tornavis/source/blender/blenkernel/BKE_duplilist.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

110 lines
3.5 KiB
C
Raw Normal View History

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
2002-10-12 13:37:38 +02:00
/** \file
* \ingroup bke
*/
#ifdef __cplusplus
namespace blender::bke {
struct GeometrySet;
}
using GeometrySetHandle = blender::bke::GeometrySet;
#else
typedef struct GeometrySetHandle GeometrySetHandle;
#endif
#ifdef __cplusplus
extern "C" {
#endif
struct Depsgraph;
struct ID;
struct ListBase;
struct Object;
struct ParticleSystem;
struct Scene;
Attribute Node: support accessing attributes of View Layer and Scene. The attribute node already allows accessing attributes associated with objects and meshes, which allows changing the behavior of the same material between different objects or instances. The same idea can be extended to an even more global level of layers and scenes. Currently view layers provide an option to replace all materials with a different one. However, since the same material will be applied to all objects in the layer, varying the behavior between layers while preserving distinct materials requires duplicating objects. Providing access to properties of layers and scenes via the attribute node enables making materials with built-in switches or settings that can be controlled globally at the view layer level. This is probably most useful for complex NPR shading and compositing. Like with objects, the node can also access built-in scene properties, like render resolution or FOV of the active camera. Lookup is also attempted in World, similar to how the Object mode checks the Mesh datablock. In Cycles this mode is implemented by replacing the attribute node with the attribute value during sync, allowing constant folding to take the values into account. This means however that materials that use this feature have to be re-synced upon any changes to scene, world or camera. The Eevee version uses a new uniform buffer containing a sorted array mapping name hashes to values, with binary search lookup. The array is limited to 512 entries, which is effectively limitless even considering it is shared by all materials in the scene; it is also just 16KB of memory so no point trying to optimize further. The buffer has to be rebuilt when new attributes are detected in a material, so the draw engine keeps a table of recently seen attribute names to minimize the chance of extra rebuilds mid-draw. Differential Revision: https://developer.blender.org/D15941
2022-09-11 23:30:58 +02:00
struct ViewLayer;
Geometry Nodes: viewport preview This adds support for showing geometry passed to the Viewer in the 3d viewport (instead of just in the spreadsheet). The "viewer geometry" bypasses the group output. So it is not necessary to change the final output of the node group to be able to see the intermediate geometry. **Activation and deactivation of a viewer node** * A viewer node is activated by clicking on it. * Ctrl+shift+click on any node/socket connects it to the viewer and makes it active. * Ctrl+shift+click in empty space deactivates the active viewer. * When the active viewer is not visible anymore (e.g. another object is selected, or the current node group is exit), it is deactivated. * Clicking on the icon in the header of the Viewer node toggles whether its active or not. **Pinning** * The spreadsheet still allows pinning the active viewer as before. When pinned, the spreadsheet still references the viewer node even when it becomes inactive. * The viewport does not support pinning at the moment. It always shows the active viewer. **Attribute** * When a field is linked to the second input of the viewer node it is displayed as an overlay in the viewport. * When possible the correct domain for the attribute is determined automatically. This does not work in all cases. It falls back to the face corner domain on meshes and the point domain on curves. When necessary, the domain can be picked manually. * The spreadsheet now only shows the "Viewer" column for the domain that is selected in the Viewer node. * Instance attributes are visualized as a constant color per instance. **Viewport Options** * The attribute overlay opacity can be controlled with the "Viewer Node" setting in the overlays popover. * A viewport can be configured not to show intermediate viewer-geometry by disabling the "Viewer Node" option in the "View" menu. **Implementation Details** * The "spreadsheet context path" was generalized to a "viewer path" that is used in more places now. * The viewer node itself determines the attribute domain, evaluates the field and stores the result in a `.viewer` attribute. * A new "viewer attribute' overlay displays the data from the `.viewer` attribute. * The ground truth for the active viewer node is stored in the workspace now. Node editors, spreadsheets and viewports retrieve the active viewer from there unless they are pinned. * The depsgraph object iterator has a new "viewer path" setting. When set, the viewed geometry of the corresponding object is part of the iterator instead of the final evaluated geometry. * To support the instance attribute overlay `DupliObject` was extended to contain the information necessary for drawing the overlay. * The ctrl+shift+click operator has been refactored so that it can make existing links to viewers active again. * The auto-domain-detection in the Viewer node works by checking the "preferred domain" for every field input. If there is not exactly one preferred domain, the fallback is used. Known limitations: * Loose edges of meshes don't have the attribute overlay. This could be added separately if necessary. * Some attributes are hard to visualize as a color directly. For example, the values might have to be normalized or some should be drawn as arrays. For now, we encourage users to build node groups that generate appropriate viewer-geometry. We might include some of that functionality in future versions. Support for displaying attribute values as text in the viewport is planned as well. * There seems to be an issue with the attribute overlay for pointclouds on nvidia gpus, to be investigated. Differential Revision: https://developer.blender.org/D15954
2022-09-28 17:54:59 +02:00
struct ViewerPath;
