tornavis/source/blender/editors/sculpt_paint/sculpt_paint_image.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

606 lines
20 KiB
C++
Raw Normal View History

/* SPDX-FileCopyrightText: 2022 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
/* Paint a color made from hash of node pointer. */
//#define DEBUG_PIXEL_NODES
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
#include "DNA_image_types.h"
#include "DNA_object_types.h"
#include "ED_paint.hh"
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
#include "BLI_math_color_blend.h"
#include "BLI_math_geom.h"
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
#include "BLI_task.h"
#ifdef DEBUG_PIXEL_NODES
# include "BLI_hash.h"
#endif
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
#include "IMB_colormanagement.h"
#include "IMB_imbuf.h"
#include "BKE_brush.hh"
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
#include "BKE_image_wrappers.hh"
#include "BKE_pbvh_api.hh"
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
#include "BKE_pbvh_pixels.hh"
#include "bmesh.h"
#include "sculpt_intern.hh"
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
namespace blender::ed::sculpt_paint::paint::image {
using namespace blender::bke::pbvh::pixels;
using namespace blender::bke::image;
struct ImageData {
Image *image = nullptr;
ImageUser *image_user = nullptr;
2022-04-15 18:59:02 +02:00
~ImageData() = default;
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
static bool init_active_image(Object *ob,
ImageData *r_image_data,
PaintModeSettings *paint_mode_settings)
{
return BKE_paint_canvas_image_get(
paint_mode_settings, ob, &r_image_data->image, &r_image_data->image_user);
}
};
struct TexturePaintingUserData {
Object *ob;
Brush *brush;
Span<PBVHNode *> nodes;
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
ImageData image_data;
};
/** Reading and writing to image buffer with 4 float channels. */
class ImageBufferFloat4 {
private:
int pixel_offset;
public:
void set_image_position(ImBuf *image_buffer, ushort2 image_pixel_position)
{
pixel_offset = int(image_pixel_position.y) * image_buffer->x + int(image_pixel_position.x);
}
void next_pixel()
{
pixel_offset += 1;
}
float4 read_pixel(ImBuf *image_buffer) const
{
return &image_buffer->float_buffer.data[pixel_offset * 4];
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
}
void write_pixel(ImBuf *image_buffer, const float4 pixel_data) const
{
copy_v4_v4(&image_buffer->float_buffer.data[pixel_offset * 4], pixel_data);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
}
const char *get_colorspace_name(ImBuf *image_buffer)
{
return IMB_colormanagement_get_float_colorspace(image_buffer);
}
};
/** Reading and writing to image buffer with 4 byte channels. */
class ImageBufferByte4 {
private:
int pixel_offset;
public:
void set_image_position(ImBuf *image_buffer, ushort2 image_pixel_position)
{
pixel_offset = int(image_pixel_position.y) * image_buffer->x + int(image_pixel_position.x);
}
void next_pixel()
{
pixel_offset += 1;
}
float4 read_pixel(ImBuf *image_buffer) const
{
float4 result;
rgba_uchar_to_float(result,
static_cast<const uchar *>(static_cast<const void *>(
&(image_buffer->byte_buffer.data[4 * pixel_offset]))));
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
return result;
}
void write_pixel(ImBuf *image_buffer, const float4 pixel_data) const
{
rgba_float_to_uchar(static_cast<uchar *>(static_cast<void *>(
&image_buffer->byte_buffer.data[4 * pixel_offset])),
pixel_data);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
}
const char *get_colorspace_name(ImBuf *image_buffer)
{
return IMB_colormanagement_get_rect_colorspace(image_buffer);
}
};
template<typename ImageBuffer> class PaintingKernel {
ImageBuffer image_accessor;
SculptSession *ss;
const Brush *brush;
const int thread_id;
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 06:10:43 +01:00
const float3 *vert_positions_;
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
float4 brush_color;
float brush_strength;
SculptBrushTestFn brush_test_fn;
SculptBrushTest test;
/* Pointer to the last used image buffer to detect when buffers are switched. */
void *last_used_image_buffer_ptr = nullptr;
const char *last_used_color_space = nullptr;
