = src1[0];
dst[1] = src1[1];
dst[2] = src1[2];
dst[3] = src1[3];
break;
}
}
void IMB_blend_color_float(float dst[4],
const float src1[4],
const float src2[4],
IMB_BlendMode mode)
{
switch (mode) {
case IMB_BLEND_MIX:
blend_color_mix_float(dst, src1, src2);
break;
case IMB_BLEND_ADD:
blend_color_add_float(dst, src1, src2);
break;
case IMB_BLEND_SUB:
blend_color_sub_float(dst, src1, src2);
break;
case IMB_BLEND_MUL:
blend_color_mul_float(dst, src1, src2);
break;
case IMB_BLEND_LIGHTEN:
blend_color_lighten_float(dst, src1, src2);
break;
case IMB_BLEND_DARKEN:
blend_color_darken_float(dst, src1, src2);
break;
case IMB_BLEND_ERASE_ALPHA:
blend_color_erase_alpha_float(dst, src1, src2);
break;
case IMB_BLEND_ADD_ALPHA:
blend_color_add_alpha_float(dst, src1, src2);
break;
case IMB_BLEND_OVERLAY:
blend_color_overlay_float(dst, src1, src2);
break;
case IMB_BLEND_HARDLIGHT:
blend_color_hardlight_float(dst, src1, src2);
break;
case IMB_BLEND_COLORBURN:
blend_color_burn_float(dst, src1, src2);
break;
case IMB_BLEND_LINEARBURN:
blend_color_linearburn_float(dst, src1, src2);
break;
case IMB_BLEND_COLORDODGE:
blend_color_dodge_float(dst, src1, src2);
break;
case IMB_BLEND_SCREEN:
blend_color_screen_float(dst, src1, src2);
break;
case IMB_BLEND_SOFTLIGHT:
blend_color_softlight_float(dst, src1, src2);
break;
case IMB_BLEND_PINLIGHT:
blend_color_pinlight_float(dst, src1, src2);
break;
case IMB_BLEND_LINEARLIGHT:
blend_color_linearlight_float(dst, src1, src2);
break;
case IMB_BLEND_VIVIDLIGHT:
blend_color_vividlight_float(dst, src1, src2);
break;
case IMB_BLEND_DIFFERENCE:
blend_color_difference_float(dst, src1, src2);
break;
case IMB_BLEND_EXCLUSION:
blend_color_exclusion_float(dst, src1, src2);
break;
case IMB_BLEND_COLOR:
blend_color_color_float(dst, src1, src2);
break;
case IMB_BLEND_HUE:
blend_color_hue_float(dst, src1, src2);
break;
case IMB_BLEND_SATURATION:
blend_color_saturation_float(dst, src1, src2);
break;
case IMB_BLEND_LUMINOSITY:
blend_color_luminosity_float(dst, src1, src2);
break;
default:
dst[0] = src1[0];
dst[1] = src1[1];
dst[2] = src1[2];
dst[3] = src1[3];
break;
}
}
/* -------------------------------------------------------------------- */
/** \name Crop
* \{ */
static void rect_crop_4bytes(void **buf_p, const int size_src[2], const rcti *crop)
{
if (*buf_p == NULL) {
return;
}
const int size_dst[2] = {
BLI_rcti_size_x(crop) + 1,
BLI_rcti_size_y(crop) + 1,
};
uint *src = *buf_p;
uint *dst = src + crop->ymin * size_src[0] + crop->xmin;
for (int y = 0; y < size_dst[1]; y++, src += size_dst[0], dst += size_src[0]) {
memmove(src, dst, sizeof(uint) * size_dst[0]);
}
*buf_p = MEM_reallocN(*buf_p, sizeof(uint) * size_dst[0] * size_dst[1]);
}
static void rect_crop_16bytes(void **buf_p, const int size_src[2], const rcti *crop)
{
if (*buf_p == NULL) {
return;
}
const int size_dst[2] = {
BLI_rcti_size_x(crop) + 1,
BLI_rcti_size_y(crop) + 1,
};
uint(*src)[4] = *buf_p;
uint(*dst)[4] = src + crop->ymin * size_src[0] + crop->xmin;
for (int y = 0; y < size_dst[1]; y++, src += size_dst[0], dst += size_src[0]) {
memmove(src, dst, sizeof(uint[4]) * size_dst[0]);
}
*buf_p = (void *)MEM_reallocN(*buf_p, sizeof(uint[4]) * size_dst[0] * size_dst[1]);
}
/**
* In-place image crop.
