tornavis/source/blender/blenkernel/BKE_mesh_mapping.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

366 lines
14 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2001-2002 NaN Holding BV. All rights reserved. */
#pragma once
/** \file
* \ingroup bke
*/
#ifdef __cplusplus
# include "BLI_array.hh"
Mesh: Move edges to a generic attribute Implements #95966, as the final step of #95965. This commit changes the storage of mesh edge vertex indices from the `MEdge` type to the generic `int2` attribute type. This follows the general design for geometry and the attribute system, where the data storage type and the usage semantics are separated. The main benefit of the change is reduced memory usage-- the requirements of storing mesh edges is reduced by 1/3. For example, this saves 8MB on a 1 million vertex grid. This also gives performance benefits to any memory-bound mesh processing algorithm that uses edges. Another benefit is that all of the edge's vertex indices are contiguous. In a few cases, it's helpful to process all of them as `Span<int>` rather than `Span<int2>`. Similarly, the type is more likely to match a generic format used by a library, or code that shouldn't know about specific Blender `Mesh` types. Various Notes: - The `.edge_verts` name is used to reflect a mapping between domains, similar to `.corner_verts`, etc. The period means that it the data shouldn't change arbitrarily by the user or procedural operations. - `edge[0]` is now used instead of `edge.v1` - Signed integers are used instead of unsigned to reduce the mixing of signed-ness, which can be error prone. - All of the previously used core mesh data types (`MVert`, `MEdge`, `MLoop`, `MPoly` are now deprecated. Only generic types are used). - The `vec2i` DNA type is used in the few C files where necessary. Pull Request: https://projects.blender.org/blender/blender/pulls/106638
2023-04-17 13:47:41 +02:00
# include "BLI_math_vector_types.hh"
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
# include "BLI_offset_indices.hh"
#endif
#ifdef __cplusplus
extern "C" {
#endif
struct MLoopTri;
/* UvVertMap */
#define STD_UV_CONNECT_LIMIT 0.0001f
2022-08-10 08:23:11 +02:00
/* Map from uv vertex to face. Used by select linked, uv subdivision-surface and obj exporter. */
typedef struct UvVertMap {
struct UvMapVert **vert;
struct UvMapVert *buf;
} UvVertMap;
typedef struct UvMapVert {
struct UvMapVert *next;
unsigned int poly_index;
unsigned short loop_of_poly_index;
bool separate;
} UvMapVert;
/* UvElement stores per uv information so that we can quickly access information for a uv.
* it is actually an improved UvMapVert, including an island and a direct pointer to the face
* to avoid initializing face arrays */
typedef struct UvElement {
/* Next UvElement corresponding to same vertex */
struct UvElement *next;
/* Face the element belongs to */
struct BMLoop *l;
/* index in loop. */
unsigned short loop_of_poly_index;
/* Whether this element is the first of coincident elements */
bool separate;
/* general use flag */
unsigned char flag;
/* If generating element map with island sorting, this stores the island index */
unsigned int island;
} UvElement;
/** UvElementMap is a container for UvElements of a BMesh.
*
* It simplifies access to UV information and ensures the
* different UV selection modes are respected.
*
* If islands are calculated, it also stores UvElements
* belonging to the same uv island in sequence and
* the number of uvs per island.
*
* \note in C++, #head_table and #unique_index_table would
* be `mutable`, as they are created on demand, and never
* changed after creation.