Big commit with work on Groups & Libraries: -> Any Group Duplicate now can get local timing and local NLA override. This enables to control the entire animation system of the Group. Two methods for this have been implemented. 1) The quick way: just give the duplicator a "Startframe" offset. 2) Advanced: in the NLA Editor you can add ActionStrips to the duplicator to override NLA/action of any Grouped Object. For "Group NLA" to work, an ActionStrip needs to know which Object in a group it controls. On adding a strip, the code checks if an Action was already used by an Object in the Group, and assigns it automatic to that Object. You can also set this in the Nkey "Properties" panel for the strip. Change in NLA: the SHIFT+A "Add strip" command now always adds strips to the active Object. (It used to check where mouse was). This allows to add NLA strips to Objects that didn't have actions/nla yet. Important note: In Blender, duplicates are fully procedural and generated on the fly for each redraw. This means that redraw speed equals to stepping through frames, when using animated Duplicated Groups. -> Recoded entire duplicator system The old method was antique and clumsy, using globals and full temporal copies of Object. The new system is nicer in control, faster, and since it doesn't use temporal object copies anymore, it works better with Derived Mesh and DisplayList and rendering. By centralizing the code for duplicating, more options can be easier added. Features to note: - Duplicates now draw selected/unselected based on its Duplicator setting. - Same goes for the drawtype (wire, solid, selection outline, etc) - Duplicated Groups can be normally selected too Bonus goodie: SHIFT+A (Toolbox) now has entry "Add group" too, with a listing of all groups, allowing to add Group instances immediate. -> Library System - SHIFT+F4 data browse now shows the entire path for linked data - Outliner draws Library Icons to denote linked data - Outliner operation added: "Make Local" for library data. - Outliner now also draws Groups in regular view, allowing to unlink too. -> Fixes - depsgraph missed signal update for bone-parented Objects - on reading file, the entire database was tagged to "recalc" fully, causing unnecessary slowdown on reading. Might have missed stuff... :)
2005-12-11 14:23:30 +01:00
/* ---------------------------------------------------- */
/* Dupli-Geometry */
/**
* \return a #ListBase of #DupliObject.
*/
struct ListBase *object_duplilist(struct Depsgraph *depsgraph,
struct Scene *sce,
struct Object *ob);
Geometry Nodes: viewport preview This adds support for showing geometry passed to the Viewer in the 3d viewport (instead of just in the spreadsheet). The "viewer geometry" bypasses the group output. So it is not necessary to change the final output of the node group to be able to see the intermediate geometry. **Activation and deactivation of a viewer node** * A viewer node is activated by clicking on it. * Ctrl+shift+click on any node/socket connects it to the viewer and makes it active. * Ctrl+shift+click in empty space deactivates the active viewer. * When the active viewer is not visible anymore (e.g. another object is selected, or the current node group is exit), it is deactivated. * Clicking on the icon in the header of the Viewer node toggles whether its active or not. **Pinning** * The spreadsheet still allows pinning the active viewer as before. When pinned, the spreadsheet still references the viewer node even when it becomes inactive. * The viewport does not support pinning at the moment. It always shows the active viewer. **Attribute** * When a field is linked to the second input of the viewer node it is displayed as an overlay in the viewport. * When possible the correct domain for the attribute is determined automatically. This does not work in all cases. It falls back to the face corner domain on meshes and the point domain on curves. When necessary, the domain can be picked manually. * The spreadsheet now only shows the "Viewer" column for the domain that is selected in the Viewer node. * Instance attributes are visualized as a constant color per instance. **Viewport Options** * The attribute overlay opacity can be controlled with the "Viewer Node" setting in the overlays popover. * A viewport can be configured not to show intermediate viewer-geometry by disabling the "Viewer Node" option in the "View" menu. **Implementation Details** * The "spreadsheet context path" was generalized to a "viewer path" that is used in more places now. * The viewer node itself determines the attribute domain, evaluates the field and stores the result in a `.viewer` attribute. * A new "viewer attribute' overlay displays the data from the `.viewer` attribute. * The ground truth for the active viewer node is stored in the workspace now. Node editors, spreadsheets and viewports retrieve the active viewer from there unless they are pinned. * The depsgraph object iterator has a new "viewer path" setting. When set, the viewed geometry of the corresponding object is part of the iterator instead of the final evaluated geometry. * To support the instance attribute overlay `DupliObject` was extended to contain the information necessary for drawing the overlay. * The ctrl+shift+click operator has been refactored so that it can make existing links to viewers active again. * The auto-domain-detection in the Viewer node works by checking the "preferred domain" for every field input. If there is not exactly one preferred domain, the fallback is used. Known limitations: * Loose edges of meshes don't have the attribute overlay. This could be added separately if necessary. * Some attributes are hard to visualize as a color directly. For example, the values might have to be normalized or some should be drawn as arrays. For now, we encourage users to build node groups that generate appropriate viewer-geometry. We might include some of that functionality in future versions. Support for displaying attribute values as text in the viewport is planned as well. * There seems to be an issue with the attribute overlay for pointclouds on nvidia gpus, to be investigated. Differential Revision: https://developer.blender.org/D15954
2022-09-28 17:54:59 +02:00
/**
* \return a #ListBase of #DupliObject for the preview geometry referenced by the #ViewerPath.