*/
void IMB_rect_crop(ImBuf *ibuf, const rcti *crop)
{
const int size_src[2] = {
ibuf->x,
ibuf->y,
};
const int size_dst[2] = {
BLI_rcti_size_x(crop) + 1,
BLI_rcti_size_y(crop) + 1,
};
2019-10-02 22:58:43 +02:00
BLI_assert(size_dst[0] > 0 && size_dst[1] > 0);
BLI_assert(crop->xmin >= 0 && crop->ymin >= 0);
BLI_assert(crop->xmax < ibuf->x && crop->ymax < ibuf->y);
if ((size_dst[0] == ibuf->x) && (size_dst[1] == ibuf->y)) {
return;
}
rect_crop_4bytes((void **)&ibuf->rect, size_src, crop);
rect_crop_4bytes((void **)&ibuf->zbuf, size_src, crop);
rect_crop_4bytes((void **)&ibuf->zbuf_float, size_src, crop);
rect_crop_16bytes((void **)&ibuf->rect_float, size_src, crop);
ibuf->x = size_dst[0];
ibuf->y = size_dst[1];
}
/**
2019-12-11 00:56:14 +01:00
* Re-allocate buffers at a new size.
*/
static void rect_realloc_4bytes(void **buf_p, const uint size[2])
{
if (*buf_p == NULL) {
return;
}
MEM_freeN(*buf_p);
*buf_p = MEM_mallocN(sizeof(uint) * size[0] * size[1], __func__);
}
static void rect_realloc_16bytes(void **buf_p, const uint size[2])
{
if (*buf_p == NULL) {
return;
}
MEM_freeN(*buf_p);
*buf_p = MEM_mallocN(sizeof(uint[4]) * size[0] * size[1], __func__);
}
/**
* In-place size setting (caller must fill in buffer contents).
*/
void IMB_rect_size_set(ImBuf *ibuf, const uint size[2])
{
2019-10-02 22:58:43 +02:00
BLI_assert(size[0] > 0 && size[1] > 0);
if ((size[0] == ibuf->x) && (size[1] == ibuf->y)) {
return;
}
rect_realloc_4bytes((void **)&ibuf->rect, size);
rect_realloc_4bytes((void **)&ibuf->zbuf, size);
rect_realloc_4bytes((void **)&ibuf->zbuf_float, size);
rect_realloc_16bytes((void **)&ibuf->rect_float, size);
ibuf->x = size[0];
ibuf->y = size[1];
}
/** \} */
/* clipping */
void IMB_rectclip(ImBuf *dbuf,
const ImBuf *sbuf,
int *destx,
int *desty,
int *srcx,
int *srcy,
int *width,
int *height)
{
int tmp;
2019-04-23 03:01:30 +02:00
if (dbuf == NULL) {
return;
2019-04-23 03:01:30 +02:00
}
if (*destx < 0) {
*srcx -= *destx;
*width += *destx;
*destx = 0;
}
if (*srcx < 0) {
*destx -= *srcx;
*width += *srcx;
*srcx = 0;
}
if (*desty < 0) {
*srcy -= *desty;
*height += *desty;
*desty = 0;
}
if (*srcy < 0) {
*desty -= *srcy;
*height += *srcy;
*srcy = 0;
}
tmp = dbuf->x - *destx;
2019-04-23 03:01:30 +02:00
if (*width > tmp) {
*width = tmp;
2019-04-23 03:01:30 +02:00
}
tmp = dbuf->y - *desty;
2019-04-23 03:01:30 +02:00
if (*height > tmp) {
*height = tmp;
2019-04-23 03:01:30 +02:00
}
if (sbuf) {
tmp = sbuf->x - *srcx;
2019-04-23 03:01:30 +02:00
if (*width > tmp) {
*width = tmp;
2019-04-23 03:01:30 +02:00
}
tmp = sbuf->y - *srcy;
2019-04-23 03:01:30 +02:00
if (*height > tmp) {
*height = tmp;
2019-04-23 03:01:30 +02:00
}
}
if ((*height <= 0) || (*width <= 0)) {
*width = 0;
*height = 0;
}
}
static void imb_rectclip3(ImBuf *dbuf,
const ImBuf *obuf,
const ImBuf *sbuf,
int *destx,
int *desty,
int *origx,
int *origy,
int *srcx,
int *srcy,
int *width,
int *height)
{
int tmp;
2019-04-23 03:01:30 +02:00
if (dbuf == NULL) {
return;
2019-04-23 03:01:30 +02:00
}
if (*destx < 0) {