public:
explicit PaintingKernel(SculptSession *ss,
const Brush *brush,
const int thread_id,
const Span<float3> positions)
: ss(ss), brush(brush), thread_id(thread_id), vert_positions_(positions.data())
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
{
init_brush_strength();
init_brush_test();
}
bool paint(const PaintGeometryPrimitives &geom_primitives,
const PaintUVPrimitives &uv_primitives,
const PackedPixelRow &pixel_row,
ImBuf *image_buffer,
AutomaskingNodeData *automask_data)
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
{
image_accessor.set_image_position(image_buffer, pixel_row.start_image_coordinate);
const UVPrimitivePaintInput paint_input = uv_primitives.get_paint_input(
pixel_row.uv_primitive_index);
float3 pixel_pos = get_start_pixel_pos(geom_primitives, paint_input, pixel_row);
const float3 delta_pixel_pos = get_delta_pixel_pos(
geom_primitives, paint_input, pixel_row, pixel_pos);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
bool pixels_painted = false;
for (int x = 0; x < pixel_row.num_pixels; x++) {
if (!brush_test_fn(&test, pixel_pos)) {
pixel_pos += delta_pixel_pos;
image_accessor.next_pixel();
continue;
}
float4 color = image_accessor.read_pixel(image_buffer);
const float3 normal(0.0f, 0.0f, 0.0f);
const float3 face_normal(0.0f, 0.0f, 0.0f);
const float mask = 0.0f;
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
const float falloff_strength = SCULPT_brush_strength_factor(
ss,
brush,
pixel_pos,
sqrtf(test.dist),
normal,
face_normal,
mask,
BKE_pbvh_make_vref(PBVH_REF_NONE),
thread_id,
automask_data);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
float4 paint_color = brush_color * falloff_strength * brush_strength;
float4 buffer_color;
#ifdef DEBUG_PIXEL_NODES
if ((pixel_row.start_image_coordinate.y >> 3) & 1) {
paint_color[0] *= 0.5f;
paint_color[1] *= 0.5f;
paint_color[2] *= 0.5f;
}
#endif
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
blend_color_mix_float(buffer_color, color, paint_color);
buffer_color *= brush->alpha;
IMB_blend_color_float(color, color, buffer_color, static_cast<IMB_BlendMode>(brush->blend));
image_accessor.write_pixel(image_buffer, color);
pixels_painted = true;
image_accessor.next_pixel();
pixel_pos += delta_pixel_pos;
}
return pixels_painted;
}
void init_brush_color(ImBuf *image_buffer, float in_brush_color[3])
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
{
const char *to_colorspace = image_accessor.get_colorspace_name(image_buffer);
if (last_used_color_space == to_colorspace) {
return;
}
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
/* NOTE: Brush colors are stored in sRGB. We use math color to follow other areas that
* use brush colors. From there on we use IMB_colormanagement to convert the brush color to the
* colorspace of the texture. This isn't ideal, but would need more refactoring to make sure
* that brush colors are stored in scene linear by default. */
srgb_to_linearrgb_v3_v3(brush_color, in_brush_color);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
brush_color[3] = 1.0f;
const char *from_colorspace = IMB_colormanagement_role_colorspace_name_get(
COLOR_ROLE_SCENE_LINEAR);
ColormanageProcessor *cm_processor = IMB_colormanagement_colorspace_processor_new(
from_colorspace, to_colorspace);
IMB_colormanagement_processor_apply_v4(cm_processor, brush_color);
IMB_colormanagement_processor_free(cm_processor);
last_used_color_space = to_colorspace;
}
private:
void init_brush_strength()
{
brush_strength = ss->cache->bstrength;
}
void init_brush_test()
{
brush_test_fn = SCULPT_brush_test_init_with_falloff_shape(ss, &test, brush->falloff_shape);
}
/**
* Extract the starting pixel position from the given encoded_pixels belonging to the triangle.
*/
float3 get_start_pixel_pos(const PaintGeometryPrimitives &geom_primitives,
const UVPrimitivePaintInput &paint_input,
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
const PackedPixelRow &encoded_pixels) const
{
return init_pixel_pos(geom_primitives, paint_input, encoded_pixels.start_barycentric_coord);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
}
/**
* Extract the delta pixel position that will be used to advance a Pixel instance to the next
* pixel.