*/
struct ListBase *object_duplilist_preview(struct Depsgraph *depsgraph,
struct Scene *scene,
struct Object *ob,
const struct ViewerPath *viewer_path);
void free_object_duplilist(struct ListBase *lb);
typedef struct DupliObject {
struct DupliObject *next, *prev;
Geometry Nodes: support for geometry instancing Previously, the Point Instance node in geometry nodes could only instance existing objects or collections. The reason was that large parts of Blender worked under the assumption that objects are the main unit of instancing. Now we also want to instance geometry within an object, so a slightly larger refactor was necessary. This should not affect files that do not use the new kind of instances. The main change is a redefinition of what "instanced data" is. Now, an instances is a cow-object + object-data (the geometry). This can be nicely seen in `struct DupliObject`. This allows the same object to generate multiple geometries of different types which can be instanced individually. A nice side effect of this refactor is that having multiple geometry components is not a special case in the depsgraph object iterator anymore, because those components are integrated with the `DupliObject` system. Unfortunately, different systems that work with instances in Blender (e.g. render engines and exporters) often work under the assumption that objects are the main unit of instancing. So those have to be updated as well to be able to handle the new instances. This patch updates Cycles, EEVEE and other viewport engines. Exporters have not been updated yet. Some minimal (not master-ready) changes to update the obj and alembic exporters can be found in P2336 and P2335. Different file formats may want to handle these new instances in different ways. For users, the only thing that changed is that the Point Instance node now has a geometry mode. This also fixes T88454. Differential Revision: https://developer.blender.org/D11841
2021-09-06 18:22:24 +02:00
/* Object whose geometry is instanced. */
struct Object *ob;
Geometry Nodes: support for geometry instancing Previously, the Point Instance node in geometry nodes could only instance existing objects or collections. The reason was that large parts of Blender worked under the assumption that objects are the main unit of instancing. Now we also want to instance geometry within an object, so a slightly larger refactor was necessary. This should not affect files that do not use the new kind of instances. The main change is a redefinition of what "instanced data" is. Now, an instances is a cow-object + object-data (the geometry). This can be nicely seen in `struct DupliObject`. This allows the same object to generate multiple geometries of different types which can be instanced individually. A nice side effect of this refactor is that having multiple geometry components is not a special case in the depsgraph object iterator anymore, because those components are integrated with the `DupliObject` system. Unfortunately, different systems that work with instances in Blender (e.g. render engines and exporters) often work under the assumption that objects are the main unit of instancing. So those have to be updated as well to be able to handle the new instances. This patch updates Cycles, EEVEE and other viewport engines. Exporters have not been updated yet. Some minimal (not master-ready) changes to update the obj and alembic exporters can be found in P2336 and P2335. Different file formats may want to handle these new instances in different ways. For users, the only thing that changed is that the Point Instance node now has a geometry mode. This also fixes T88454. Differential Revision: https://developer.blender.org/D11841
2021-09-06 18:22:24 +02:00
/* Data owned by the object above that is instanced. This might not be the same as `ob->data`. */
struct ID *ob_data;
float mat[4][4];
float orco[3], uv[2];
short type; /* from Object.transflag */
char no_draw;
Geometry Nodes: viewport preview This adds support for showing geometry passed to the Viewer in the 3d viewport (instead of just in the spreadsheet). The "viewer geometry" bypasses the group output. So it is not necessary to change the final output of the node group to be able to see the intermediate geometry. **Activation and deactivation of a viewer node** * A viewer node is activated by clicking on it. * Ctrl+shift+click on any node/socket connects it to the viewer and makes it active. * Ctrl+shift+click in empty space deactivates the active viewer. * When the active viewer is not visible anymore (e.g. another object is selected, or the current node group is exit), it is deactivated. * Clicking on the icon in the header of the Viewer node toggles whether its active or not. **Pinning** * The spreadsheet still allows pinning the active viewer as before. When pinned, the spreadsheet still references the viewer node even when it becomes inactive. * The viewport does not support pinning at the moment. It always shows the active viewer. **Attribute** * When