*srcx -= *destx;
*origx -= *destx;
*width += *destx;
*destx = 0;
}
if (*origx < 0) {
*destx -= *origx;
*srcx -= *origx;
*width += *origx;
*origx = 0;
}
if (*srcx < 0) {
*destx -= *srcx;
*origx -= *srcx;
*width += *srcx;
*srcx = 0;
}
if (*desty < 0) {
*srcy -= *desty;
*origy -= *desty;
*height += *desty;
*desty = 0;
}
if (*origy < 0) {
*desty -= *origy;
*srcy -= *origy;
*height += *origy;
*origy = 0;
}
if (*srcy < 0) {
*desty -= *srcy;
*origy -= *srcy;
*height += *srcy;
*srcy = 0;
}
tmp = dbuf->x - *destx;
2019-04-23 03:01:30 +02:00
if (*width > tmp) {
*width = tmp;
2019-04-23 03:01:30 +02:00
}
tmp = dbuf->y - *desty;
2019-04-23 03:01:30 +02:00
if (*height > tmp) {
*height = tmp;
2019-04-23 03:01:30 +02:00
}
if (obuf) {
tmp = obuf->x - *origx;
2019-04-23 03:01:30 +02:00
if (*width > tmp) {
*width = tmp;
2019-04-23 03:01:30 +02:00
}
tmp = obuf->y - *origy;
2019-04-23 03:01:30 +02:00
if (*height > tmp) {
*height = tmp;
2019-04-23 03:01:30 +02:00
}
}
if (sbuf) {
tmp = sbuf->x - *srcx;
2019-04-23 03:01:30 +02:00
if (*width > tmp) {
*width = tmp;
2019-04-23 03:01:30 +02:00
}
tmp = sbuf->y - *srcy;
2019-04-23 03:01:30 +02:00
if (*height > tmp) {
*height = tmp;
2019-04-23 03:01:30 +02:00
}
}
if ((*height <= 0) || (*width <= 0)) {
*width = 0;
*height = 0;
}
}
/* copy and blend */
void IMB_rectcpy(ImBuf *dbuf,
const ImBuf *sbuf,
int destx,
int desty,
int srcx,
int srcy,
int width,
int height)
2002-10-12 13:37:38 +02:00
{
IMB_rectblend(dbuf,
dbuf,
sbuf,
NULL,
NULL,
NULL,
0,
destx,
desty,
destx,
desty,
srcx,
srcy,
width,
height,
IMB_BLEND_COPY,
false);
}
typedef void (*IMB_blend_func)(unsigned char *dst,
const unsigned char *src1,
const unsigned char *src2);
typedef void (*IMB_blend_func_float)(float *dst, const float *src1, const float *src2);
void IMB_rectblend(ImBuf *dbuf,
const ImBuf *obuf,
const ImBuf *sbuf,
unsigned short *dmask,
const unsigned short *curvemask,
const unsigned short *texmask,
float mask_max,
int destx,
int desty,
int origx,
int origy,
int srcx,
int srcy,
int width,
int height,
IMB_BlendMode mode,
bool accumulate)
{
unsigned int *drect = NULL, *orect = NULL, *srect = NULL, *dr, * or, *sr;
float *drectf = NULL, *orectf = NULL, *srectf = NULL, *drf, *orf, *srf;
const unsigned short *cmaskrect = curvemask, *cmr;
unsigned short *dmaskrect = dmask, *dmr;
const unsigned short *texmaskrect = texmask, *tmr;
int do_float, do_char, srcskip, destskip, origskip, x;
IMB_blend_func func = NULL;
IMB_blend_func_float func_float = NULL;
2019-04-23 03:01:30 +02:00
if (dbuf == NULL || obuf == NULL) {
return;
2019-04-23 03:01:30 +02:00
}
imb_rectclip3(dbuf, obuf, sbuf, &destx, &desty, &origx, &origy, &srcx, &srcy, &width, &height);
2019-04-23 03:01:30 +02:00
if (width == 0 || height == 0) {
return;
2019-04-23 03:01:30 +02:00
}
if (sbuf && sbuf->channels != 4) {
return;
2019-04-23 03:01:30 +02:00
}
if (dbuf->channels != 4) {
return;
2019-04-23 03:01:30 +02:00
}
do_char = (sbuf && sbuf->rect && dbuf->rect && obuf->rect);
do_float = (sbuf && sbuf->rect_float && dbuf->rect_float && obuf->rect_float);