*/
float3 get_delta_pixel_pos(const PaintGeometryPrimitives &geom_primitives,
const UVPrimitivePaintInput &paint_input,
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
const PackedPixelRow &encoded_pixels,
const float3 &start_pixel) const
{
float3 result = init_pixel_pos(geom_primitives,
paint_input,
encoded_pixels.start_barycentric_coord +
paint_input.delta_barycentric_coord_u);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
return result - start_pixel;
}
float3 init_pixel_pos(const PaintGeometryPrimitives &geom_primitives,
const UVPrimitivePaintInput &paint_input,
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
const float2 &barycentric_weights) const
{
const int3 &vert_indices = geom_primitives.get_vert_indices(
paint_input.geometry_primitive_index);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
float3 result;
const float3 barycentric(barycentric_weights.x,
barycentric_weights.y,
1.0f - barycentric_weights.x - barycentric_weights.y);
interp_v3_v3v3v3(result,
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 06:10:43 +01:00
vert_positions_[vert_indices[0]],
vert_positions_[vert_indices[1]],
vert_positions_[vert_indices[2]],
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
barycentric);
return result;
}
};
static std::vector<bool> init_uv_primitives_brush_test(SculptSession *ss,
PaintGeometryPrimitives &geom_primitives,
PaintUVPrimitives &uv_primitives,
const Span<float3> positions)
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
{
std::vector<bool> brush_test(uv_primitives.size());
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
SculptBrushTest test;
SCULPT_brush_test_init(ss, &test);
float3 brush_min_bounds(test.location[0] - test.radius,
test.location[1] - test.radius,
test.location[2] - test.radius);
float3 brush_max_bounds(test.location[0] + test.radius,
test.location[1] + test.radius,
test.location[2] + test.radius);
for (int uv_prim_index = 0; uv_prim_index < uv_primitives.size(); uv_prim_index++) {
const UVPrimitivePaintInput &paint_input = uv_primitives.get_paint_input(uv_prim_index);
const int3 &vert_indices = geom_primitives.get_vert_indices(
paint_input.geometry_primitive_index);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 06:10:43 +01:00
float3 triangle_min_bounds(positions[vert_indices[0]]);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
float3 triangle_max_bounds(triangle_min_bounds);
for (int i = 1; i < 3; i++) {
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 06:10:43 +01:00
const float3 &pos = positions[vert_indices[i]];
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
triangle_min_bounds.x = min_ff(triangle_min_bounds.x, pos.x);
triangle_min_bounds.y = min_ff(triangle_min_bounds.y, pos.y);
triangle_min_bounds.z = min_ff(triangle_min_bounds.z, pos.z);
triangle_max_bounds.x = max_ff(triangle_max_bounds.x, pos.x);
triangle_max_bounds.y = max_ff(triangle_max_bounds.y, pos.y);
triangle_max_bounds.z = max_ff(triangle_max_bounds.z, pos.z);
}
brush_test[uv_prim_index] = isect_aabb_aabb_v3(
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
brush_min_bounds, brush_max_bounds, triangle_min_bounds, triangle_max_bounds);
}
return brush_test;
}
static void do_paint_pixels(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict tls)
{
TexturePaintingUserData *data = static_cast<TexturePaintingUserData *>(userdata);
Object *ob = data->ob;
SculptSession *ss = ob->sculpt;
const Brush *brush = data->brush;
PBVH *pbvh = ss->pbvh;
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
PBVHNode *node = data->nodes[n];
PBVHData &pbvh_data = BKE_pbvh_pixels_data_get(*pbvh);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
NodeData &node_data = BKE_pbvh_pixels_node_data_get(*node);
const int thread_id = BLI_task_parallel_thread_id(tls);
const Span<float3> positions = SCULPT_mesh_deformed_positions_get(ss);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
std::vector<bool> brush_test = init_uv_primitives_brush_test(
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 06:10:43 +01:00