a field is linked to the second input of the viewer node it is displayed as an overlay in the viewport. * When possible the correct domain for the attribute is determined automatically. This does not work in all cases. It falls back to the face corner domain on meshes and the point domain on curves. When necessary, the domain can be picked manually. * The spreadsheet now only shows the "Viewer" column for the domain that is selected in the Viewer node. * Instance attributes are visualized as a constant color per instance. **Viewport Options** * The attribute overlay opacity can be controlled with the "Viewer Node" setting in the overlays popover. * A viewport can be configured not to show intermediate viewer-geometry by disabling the "Viewer Node" option in the "View" menu. **Implementation Details** * The "spreadsheet context path" was generalized to a "viewer path" that is used in more places now. * The viewer node itself determines the attribute domain, evaluates the field and stores the result in a `.viewer` attribute. * A new "viewer attribute' overlay displays the data from the `.viewer` attribute. * The ground truth for the active viewer node is stored in the workspace now. Node editors, spreadsheets and viewports retrieve the active viewer from there unless they are pinned. * The depsgraph object iterator has a new "viewer path" setting. When set, the viewed geometry of the corresponding object is part of the iterator instead of the final evaluated geometry. * To support the instance attribute overlay `DupliObject` was extended to contain the information necessary for drawing the overlay. * The ctrl+shift+click operator has been refactored so that it can make existing links to viewers active again. * The auto-domain-detection in the Viewer node works by checking the "preferred domain" for every field input. If there is not exactly one preferred domain, the fallback is used. Known limitations: * Loose edges of meshes don't have the attribute overlay. This could be added separately if necessary. * Some attributes are hard to visualize as a color directly. For example, the values might have to be normalized or some should be drawn as arrays. For now, we encourage users to build node groups that generate appropriate viewer-geometry. We might include some of that functionality in future versions. Support for displaying attribute values as text in the viewport is planned as well. * There seems to be an issue with the attribute overlay for pointclouds on nvidia gpus, to be investigated. Differential Revision: https://developer.blender.org/D15954
2022-09-28 17:54:59 +02:00
/* If this dupli object is belongs to a preview, this is non-null. */
const GeometrySetHandle *preview_base_geometry;
Geometry Nodes: viewport preview This adds support for showing geometry passed to the Viewer in the 3d viewport (instead of just in the spreadsheet). The "viewer geometry" bypasses the group output. So it is not necessary to change the final output of the node group to be able to see the intermediate geometry. **Activation and deactivation of a viewer node** * A viewer node is activated by clicking on it. * Ctrl+shift+click on any node/socket connects it to the viewer and makes it active. * Ctrl+shift+click in empty space deactivates the active viewer. * When the active viewer is not visible anymore (e.g. another object is selected, or the current node group is exit), it is deactivated. * Clicking on the icon in the header of the Viewer node toggles whether its active or not. **Pinning** * The spreadsheet still allows pinning the active viewer as before. When pinned, the spreadsheet still references the viewer node even when it becomes inactive. * The viewport does not support pinning at the moment. It always shows the active viewer. **Attribute** * When a field is linked to the second input of the viewer node it is displayed as an overlay in the viewport. * When possible the correct domain for the attribute is determined automatically. This does not work in all cases. It falls back to the face corner domain on meshes and the point domain on curves. When necessary, the domain can be picked manually. * The spreadsheet now only shows the "Viewer" column for the domain that is selected in the Viewer node. * Instance attributes are visualized as a constant color per instance. **Viewport Options** * The attribute overlay opacity can be controlled with the "Viewer Node" setting in the overlays popover. * A viewport can be configured not to show intermediate viewer-geometry by disabling the "Viewer Node" option in the "View" menu. **Implementation Details** * The "spreadsheet context path" was generalized to a "viewer path" that is used in more places now. * The viewer node itself determines the attribute domain, evaluates the field and stores the result in a `.viewer` attribute. * A new "viewer attribute' overlay displays the data from the `.viewer` attribute. * The ground truth for the active viewer node is stored in the workspace