if (do_char) {
drect = dbuf->rect + ((size_t)desty) * dbuf->x + destx;
orect = obuf->rect + ((size_t)origy) * obuf->x + origx;
}
if (do_float) {
drectf = dbuf->rect_float + (((size_t)desty) * dbuf->x + destx) * 4;
orectf = obuf->rect_float + (((size_t)origy) * obuf->x + origx) * 4;
}
2019-04-23 03:01:30 +02:00
if (dmaskrect) {
dmaskrect += ((size_t)origy) * obuf->x + origx;
2019-04-23 03:01:30 +02:00
}
destskip = dbuf->x;
origskip = obuf->x;
if (sbuf) {
2019-04-23 03:01:30 +02:00
if (do_char) {
srect = sbuf->rect + ((size_t)srcy) * sbuf->x + srcx;
2019-04-23 03:01:30 +02:00
}
if (do_float) {
srectf = sbuf->rect_float + (((size_t)srcy) * sbuf->x + srcx) * 4;
2019-04-23 03:01:30 +02:00
}
srcskip = sbuf->x;
2019-04-23 03:01:30 +02:00
if (cmaskrect) {
cmaskrect += ((size_t)srcy) * sbuf->x + srcx;
2019-04-23 03:01:30 +02:00
}
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
texmaskrect += ((size_t)srcy) * sbuf->x + srcx;
2019-04-23 03:01:30 +02:00
}
}
else {
srect = drect;
srectf = drectf;
srcskip = destskip;
}
if (mode == IMB_BLEND_COPY) {
/* copy */
for (; height > 0; height--) {
if (do_char) {
memcpy(drect, srect, width * sizeof(int));
drect += destskip;
srect += srcskip;
}
if (do_float) {
memcpy(drectf, srectf, width * sizeof(float) * 4);
drectf += destskip * 4;
srectf += srcskip * 4;
}
}
}
else if (mode == IMB_BLEND_COPY_RGB) {
/* copy rgb only */
for (; height > 0; height--) {
if (do_char) {
dr = drect;
sr = srect;
for (x = width; x > 0; x--, dr++, sr++) {
((char *)dr)[0] = ((char *)sr)[0];
((char *)dr)[1] = ((char *)sr)[1];
((char *)dr)[2] = ((char *)sr)[2];
}
drect += destskip;
srect += srcskip;
}
if (do_float) {
drf = drectf;
srf = srectf;
for (x = width; x > 0; x--, drf += 4, srf += 4) {
float map_alpha = (srf[3] == 0.0f) ? drf[3] : drf[3] / srf[3];
drf[0] = srf[0] * map_alpha;
drf[1] = srf[1] * map_alpha;
drf[2] = srf[2] * map_alpha;
}
drectf += destskip * 4;
srectf += srcskip * 4;
}
}
}
else if (mode == IMB_BLEND_COPY_ALPHA) {
/* copy alpha only */
for (; height > 0; height--) {
if (do_char) {
dr = drect;
sr = srect;
2019-04-23 03:01:30 +02:00
for (x = width; x > 0; x--, dr++, sr++) {
((char *)dr)[3] = ((char *)sr)[3];
2019-04-23 03:01:30 +02:00
}
drect += destskip;
srect += srcskip;
}
if (do_float) {
drf = drectf;
srf = srectf;
2019-04-23 03:01:30 +02:00
for (x = width; x > 0; x--, drf += 4, srf += 4) {
drf[3] = srf[3];
2019-04-23 03:01:30 +02:00
}
drectf += destskip * 4;
srectf += srcskip * 4;
}
}
}
else {
switch (mode) {
case IMB_BLEND_MIX:
case IMB_BLEND_INTERPOLATE:
func = blend_color_mix_byte;
func_float = blend_color_mix_float;
break;
case IMB_BLEND_ADD:
func = blend_color_add_byte;
func_float = blend_color_add_float;
break;
case IMB_BLEND_SUB:
func = blend_color_sub_byte;
func_float = blend_color_sub_float;
break;
case IMB_BLEND_MUL:
func = blend_color_mul_byte;
func_float = blend_color_mul_float;
break;
case IMB_BLEND_LIGHTEN:
func = blend_color_lighten_byte;
func_float = blend_color_lighten_float;