ss, pbvh_data.geom_primitives, node_data.uv_primitives, positions);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 06:10:43 +01:00
PaintingKernel<ImageBufferFloat4> kernel_float4(ss, brush, thread_id, positions);
PaintingKernel<ImageBufferByte4> kernel_byte4(ss, brush, thread_id, positions);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
float brush_color[4];
#ifdef DEBUG_PIXEL_NODES
uint hash = BLI_hash_int(POINTER_AS_UINT(node));
brush_color[0] = float(hash & 255) / 255.0f;
brush_color[1] = float((hash >> 8) & 255) / 255.0f;
brush_color[2] = float((hash >> 16) & 255) / 255.0f;
#else
copy_v3_v3(brush_color,
ss->cache->invert ? BKE_brush_secondary_color_get(ss->scene, brush) :
BKE_brush_color_get(ss->scene, brush));
#endif
brush_color[3] = 1.0f;
AutomaskingNodeData automask_data;
SCULPT_automasking_node_begin(ob, ss->cache->automasking, &automask_data, data->nodes[n]);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
ImageUser image_user = *data->image_data.image_user;
bool pixels_updated = false;
for (UDIMTilePixels &tile_data : node_data.tiles) {
LISTBASE_FOREACH (ImageTile *, tile, &data->image_data.image->tiles) {
ImageTileWrapper image_tile(tile);
if (image_tile.get_tile_number() == tile_data.tile_number) {
image_user.tile = image_tile.get_tile_number();
ImBuf *image_buffer = BKE_image_acquire_ibuf(data->image_data.image, &image_user, nullptr);
if (image_buffer == nullptr) {
continue;
}
if (image_buffer->float_buffer.data != nullptr) {
kernel_float4.init_brush_color(image_buffer, brush_color);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
}
else {
kernel_byte4.init_brush_color(image_buffer, brush_color);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
}
for (const PackedPixelRow &pixel_row : tile_data.pixel_rows) {
if (!brush_test[pixel_row.uv_primitive_index]) {
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
continue;
}
bool pixels_painted = false;
if (image_buffer->float_buffer.data != nullptr) {
2022-11-29 05:32:28 +01:00
pixels_painted = kernel_float4.paint(pbvh_data.geom_primitives,
node_data.uv_primitives,
pixel_row,
image_buffer,
&automask_data);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
}
else {
2022-11-29 05:32:28 +01:00
pixels_painted = kernel_byte4.paint(pbvh_data.geom_primitives,
node_data.uv_primitives,
pixel_row,
image_buffer,
&automask_data);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
}
if (pixels_painted) {
tile_data.mark_dirty(pixel_row);
}
}
BKE_image_release_ibuf(data->image_data.image, image_buffer, nullptr);
pixels_updated |= tile_data.flags.dirty;
break;
}
}
}
node_data.flags.dirty |= pixels_updated;
}
static void undo_region_tiles(
ImBuf *ibuf, int x, int y, int w, int h, int *tx, int *ty, int *tw, int *th)
{
int srcx = 0, srcy = 0;
IMB_rectclip(ibuf, nullptr, &x, &y, &srcx, &srcy, &w, &h);
*tw = ((x + w - 1) >> ED_IMAGE_UNDO_TILE_BITS);
*th = ((y + h - 1) >> ED_IMAGE_UNDO_TILE_BITS);
*tx = (x >> ED_IMAGE_UNDO_TILE_BITS);
*ty = (y >> ED_IMAGE_UNDO_TILE_BITS);
}
static void push_undo(const NodeData &node_data,
Image &image,
ImageUser &image_user,
const image::ImageTileWrapper &image_tile,
ImBuf &image_buffer,
ImBuf **tmpibuf)
{
for (const UDIMTileUndo &tile_undo : node_data.undo_regions) {
if (tile_undo.tile_number != image_tile.get_tile_number()) {
continue;
}
int tilex, tiley, tilew, tileh;
PaintTileMap *undo_tiles = ED_image_paint_tile_map_get();
undo_region_tiles(&image_buffer,
tile_undo.region.xmin,
tile_undo.region.ymin,
BLI_rcti_size_x(&tile_undo.region),
BLI_rcti_size_y(&tile_undo.region),
&tilex,
&tiley,
&tilew,
&tileh);
for (int ty = tiley; ty <= tileh; ty++) {
for (int tx = tilex; tx <= tilew; tx++) {
ED_image_paint_tile_push(undo_tiles,
&image,
&image_buffer,
tmpibuf,
&image_user,
tx,
ty,
nullptr,
nullptr,
true,
true);
}
}
}
}
static void do_push_undo_tile(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
{
TexturePaintingUserData *data = static_cast<TexturePaintingUserData *>(userdata);
PBVHNode *node = data->nodes[n];
NodeData &node_data = BKE_pbvh_pixels_node_data_get(*node);
Image *image = data->image_data.image;
ImageUser *image_user = data->image_data.image_user;
ImBuf *tmpibuf = nullptr;