now. Node editors, spreadsheets and viewports retrieve the active viewer from there unless they are pinned. * The depsgraph object iterator has a new "viewer path" setting. When set, the viewed geometry of the corresponding object is part of the iterator instead of the final evaluated geometry. * To support the instance attribute overlay `DupliObject` was extended to contain the information necessary for drawing the overlay. * The ctrl+shift+click operator has been refactored so that it can make existing links to viewers active again. * The auto-domain-detection in the Viewer node works by checking the "preferred domain" for every field input. If there is not exactly one preferred domain, the fallback is used. Known limitations: * Loose edges of meshes don't have the attribute overlay. This could be added separately if necessary. * Some attributes are hard to visualize as a color directly. For example, the values might have to be normalized or some should be drawn as arrays. For now, we encourage users to build node groups that generate appropriate viewer-geometry. We might include some of that functionality in future versions. Support for displaying attribute values as text in the viewport is planned as well. * There seems to be an issue with the attribute overlay for pointclouds on nvidia gpus, to be investigated. Differential Revision: https://developer.blender.org/D15954
2022-09-28 17:54:59 +02:00
/* Index of the top-level instance this dupli is part of or -1 when unused. */
int preview_instance_index;
/* Persistent identifier for a dupli object, for inter-frame matching of
* objects with motion blur, or inter-update matching for syncing. */
int persistent_id[8]; /* MAX_DUPLI_RECUR */
/* Particle this dupli was generated from. */
struct ParticleSystem *particle_system;
/* Geometry set stack for instance attributes; for each level lists the
* geometry set and instance index within it.
*
* Only non-null entries are stored, ordered from innermost to outermost.
* To save memory, these arrays are allocated smaller than persistent_id,
* assuming that not every entry will be associated with a GeometrySet; any
* size between 1 and MAX_DUPLI_RECUR can be used without issues.
*/
int instance_idx[4];
const GeometrySetHandle *instance_data[4];
/* Random ID for shading */
unsigned int random_id;
} DupliObject;
2022-11-01 02:24:04 +01:00
/**
* Look up the RGBA value of a uniform shader attribute.
* \return true if the attribute was found; if not, r_value is also set to zero.
*/
bool BKE_object_dupli_find_rgba_attribute(const struct Object *ob,
const struct DupliObject *dupli,
const struct Object *dupli_parent,
const char *name,
float r_value[4]);
2022-11-01 02:24:04 +01:00
/**
* Look up the RGBA value of a view layer/scene/world shader attribute.
* \return true if the attribute was found; if not, r_value is also set to zero.
*/
bool BKE_view_layer_find_rgba_attribute(const struct Scene *scene,
const struct ViewLayer *layer,
Attribute Node: support accessing attributes of View Layer and Scene. The attribute node already allows accessing attributes associated with objects and meshes, which allows changing the behavior of the same material between different objects or instances. The same idea can be extended to an even more global level of layers and scenes. Currently view layers provide an option to replace all materials with a different one. However, since the same material will be applied to all objects in the layer, varying the behavior between layers while preserving distinct materials requires duplicating objects. Providing access to properties of layers and scenes via the attribute node enables making materials with built-in switches or settings that can be controlled globally at the view layer level. This is probably most useful for complex NPR shading and compositing. Like with objects, the node can also access built-in scene properties, like render resolution or FOV of the active camera. Lookup is also attempted in World, similar to how the Object mode checks the Mesh datablock. In Cycles this mode is implemented by replacing the attribute node with the attribute value during sync, allowing constant folding to take the values into account. This means however that materials that use this feature have to be re-synced upon any changes to scene, world or camera. The Eevee version uses a new uniform buffer containing a sorted array mapping name hashes to values, with binary search lookup. The array is limited to 512 entries, which is effectively limitless even considering it is shared by all materials in the scene; it is also just 16KB of memory so no point trying to optimize further. The buffer has to be rebuilt when new attributes are detected in a material, so the draw engine keeps a table of recently seen attribute names to minimize the chance of extra rebuilds mid-draw. Differential Revision: https://developer.blender.org/D15941
2022-09-11 23:30:58 +02:00
const char *name,
float r_value[4]);
#ifdef __cplusplus
}
#endif