tornavis/source/blender/blenkernel/BKE_attribute_math.hh

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

331 lines
9.3 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
#include "BLI_array.hh"
#include "BLI_color.hh"
#include "BLI_float2.hh"
#include "BLI_float3.hh"
#include "DNA_customdata_types.h"
#include "FN_cpp_type.hh"
namespace blender::attribute_math {
using fn::CPPType;
/**
* Utility function that simplifies calling a templated function based on a custom data type.
*/
template<typename Func>
inline void convert_to_static_type(const CustomDataType data_type, const Func &func)
{
switch (data_type) {
case CD_PROP_FLOAT:
func(float());
break;
case CD_PROP_FLOAT2:
func(float2());
break;
case CD_PROP_FLOAT3:
func(float3());
break;
case CD_PROP_INT32:
func(int());
break;
case CD_PROP_BOOL:
func(bool());
break;
case CD_PROP_COLOR:
func(Color4f());
break;
default:
BLI_assert_unreachable();
break;
}
}
template<typename Func>
inline void convert_to_static_type(const fn::CPPType &cpp_type, const Func &func)
{
if (cpp_type.is<float>()) {
func(float());
}
else if (cpp_type.is<float2>()) {
func(float2());
}
else if (cpp_type.is<float3>()) {
func(float3());
}
else if (cpp_type.is<int>()) {
func(int());
}
else if (cpp_type.is<bool>()) {
func(bool());
}
else if (cpp_type.is<Color4f>()) {
func(Color4f());
}
else {
BLI_assert_unreachable();
}
}
/* -------------------------------------------------------------------- */
/** \name Mix three values of the same type.
*
* This is typically used to interpolate values within a triangle.
* \{ */
template<typename T> T mix3(const float3 &weights, const T &v0, const T &v1, const T &v2);
template<> inline bool mix3(const float3 &weights, const bool &v0, const bool &v1, const bool &v2)
{
return (weights.x * v0 + weights.y * v1 + weights.z * v2) >= 0.5f;
}
template<> inline int mix3(const float3 &weights, const int &v0, const int &v1, const int &v2)
{
return static_cast<int>(weights.x * v0 + weights.y * v1 + weights.z * v2);
}
template<>
inline float mix3(const float3 &weights, const float &v0, const float &v1, const float &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
inline float2 mix3(const float3 &weights, const float2 &v0, const float2 &v1, const float2 &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
inline float3 mix3(const float3 &weights, const float3 &v0, const float3 &v1, const float3 &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
inline Color4f mix3(const float3 &weights, const Color4f &v0, const Color4f &v1, const Color4f &v2)
{
Color4f result;
interp_v4_v4v4v4(result, v0, v1, v2, weights);
return result;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mix two values of the same type.
*
* This is just basic linear interpolation.
* \{ */
template<typename T> T mix2(const float factor, const T &a, const T &b);
template<> inline bool mix2(const float factor, const bool &a, const bool &b)
{
return ((1.0f - factor) * a + factor * b) >= 0.5f;
}
template<> inline int mix2(const float factor, const int &a, const int &b)
{
return static_cast<int>((1.0f - factor) * a + factor * b);
}
template<> inline float mix2(const float factor, const float &a, const float &b)
{
return (1.0f - factor) * a + factor * b;
}
template<> inline float2 mix2(const float factor, const float2 &a, const float2 &b)
{
return float2::interpolate(a, b, factor);
}
template<> inline float3 mix2(const float factor, const float3 &a, const float3 &b)
{
return float3::interpolate(a, b, factor);
}
template<> inline Color4f mix2(const float factor, const Color4f &a, const Color4f &b)
{
Color4f result;
interp_v4_v4v4(result, a, b, factor);
return result;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mix a dynamic amount of values with weights for many elements.
*
* This section provides an abstraction for "mixers". The abstraction encapsulates details about
* how different types should be mixed. Usually #DefaultMixer<T> should be used to get a mixer for
* a specific type.
* \{ */
template<typename T> class SimpleMixer {
private:
MutableSpan<T> buffer_;
T default_value_;
Array<float> total_weights_;
public:
/**
* \param buffer: Span where the interpolated values should be stored.
* \param default_value: Output value for an element that has not been affected by a #mix_in.