break;
case IMB_BLEND_DARKEN:
func = blend_color_darken_byte;
func_float = blend_color_darken_float;
break;
case IMB_BLEND_ERASE_ALPHA:
func = blend_color_erase_alpha_byte;
func_float = blend_color_erase_alpha_float;
break;
case IMB_BLEND_ADD_ALPHA:
func = blend_color_add_alpha_byte;
func_float = blend_color_add_alpha_float;
break;
case IMB_BLEND_OVERLAY:
func = blend_color_overlay_byte;
func_float = blend_color_overlay_float;
break;
case IMB_BLEND_HARDLIGHT:
func = blend_color_hardlight_byte;
func_float = blend_color_hardlight_float;
break;
case IMB_BLEND_COLORBURN:
func = blend_color_burn_byte;
func_float = blend_color_burn_float;
break;
case IMB_BLEND_LINEARBURN:
func = blend_color_linearburn_byte;
func_float = blend_color_linearburn_float;
break;
case IMB_BLEND_COLORDODGE:
func = blend_color_dodge_byte;
func_float = blend_color_dodge_float;
break;
case IMB_BLEND_SCREEN:
func = blend_color_screen_byte;
func_float = blend_color_screen_float;
break;
case IMB_BLEND_SOFTLIGHT:
func = blend_color_softlight_byte;
func_float = blend_color_softlight_float;
break;
case IMB_BLEND_PINLIGHT:
func = blend_color_pinlight_byte;
func_float = blend_color_pinlight_float;
break;
case IMB_BLEND_LINEARLIGHT:
func = blend_color_linearlight_byte;
func_float = blend_color_linearlight_float;
break;
case IMB_BLEND_VIVIDLIGHT:
func = blend_color_vividlight_byte;
func_float = blend_color_vividlight_float;
break;
case IMB_BLEND_DIFFERENCE:
func = blend_color_difference_byte;
func_float = blend_color_difference_float;
break;
case IMB_BLEND_EXCLUSION:
func = blend_color_exclusion_byte;
func_float = blend_color_exclusion_float;
break;
case IMB_BLEND_COLOR:
func = blend_color_color_byte;
func_float = blend_color_color_float;
break;
case IMB_BLEND_HUE:
func = blend_color_hue_byte;
func_float = blend_color_hue_float;
break;
case IMB_BLEND_SATURATION:
func = blend_color_saturation_byte;
func_float = blend_color_saturation_float;
break;
case IMB_BLEND_LUMINOSITY:
func = blend_color_luminosity_byte;
func_float = blend_color_luminosity_float;
break;
default:
break;
}
/* blend */
for (; height > 0; height--) {
if (do_char) {
dr = drect;
or = orect;
sr = srect;
if (cmaskrect) {
/* mask accumulation for painting */
cmr = cmaskrect;
tmr = texmaskrect;
/* destination mask present, do max alpha masking */
if (dmaskrect) {
dmr = dmaskrect;
for (x = width; x > 0; x--, dr++, or ++, sr++, dmr++, cmr++) {
unsigned char *src = (unsigned char *)sr;
float mask_lim = mask_max * (*cmr);
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
mask_lim *= ((*tmr++) / 65535.0f);
2019-04-23 03:01:30 +02:00
}
if (src[3] && mask_lim) {
float mask;
2019-04-23 03:01:30 +02:00
if (accumulate) {
mask = *dmr + mask_lim;
2019-04-23 03:01:30 +02:00
}
else {
mask = *dmr + mask_lim - (*dmr * (*cmr / 65535.0f));
2019-04-23 03:01:30 +02:00
}
mask = min_ff(mask, 65535.0);
if (mask > *dmr) {
unsigned char mask_src[4];
*dmr = mask;
mask_src[0] = src[0];
mask_src[1] = src[1];
mask_src[2] = src[2];
if (mode == IMB_BLEND_INTERPOLATE) {