ImageUser local_image_user = *image_user;
LISTBASE_FOREACH (ImageTile *, tile, &image->tiles) {
image::ImageTileWrapper image_tile(tile);
local_image_user.tile = image_tile.get_tile_number();
ImBuf *image_buffer = BKE_image_acquire_ibuf(image, &local_image_user, nullptr);
if (image_buffer == nullptr) {
continue;
}
push_undo(node_data, *image, *image_user, image_tile, *image_buffer, &tmpibuf);
BKE_image_release_ibuf(image, image_buffer, nullptr);
}
if (tmpibuf) {
IMB_freeImBuf(tmpibuf);
}
}
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
static void do_mark_dirty_regions(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
{
TexturePaintingUserData *data = static_cast<TexturePaintingUserData *>(userdata);
PBVHNode *node = data->nodes[n];
BKE_pbvh_pixels_mark_image_dirty(*node, *data->image_data.image, *data->image_data.image_user);
}
Texture Painting: Fix Seam Bleeding of Non-Manifold Sections of Mesh Fix seam bleeding of non-manifold sections of the mesh, by copying pixels that are covered by the brush stroke. As manifold parts are already handled, the pixel copying solution can be very straight forward. * Pixels are copied from the same tile. So we don't need a mechanism that copies and merges pixels from other tiles. * Pixels are copied from the closest pixel that is being painted on. We don't need to consider that that pixel can be in different areas of the tile. When we copy a pixel, we find the closest pixel in UV space that is being directly influenced by a paint brush. We also look for the second closest pixel, which is still a neighbor from the closest pixel. We can mix both pixels together and store it in the destination. A mix factor is calculated using the closest non manifold edge as a guidance. The result of this step is a list of copy and mix commands that can be executed to fix the seam bleeding for non-manifold sections of the mesh. | Destination | Source 1 | Source 2 | Mix factor | | ----------- | -------- | -------- | ---------- | | 1780,1811 | 1780,1810| 1779,1810| 0.000000 | | 1781,1811 | 1781,1810| 1782,1811| 0.168627 | | 1828,1811 | 1828,1810| 1827,1811| 0.156863 | | 1829,1811 | 1829,1810| 1828,1810| 0.188235 | | 1830,1811 | 1830,1810| 1829,1810| 0.188235 | | 1831,1811 | 1831,1810| 1830,1810| 0.188235 | | 1832,1811 | 1832,1810| 1831,1810| 0.188235 | | 1833,1811 | 1832,1810| 1832,1810| 0.000000 | In the end we go over this list mix the sources and store the result at the destination. ``` tile_buffer[destination] = mix(tile_buffer[source_1], tile_buffer[source_2], mix_factor); ``` **Encoding** When using a large textures or large seam margins this table can grow large and reduce performance as data retrieval is slower, than the operations it has to perform. To improve the performance we encode the table so less data retrieval needs to be done. * first `DeltaCopyPixelCommand` is delta encoded from `CopyPixelGroup#start_destination` and `start_source_1`. The others are delta encoded from the previous `DeltaCopyPixelCommand`. * For performance reasons PixelCopyGroup#pixels are ordered from destination (left to right) for each row a new group would be created as the delta encoding most likely doesn't fit. When pixels cannot be delta encoded a new group will also be created. **Compression rate** When using Suzanne the compression rate is around 36% when using a seam margin of 4 pixels. The compression rate may vary depending on seam margin and model. For Suzanne the compression rate was around 36% for various resolutions. | Resolution | Margin | Decoded size | Encoded size | Compression | | ---------- | ------ | ------------ | ------------ | ----------- | | 2048x2048 | 4 px | 353.052 | 128.101 | 36% | | 4096x4096 | 4 px | 700.140 | 255.137 | 36% | | 8192x8192 | 4 px | 1.419.320 | 513.802 | 36% | | 2048x2048 | 8 px | 721.084 | 193.629 | 26% | | 4096x4096 | 8 px | 1.444.968 | 388.110 | 26% | Pull Request: https://projects.blender.org/blender/blender/pulls/105336
2023-03-09 16:11:01 +01:00
/* -------------------------------------------------------------------- */
/** \name Fix non-manifold edge bleeding.