*/
typedef struct UvElementMap {
/** UvElement Storage. */
struct UvElement *storage;
/** Total number of UVs. */
int total_uvs;
/** Total number of unique UVs. */
int total_unique_uvs;
/** If Non-NULL, address UvElements by `BM_elem_index_get(BMVert*)`. */
struct UvElement **vertex;
/** If Non-NULL, pointer to local head of each unique UV. */
struct UvElement **head_table;
/** If Non-NULL, pointer to index of each unique UV. */
2022-11-09 02:54:37 +01:00
int *unique_index_table;
/** Number of islands, or zero if not calculated. */
int total_islands;
/** Array of starting index in #storage where each island begins. */
int *island_indices;
/** Array of number of UVs in each island. */
int *island_total_uvs;
/** Array of number of unique UVs in each island. */
int *island_total_unique_uvs;
} UvElementMap;
/* Connectivity data */
typedef struct MeshElemMap {
int *indices;
int count;
} MeshElemMap;
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
#ifdef __cplusplus
/* mapping */
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
UvVertMap *BKE_mesh_uv_vert_map_create(blender::OffsetIndices<int> polys,
const bool *hide_poly,
2022-09-23 16:38:37 +02:00
const bool *select_poly,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const int *corner_verts,
Mesh: Move UV layers to generic attributes Currently the `MLoopUV` struct stores UV coordinates and flags related to editing UV maps in the UV editor. This patch changes the coordinates to use the generic 2D vector type, and moves the flags into three separate boolean attributes. This follows the design in T95965, with the ultimate intention of simplifying code and improving performance. Importantly, the change allows exporters and renderers to use UVs "touched" by geometry nodes, which only creates generic attributes. It also allows geometry nodes to create "proper" UV maps from scratch, though only with the Store Named Attribute node for now. The new design considers any 2D vector attribute on the corner domain to be a UV map. In the future, they might be distinguished from regular 2D vectors with attribute metadata, which may be helpful because they are often interpolated differently. Most of the code changes deal with passing around UV BMesh custom data offsets and tracking the boolean "sublayers". The boolean layers are use the following prefixes for attribute names: vert selection: `.vs.`, edge selection: `.es.`, pinning: `.pn.`. Currently these are short to avoid using up the maximum length of attribute names. To accommodate for these 4 extra characters, the name length limit is enlarged to 68 bytes, while the maximum user settable name length is still 64 bytes. Unfortunately Python/RNA API access to the UV flag data becomes slower. Accessing the boolean layers directly is be better for performance in general. Like the other mesh SoA refactors, backward and forward compatibility aren't affected, and won't be changed until 4.0. We pay for that by making mesh reading and writing more expensive with conversions. Resolves T85962 Differential Revision: https://developer.blender.org/D14365
2023-01-10 06:47:04 +01:00
const float (*mloopuv)[2],
unsigned int totvert,
const float limit[2],
bool selected,
bool use_winding);
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
#endif
UvMapVert *BKE_mesh_uv_vert_map_get_vert(UvVertMap *vmap, unsigned int v);
void BKE_mesh_uv_vert_map_free(UvVertMap *vmap);
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
#ifdef __cplusplus
/**
* Generates a map where the key is the vertex and the value
* is a list of polys that use that vertex as a corner.
* The lists are allocated from one memory pool.
*/
void BKE_mesh_vert_poly_map_create(MeshElemMap **r_map,
int **r_mem,
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
blender::OffsetIndices<int> polys,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const int *corner_verts,
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
int totvert);
/**
* Generates a map where the key is the vertex and the value
* is a list of loops that use that vertex as a corner.
* The lists are allocated from one memory pool.
*/
void BKE_mesh_vert_loop_map_create(MeshElemMap **r_map,
int **r_mem,
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
blender::OffsetIndices<int> polys,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const int *corner_verts,
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
int totvert);
/**
* Generates a map where the key is the edge and the value
* is a list of looptris that use that edge.
* The lists are allocated from one memory pool.
*/
void BKE_mesh_vert_looptri_map_create(MeshElemMap **r_map,
int **r_mem,
int totvert,
const struct MLoopTri *mlooptri,
int totlooptri,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const int *corner_verts,
int totloop);
/**
* Generates a map where the key is the vertex and the value
* is a list of edges that use that vertex as an endpoint.
* The lists are allocated from one memory pool.
*/
void BKE_mesh_vert_edge_map_create(
Mesh: Move edges to a generic attribute Implements #95966, as the final step of #95965. This commit changes the storage of mesh edge vertex indices from the `MEdge` type to the generic `int2` attribute type. This follows the general design for geometry and the attribute system, where the data storage type and the usage semantics are separated. The main benefit of the change is reduced memory usage-- the requirements of storing mesh edges is reduced by 1/3. For example, this saves 8MB on a 1 million vertex grid. This also gives performance benefits to any memory-bound mesh processing algorithm that uses edges. Another benefit is that all of the edge's vertex indices are contiguous. In a few cases, it's helpful to process all of them as `Span<int>` rather than `Span<int2>`. Similarly, the type is more likely to match a generic format used by a library, or code that shouldn't know about specific Blender `Mesh` types. Various Notes: - The `.edge_verts` name is used to reflect a mapping between domains, similar to `.corner_verts`, etc. The period means that it the data shouldn't change arbitrarily by the user or procedural operations. - `edge[0]` is now used instead of `edge.v1` - Signed integers are used instead of unsigned to reduce the mixing of signed-ness, which can be error prone. - All of the previously used core mesh data types (`MVert`, `MEdge`, `MLoop`, `MPoly` are now deprecated. Only generic types are used). - The `vec2i` DNA type is used in the few C files where necessary. Pull Request: https://projects.blender.org/blender/blender/pulls/106638
2023-04-17 13:47:41 +02:00
MeshElemMap **r_map, int **r_mem, const blender::int2 *edges, int totvert, int totedge);
/**
* A version of #BKE_mesh_vert_edge_map_create that references connected vertices directly
* (not their edges).