mask_src[3] = src[3];
blend_color_interpolate_byte(
(unsigned char *)dr, (unsigned char *) or, mask_src, mask / 65535.0f);
}
else {
mask_src[3] = divide_round_i(src[3] * mask, 65535);
func((unsigned char *)dr, (unsigned char *) or, mask_src);
}
}
}
}
dmaskrect += origskip;
}
/* no destination mask buffer, do regular blend with masktexture if present */
else {
for (x = width; x > 0; x--, dr++, or ++, sr++, cmr++) {
unsigned char *src = (unsigned char *)sr;
float mask = (float)mask_max * ((float)(*cmr));
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
mask *= ((float)(*tmr++) / 65535.0f);
2019-04-23 03:01:30 +02:00
}
mask = min_ff(mask, 65535.0);
if (src[3] && (mask > 0.0f)) {
unsigned char mask_src[4];
mask_src[0] = src[0];
mask_src[1] = src[1];
mask_src[2] = src[2];
if (mode == IMB_BLEND_INTERPOLATE) {
mask_src[3] = src[3];
blend_color_interpolate_byte(
(unsigned char *)dr, (unsigned char *) or, mask_src, mask / 65535.0f);
}
else {
mask_src[3] = divide_round_i(src[3] * mask, 65535);
func((unsigned char *)dr, (unsigned char *) or, mask_src);
}
}
}
}
cmaskrect += srcskip;
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
texmaskrect += srcskip;
2019-04-23 03:01:30 +02:00
}
}
else {
/* regular blending */
for (x = width; x > 0; x--, dr++, or ++, sr++) {
2019-04-23 03:01:30 +02:00
if (((unsigned char *)sr)[3]) {
func((unsigned char *)dr, (unsigned char *) or, (unsigned char *)sr);
2019-04-23 03:01:30 +02:00
}
}
}
drect += destskip;
orect += origskip;
srect += srcskip;
}
if (do_float) {
drf = drectf;
orf = orectf;
srf = srectf;
if (cmaskrect) {
/* mask accumulation for painting */
cmr = cmaskrect;
tmr = texmaskrect;
/* destination mask present, do max alpha masking */
if (dmaskrect) {
dmr = dmaskrect;
for (x = width; x > 0; x--, drf += 4, orf += 4, srf += 4, dmr++, cmr++) {
float mask_lim = mask_max * (*cmr);
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
mask_lim *= ((*tmr++) / 65535.0f);
2019-04-23 03:01:30 +02:00
}
if (srf[3] && mask_lim) {
float mask;
2019-04-23 03:01:30 +02:00
if (accumulate) {
mask = min_ff(*dmr + mask_lim, 65535.0);
2019-04-23 03:01:30 +02:00
}
else {
mask = *dmr + mask_lim - (*dmr * (*cmr / 65535.0f));
2019-04-23 03:01:30 +02:00
}
mask = min_ff(mask, 65535.0);
if (mask > *dmr) {
*dmr = mask;
if (mode == IMB_BLEND_INTERPOLATE) {
blend_color_interpolate_float(drf, orf, srf, mask / 65535.0f);
}
else {
float mask_srf[4];
mul_v4_v4fl(mask_srf, srf, mask / 65535.0f);
func_float(drf, orf, mask_srf);
}
}
}
}
dmaskrect += origskip;
}
/* no destination mask buffer, do regular blend with masktexture if present */
else {
for (x = width; x > 0; x--, drf += 4, orf += 4, srf += 4, cmr++) {
float mask = (float)mask_max * ((float)(*cmr));
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
mask *= ((float)(*tmr++) / 65535.0f);
2019-04-23 03:01:30 +02:00
}
mask = min_ff(mask, 65535.0);
if (srf[3] && (mask > 0.0f)) {
if (mode == IMB_BLEND_INTERPOLATE) {
blend_color_interpolate_float(drf, orf, srf, mask / 65535.0f);
}