* \{ */
static Vector<image::TileNumber> collect_dirty_tiles(Span<PBVHNode *> nodes)
{
Vector<image::TileNumber> dirty_tiles;
for (PBVHNode *node : nodes) {
BKE_pbvh_pixels_collect_dirty_tiles(*node, dirty_tiles);
}
return dirty_tiles;
}
static void fix_non_manifold_seam_bleeding(PBVH &pbvh,
TexturePaintingUserData &user_data,
Span<TileNumber> tile_numbers_to_fix)
{
for (image::TileNumber tile_number : tile_numbers_to_fix) {
BKE_pbvh_pixels_copy_pixels(
pbvh, *user_data.image_data.image, *user_data.image_data.image_user, tile_number);
}
}
static void fix_non_manifold_seam_bleeding(Object &ob, TexturePaintingUserData &user_data)
Texture Painting: Fix Seam Bleeding of Non-Manifold Sections of Mesh Fix seam bleeding of non-manifold sections of the mesh, by copying pixels that are covered by the brush stroke. As manifold parts are already handled, the pixel copying solution can be very straight forward. * Pixels are copied from the same tile. So we don't need a mechanism that copies and merges pixels from other tiles. * Pixels are copied from the closest pixel that is being painted on. We don't need to consider that that pixel can be in different areas of the tile. When we copy a pixel, we find the closest pixel in UV space that is being directly influenced by a paint brush. We also look for the second closest pixel, which is still a neighbor from the closest pixel. We can mix both pixels together and store it in the destination. A mix factor is calculated using the closest non manifold edge as a guidance. The result of this step is a list of copy and mix commands that can be executed to fix the seam bleeding for non-manifold sections of the mesh. | Destination | Source 1 | Source 2 | Mix factor | | ----------- | -------- | -------- | ---------- | | 1780,1811 | 1780,1810| 1779,1810| 0.000000 | | 1781,1811 | 1781,1810| 1782,1811| 0.168627 | | 1828,1811 | 1828,1810| 1827,1811| 0.156863 | | 1829,1811 | 1829,1810| 1828,1810| 0.188235 | | 1830,1811 | 1830,1810| 1829,1810| 0.188235 | | 1831,1811 | 1831,1810| 1830,1810| 0.188235 | | 1832,1811 | 1832,1810| 1831,1810| 0.188235 | | 1833,1811 | 1832,1810| 1832,1810| 0.000000 | In the end we go over this list mix the sources and store the result at the destination. ``` tile_buffer[destination] = mix(tile_buffer[source_1], tile_buffer[source_2], mix_factor); ``` **Encoding** When using a large textures or large seam margins this table can grow large and reduce performance as data retrieval is slower, than the operations it has to perform. To improve the performance we encode the table so less data retrieval needs to be done. * first `DeltaCopyPixelCommand` is delta encoded from `CopyPixelGroup#start_destination` and `start_source_1`. The others are delta encoded from the previous `DeltaCopyPixelCommand`. * For performance reasons PixelCopyGroup#pixels are ordered from destination (left to right) for each row a new group would be created as the delta encoding most likely doesn't fit. When pixels cannot be delta encoded a new group will also be created. **Compression rate** When using Suzanne the compression rate is around 36% when using a seam margin of 4 pixels. The compression rate may vary depending on seam margin and model. For Suzanne the compression rate was around 36% for various resolutions. | Resolution | Margin | Decoded size | Encoded size | Compression | | ---------- | ------ | ------------ | ------------ | ----------- | | 2048x2048 | 4 px | 353.052 | 128.101 | 36% | | 4096x4096 | 4 px | 700.140 | 255.137 | 36% | | 8192x8192 | 4 px | 1.419.320 | 513.802 | 36% | | 2048x2048 | 8 px | 721.084 | 193.629 | 26% | | 4096x4096 | 8 px | 1.444.968 | 388.110 | 26% | Pull Request: https://projects.blender.org/blender/blender/pulls/105336
2023-03-09 16:11:01 +01:00
{
Vector<image::TileNumber> dirty_tiles = collect_dirty_tiles(user_data.nodes);