*/
SimpleMixer(MutableSpan<T> buffer, T default_value = {})
: buffer_(buffer), default_value_(default_value), total_weights_(buffer.size(), 0.0f)
{
BLI_STATIC_ASSERT(std::is_trivial_v<T>, "");
memset(buffer_.data(), 0, sizeof(T) * buffer_.size());
}
/**
* Mix a #value into the element with the given #index.
*/
void mix_in(const int64_t index, const T &value, const float weight = 1.0f)
{
BLI_assert(weight >= 0.0f);
buffer_[index] += value * weight;
total_weights_[index] += weight;
}
/**
* Has to be called before the buffer provided in the constructor is used.
*/
void finalize()
{
for (const int64_t i : buffer_.index_range()) {
const float weight = total_weights_[i];
if (weight > 0.0f) {
buffer_[i] *= 1.0f / weight;
}
else {
buffer_[i] = default_value_;
}
}
}
};
/** This mixer accumulates values in a type that is different from the one that is mixed. Some
* types cannot encode the floating point weights in their values (e.g. int and bool). */
template<typename T, typename AccumulationT, T (*ConvertToT)(const AccumulationT &value)>
class SimpleMixerWithAccumulationType {
private:
struct Item {
/* Store both values together, because they are accessed together. */
AccumulationT value = {0};
float weight = 0.0f;
};
MutableSpan<T> buffer_;
T default_value_;
Array<Item> accumulation_buffer_;
public:
SimpleMixerWithAccumulationType(MutableSpan<T> buffer, T default_value = {})
: buffer_(buffer), default_value_(default_value), accumulation_buffer_(buffer.size())
{
}
void mix_in(const int64_t index, const T &value, const float weight = 1.0f)
{
const AccumulationT converted_value = static_cast<AccumulationT>(value);
Item &item = accumulation_buffer_[index];
item.value += converted_value * weight;
item.weight += weight;
}
void finalize()
{
for (const int64_t i : buffer_.index_range()) {
const Item &item = accumulation_buffer_[i];
if (item.weight > 0.0f) {
const float weight_inv = 1.0f / item.weight;
const T converted_value = ConvertToT(item.value * weight_inv);
buffer_[i] = converted_value;
}
else {
buffer_[i] = default_value_;
}
}
}
};
class Color4fMixer {
private:
MutableSpan<Color4f> buffer_;
Color4f default_color_;
Array<float> total_weights_;
public:
Color4fMixer(MutableSpan<Color4f> buffer, Color4f default_color = {0, 0, 0, 1});
void mix_in(const int64_t index, const Color4f &color, const float weight = 1.0f);
void finalize();
};
template<typename T> struct DefaultMixerStruct {
/* Use void by default. This can be check for in `if constexpr` statements. */
using type = void;
};
template<> struct DefaultMixerStruct<float> {
using type = SimpleMixer<float>;
};
template<> struct DefaultMixerStruct<float2> {
using type = SimpleMixer<float2>;
};
template<> struct DefaultMixerStruct<float3> {
using type = SimpleMixer<float3>;
};
template<> struct DefaultMixerStruct<Color4f> {
/* Use a special mixer for colors. Color4f can't be added/multiplied, because this is not
* something one should usually do with colors. */
using type = Color4fMixer;
};
template<> struct DefaultMixerStruct<int> {
static int double_to_int(const double &value)
{
return static_cast<int>(value);
}
/* Store interpolated ints in a double temporarily, so that weights are handled correctly. It
* uses double instead of float so that it is accurate for all 32 bit integers. */
using type = SimpleMixerWithAccumulationType<int, double, double_to_int>;
};
template<> struct DefaultMixerStruct<bool> {
static bool float_to_bool(const float &value)
{
return value >= 0.5f;
}
2021-02-09 21:57:52 +01:00
/* Store interpolated booleans in a float temporary.
* Otherwise information provided by weights is easily rounded away. */
using type = SimpleMixerWithAccumulationType<bool, float, float_to_bool>;
};
/* Utility to get a good default mixer for a given type. This is `void` when there is no default
* mixer for the given type. */
template<typename T> using DefaultMixer = typename DefaultMixerStruct<T>::type;
/** \} */
} // namespace blender::attribute_math