else {
float mask_srf[4];
mul_v4_v4fl(mask_srf, srf, mask / 65535.0f);
func_float(drf, orf, mask_srf);
}
}
}
}
cmaskrect += srcskip;
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
texmaskrect += srcskip;
2019-04-23 03:01:30 +02:00
}
}
else {
/* regular blending */
for (x = width; x > 0; x--, drf += 4, orf += 4, srf += 4) {
2019-04-23 03:01:30 +02:00
if (srf[3] != 0) {
func_float(drf, orf, srf);
2019-04-23 03:01:30 +02:00
}
}
}
drectf += destskip * 4;
orectf += origskip * 4;
srectf += srcskip * 4;
}
}
}
2002-10-12 13:37:38 +02:00
}
typedef struct RectBlendThreadData {
ImBuf *dbuf;
const ImBuf *obuf, *sbuf;
unsigned short *dmask;
const unsigned short *curvemask, *texmask;
float mask_max;
int destx, desty, origx, origy;
int srcx, srcy, width;
IMB_BlendMode mode;
bool accumulate;
} RectBlendThreadData;
static void rectblend_thread_do(void *data_v, int start_scanline, int num_scanlines)
{
RectBlendThreadData *data = (RectBlendThreadData *)data_v;
IMB_rectblend(data->dbuf,
data->obuf,
data->sbuf,
data->dmask,
data->curvemask,
data->texmask,
data->mask_max,
data->destx,
data->desty + start_scanline,
data->origx,
data->origy + start_scanline,
data->srcx,
data->srcy + start_scanline,
data->width,
num_scanlines,
data->mode,
data->accumulate);
}
void IMB_rectblend_threaded(ImBuf *dbuf,
const ImBuf *obuf,
const ImBuf *sbuf,
unsigned short *dmask,
const unsigned short *curvemask,
const unsigned short *texmask,
float mask_max,
int destx,
int desty,
int origx,
int origy,
int srcx,
int srcy,
int width,
int height,
IMB_BlendMode mode,
bool accumulate)
{
if (((size_t)width) * height < 64 * 64) {
IMB_rectblend(dbuf,
obuf,
sbuf,
dmask,
curvemask,
texmask,
mask_max,
destx,
desty,
origx,
origy,
srcx,
srcy,
width,
height,
mode,
accumulate);
}
else {
RectBlendThreadData data;
data.dbuf = dbuf;
data.obuf = obuf;
data.sbuf = sbuf;
data.dmask = dmask;
data.curvemask = curvemask;
data.texmask = texmask;
data.mask_max = mask_max;
data.destx = destx;
data.desty = desty;
data.origx = origx;
data.origy = origy;
data.srcx = srcx;
data.srcy = srcy;
data.width = width;
data.mode = mode;
data.accumulate = accumulate;
IMB_processor_apply_threaded_scanlines(height, rectblend_thread_do, &data);
}
}
/* fill */
void IMB_rectfill(ImBuf *drect, const float col[4])
2002-10-12 13:37:38 +02:00
{
int num;
if (drect->rect) {
unsigned int *rrect = drect->rect;
char ccol[4];
ccol[0] = (int)(col[0] * 255);
ccol[1] = (int)(col[1] * 255);
ccol[2] = (int)(col[2] * 255);
ccol[3] = (int)(col[3] * 255);
num = drect->x * drect->y;
2019-04-23 03:01:30 +02:00
for (; num > 0; num--) {
*rrect++ = *((unsigned int *)ccol);
2019-04-23 03:01:30 +02:00
}
}
if (drect->rect_float) {
float *rrectf = drect->rect_float;
num = drect->x * drect->y;
for (; num > 0; num--) {
*rrectf++ = col[0];
*rrectf++ = col[1];
*rrectf++ = col[2];
*rrectf++ = col[3];
}
}
2002-10-12 13:37:38 +02:00
}
void buf_rectfill_area(unsigned char *rect,
float *rectf,
int width,
int height,
const float col[4],
struct ColorManagedDisplay *display,