Texture Painting: Fix Seam Bleeding of Non-Manifold Sections of Mesh Fix seam bleeding of non-manifold sections of the mesh, by copying pixels that are covered by the brush stroke. As manifold parts are already handled, the pixel copying solution can be very straight forward. * Pixels are copied from the same tile. So we don't need a mechanism that copies and merges pixels from other tiles. * Pixels are copied from the closest pixel that is being painted on. We don't need to consider that that pixel can be in different areas of the tile. When we copy a pixel, we find the closest pixel in UV space that is being directly influenced by a paint brush. We also look for the second closest pixel, which is still a neighbor from the closest pixel. We can mix both pixels together and store it in the destination. A mix factor is calculated using the closest non manifold edge as a guidance. The result of this step is a list of copy and mix commands that can be executed to fix the seam bleeding for non-manifold sections of the mesh. | Destination | Source 1 | Source 2 | Mix factor | | ----------- | -------- | -------- | ---------- | | 1780,1811 | 1780,1810| 1779,1810| 0.000000 | | 1781,1811 | 1781,1810| 1782,1811| 0.168627 | | 1828,1811 | 1828,1810| 1827,1811| 0.156863 | | 1829,1811 | 1829,1810| 1828,1810| 0.188235 | | 1830,1811 | 1830,1810| 1829,1810| 0.188235 | | 1831,1811 | 1831,1810| 1830,1810| 0.188235 | | 1832,1811 | 1832,1810| 1831,1810| 0.188235 | | 1833,1811 | 1832,1810| 1832,1810| 0.000000 | In the end we go over this list mix the sources and store the result at the destination. ``` tile_buffer[destination] = mix(tile_buffer[source_1], tile_buffer[source_2], mix_factor); ``` **Encoding** When using a large textures or large seam margins this table can grow large and reduce performance as data retrieval is slower, than the operations it has to perform. To improve the performance we encode the table so less data retrieval needs to be done. * first `DeltaCopyPixelCommand` is delta encoded from `CopyPixelGroup#start_destination` and `start_source_1`. The others are delta encoded from the previous `DeltaCopyPixelCommand`. * For performance reasons PixelCopyGroup#pixels are ordered from destination (left to right) for each row a new group would be created as the delta encoding most likely doesn't fit. When pixels cannot be delta encoded a new group will also be created. **Compression rate** When using Suzanne the compression rate is around 36% when using a seam margin of 4 pixels. The compression rate may vary depending on seam margin and model. For Suzanne the compression rate was around 36% for various resolutions. | Resolution | Margin | Decoded size | Encoded size | Compression | | ---------- | ------ | ------------ | ------------ | ----------- | | 2048x2048 | 4 px | 353.052 | 128.101 | 36% | | 4096x4096 | 4 px | 700.140 | 255.137 | 36% | | 8192x8192 | 4 px | 1.419.320 | 513.802 | 36% | | 2048x2048 | 8 px | 721.084 | 193.629 | 26% | | 4096x4096 | 8 px | 1.444.968 | 388.110 | 26% | Pull Request: https://projects.blender.org/blender/blender/pulls/105336
2023-03-09 16:11:01 +01:00
fix_non_manifold_seam_bleeding(*ob.sculpt->pbvh, user_data, dirty_tiles);
}
/** \} */
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
} // namespace blender::ed::sculpt_paint::paint::image
using namespace blender::ed::sculpt_paint::paint::image;
bool SCULPT_paint_image_canvas_get(PaintModeSettings *paint_mode_settings,
Object *ob,
Image **r_image,
ImageUser **r_image_user)
{
*r_image = nullptr;
*r_image_user = nullptr;
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
ImageData image_data;
if (!ImageData::init_active_image(ob, &image_data, paint_mode_settings)) {
return false;
}
*r_image = image_data.image;
*r_image_user = image_data.image_user;
return true;
}
bool SCULPT_use_image_paint_brush(PaintModeSettings *settings, Object *ob)