int x1,
int y1,
int x2,
int y2)
{
int i, j;
float a; /* alpha */
float ai; /* alpha inverted */
float aich; /* alpha, inverted, ai/255.0 - Convert char to float at the same time */
2019-04-23 03:01:30 +02:00
if ((!rect && !rectf) || (!col) || col[3] == 0.0f) {
return;
2019-04-23 03:01:30 +02:00
}
/* sanity checks for coords */
CLAMP(x1, 0, width);
CLAMP(x2, 0, width);
CLAMP(y1, 0, height);
CLAMP(y2, 0, height);
2019-04-23 03:01:30 +02:00
if (x1 > x2) {
SWAP(int, x1, x2);
2019-04-23 03:01:30 +02:00
}
if (y1 > y2) {
SWAP(int, y1, y2);
2019-04-23 03:01:30 +02:00
}
if (x1 == x2 || y1 == y2) {
return;
2019-04-23 03:01:30 +02:00
}
a = col[3];
ai = 1 - a;
aich = ai / 255.0f;
if (rect) {
unsigned char *pixel;
unsigned char chr = 0, chg = 0, chb = 0;
float fr = 0, fg = 0, fb = 0;
const int alphaint = unit_float_to_uchar_clamp(a);
if (a == 1.0f) {
chr = unit_float_to_uchar_clamp(col[0]);
chg = unit_float_to_uchar_clamp(col[1]);
chb = unit_float_to_uchar_clamp(col[2]);
}
else {
fr = col[0] * a;
fg = col[1] * a;
fb = col[2] * a;
}
for (j = 0; j < y2 - y1; j++) {
for (i = 0; i < x2 - x1; i++) {
pixel = rect + 4 * (((y1 + j) * width) + (x1 + i));
if (pixel >= rect && pixel < rect + (4 * (width * height))) {
if (a == 1.0f) {
pixel[0] = chr;
pixel[1] = chg;
pixel[2] = chb;
pixel[3] = 255;
}
else {
int alphatest;
pixel[0] = (char)((fr + ((float)pixel[0] * aich)) * 255.0f);
pixel[1] = (char)((fg + ((float)pixel[1] * aich)) * 255.0f);
pixel[2] = (char)((fb + ((float)pixel[2] * aich)) * 255.0f);
pixel[3] = (char)((alphatest = ((int)pixel[3] + alphaint)) < 255 ? alphatest : 255);
}
}
}
}
}
if (rectf) {
float col_conv[4];
float *pixel;
if (display) {
copy_v4_v4(col_conv, col);
IMB_colormanagement_display_to_scene_linear_v3(col_conv, display);
}
else {
srgb_to_linearrgb_v4(col_conv, col);
}
for (j = 0; j < y2 - y1; j++) {
for (i = 0; i < x2 - x1; i++) {
pixel = rectf + 4 * (((y1 + j) * width) + (x1 + i));
if (a == 1.0f) {
pixel[0] = col_conv[0];
pixel[1] = col_conv[1];
pixel[2] = col_conv[2];
pixel[3] = 1.0f;
}
else {
float alphatest;
pixel[0] = (col_conv[0] * a) + (pixel[0] * ai);
pixel[1] = (col_conv[1] * a) + (pixel[1] * ai);
pixel[2] = (col_conv[2] * a) + (pixel[2] * ai);
pixel[3] = (alphatest = (pixel[3] + a)) < 1.0f ? alphatest : 1.0f;
}
}
}
}
}
void IMB_rectfill_area(ImBuf *ibuf,
const float col[4],
int x1,
int y1,
int x2,
int y2,
struct ColorManagedDisplay *display)
{
2019-04-23 03:01:30 +02:00
if (!ibuf) {
return;
2019-04-23 03:01:30 +02:00
}
buf_rectfill_area((unsigned char *)ibuf->rect,
ibuf->rect_float,
ibuf->x,
ibuf->y,
col,
display,
x1,
y1,
x2,
y2);
}
void IMB_rectfill_alpha(ImBuf *ibuf, const float value)
{
int i;
if (ibuf->rect_float && (ibuf->channels == 4)) {
float *fbuf = ibuf->rect_float + 3;
for (i = ibuf->x * ibuf->y; i > 0; i--, fbuf += 4) {
*fbuf = value;
}
}
if (ibuf->rect) {
const unsigned char cvalue = value * 255;
unsigned char *cbuf = ((unsigned char *)ibuf->rect) + 3;
for (i = ibuf->x * ibuf->y; i > 0; i--, cbuf += 4) {
*cbuf = cvalue;
}
}
}