{
if (!U.experimental.use_sculpt_texture_paint) {
return false;
}
if (ob->type != OB_MESH) {
return false;
}
Image *image;
ImageUser *image_user;
return BKE_paint_canvas_image_get(settings, ob, &image, &image_user);
}
void SCULPT_do_paint_brush_image(PaintModeSettings *paint_mode_settings,
Sculpt *sd,
Object *ob,
Span<PBVHNode *> texnodes)
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
{
Brush *brush = BKE_paint_brush(&sd->paint);
TexturePaintingUserData data = {nullptr};
data.ob = ob;
data.brush = brush;
data.nodes = texnodes;
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
if (!ImageData::init_active_image(ob, &data.image_data, paint_mode_settings)) {
return;
}
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, texnodes.size());
BLI_task_parallel_range(0, texnodes.size(), &data, do_push_undo_tile, &settings);
BLI_task_parallel_range(0, texnodes.size(), &data, do_paint_pixels, &settings);
fix_non_manifold_seam_bleeding(*ob, data);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
TaskParallelSettings settings_flush;
BKE_pbvh_parallel_range_settings(&settings_flush, false, texnodes.size());
BLI_task_parallel_range(0, texnodes.size(), &data, do_mark_dirty_regions, &settings_flush);
PBVH Pixel extractor. This patch contains an initial pixel extractor for PBVH and an initial paint brush implementation. PBVH is an accelleration structure blender uses internally to speed up 3d painting operations. At this moment it is extensively used by sculpt, vertex painting and weight painting. For the 3d texturing brush we will be using the PBVH for texture painting. Currently PBVH is organized to work on geometry (vertices, polygons and triangles). For texture painting this should be extended it to use pixels. {F12995467} Screen recording has been done on a Mac Mini with a 6 core 3.3 GHZ Intel processor. # Scope This patch only contains an extending uv seams to fix uv seams. This is not actually we want, but was easy to add to make the brush usable. Pixels are places in the PBVH_Leaf nodes. We want to introduce a special node for pixels, but that will be done in a separate patch to keep the code review small. This reduces the painting performance when using low and medium poly assets. In workbench textures aren't forced to be shown. For now use Material/Rendered view. # Rasterization process The rasterization process will generate the pixel information for a leaf node. In the future those leaf nodes will be split up into multiple leaf nodes to increase the performance when there isn't enough geometry. For this patch this was left out of scope. In order to do so every polygon should be uniquely assigned to a leaf node. For each leaf node for each polygon If polygon not assigned assign polygon to node. Polygons are to complicated to be used directly we have to split the polygons into triangles. For each leaf node for each polygon extract triangles from polygon. The list of triangles can be stored inside the leaf node. The list of polygons aren't needed anymore. Each triangle has: poly_index. vert_indices delta barycentric coordinate between x steps. Each triangle is rasterized in rows. Sequential pixels (in uv space) are stored in a single structure. image position barycentric coordinate of the first pixel number of pixels triangle index inside the leaf node. During the performed experiments we used a fairly simple rasterization process by finding the UV bounds of an triangle and calculate the barycentric coordinates per pixel inside the bounds. Even for complex models and huge images this process is normally finished within 0.5 second. It could be that we want to change this algorithm to reduce hickups when nodes are initialized during a stroke. Reviewed By: brecht Maniphest Tasks: T96710 Differential Revision: https://developer.blender.org/D14504
2022-04-15 16:39:50 +02:00
}