*/
void BKE_mesh_vert_edge_vert_map_create(
Mesh: Move edges to a generic attribute Implements #95966, as the final step of #95965. This commit changes the storage of mesh edge vertex indices from the `MEdge` type to the generic `int2` attribute type. This follows the general design for geometry and the attribute system, where the data storage type and the usage semantics are separated. The main benefit of the change is reduced memory usage-- the requirements of storing mesh edges is reduced by 1/3. For example, this saves 8MB on a 1 million vertex grid. This also gives performance benefits to any memory-bound mesh processing algorithm that uses edges. Another benefit is that all of the edge's vertex indices are contiguous. In a few cases, it's helpful to process all of them as `Span<int>` rather than `Span<int2>`. Similarly, the type is more likely to match a generic format used by a library, or code that shouldn't know about specific Blender `Mesh` types. Various Notes: - The `.edge_verts` name is used to reflect a mapping between domains, similar to `.corner_verts`, etc. The period means that it the data shouldn't change arbitrarily by the user or procedural operations. - `edge[0]` is now used instead of `edge.v1` - Signed integers are used instead of unsigned to reduce the mixing of signed-ness, which can be error prone. - All of the previously used core mesh data types (`MVert`, `MEdge`, `MLoop`, `MPoly` are now deprecated. Only generic types are used). - The `vec2i` DNA type is used in the few C files where necessary. Pull Request: https://projects.blender.org/blender/blender/pulls/106638
2023-04-17 13:47:41 +02:00
MeshElemMap **r_map, int **r_mem, const blender::int2 *edges, int totvert, int totedge);
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
/**
* Generates a map where the key is the edge and the value is a list of loops that use that edge.
* Loops indices of a same poly are contiguous and in winding order.
* The lists are allocated from one memory pool.
*/
void BKE_mesh_edge_loop_map_create(MeshElemMap **r_map,
int **r_mem,
int totedge,
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
blender::OffsetIndices<int> polys,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const int *corner_edges,
int totloop);
/**
* Generates a map where the key is the edge and the value
* is a list of polygons that use that edge.
* The lists are allocated from one memory pool.
*/
void BKE_mesh_edge_poly_map_create(MeshElemMap **r_map,
int **r_mem,
int totedge,
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
blender::OffsetIndices<int> polys,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const int *corner_edges,
int totloop);
/**
* This function creates a map so the source-data (vert/edge/loop/poly)
* can loop over the destination data (using the destination arrays origindex).
*
* This has the advantage that it can operate on any data-types.
*
* \param totsource: The total number of elements that \a final_origindex points to.
* \param totfinal: The size of \a final_origindex
* \param final_origindex: The size of the final array.
*
* \note `totsource` could be `totpoly`,
* `totfinal` could be `tottessface` and `final_origindex` its ORIGINDEX custom-data.
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
* This would allow a poly to loop over its tessfaces.
*/
void BKE_mesh_origindex_map_create(
MeshElemMap **r_map, int **r_mem, int totsource, const int *final_origindex, int totfinal);
/**
* A version of #BKE_mesh_origindex_map_create that takes a looptri array.
* Making a poly -> looptri map.
*/
void BKE_mesh_origindex_map_create_looptri(MeshElemMap **r_map,
int **r_mem,
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
blender::OffsetIndices<int> polys,
const int *looptri_polys,
int looptri_num);
/* islands */
/* Loop islands data helpers. */
enum {
MISLAND_TYPE_NONE = 0,
MISLAND_TYPE_VERT = 1,
MISLAND_TYPE_EDGE = 2,
MISLAND_TYPE_POLY = 3,
MISLAND_TYPE_LOOP = 4,
};
typedef struct MeshIslandStore {
short item_type; /* MISLAND_TYPE_... */
short island_type; /* MISLAND_TYPE_... */
short innercut_type; /* MISLAND_TYPE_... */
int items_to_islands_num;
int *items_to_islands; /* map the item to the island index */
int islands_num;
size_t islands_num_alloc;
struct MeshElemMap **islands; /* Array of pointers, one item per island. */
struct MeshElemMap **innercuts; /* Array of pointers, one item per island. */
struct MemArena *mem; /* Memory arena, internal use only. */
} MeshIslandStore;
void BKE_mesh_loop_islands_init(MeshIslandStore *island_store,
short item_type,
int items_num,
short island_type,
short innercut_type);
void BKE_mesh_loop_islands_clear(MeshIslandStore *island_store);
void BKE_mesh_loop_islands_free(MeshIslandStore *island_store);
void BKE_mesh_loop_islands_add(MeshIslandStore *island_store,
int item_num,
const int *items_indices,
int num_island_items,
int *island_item_indices,
int num_innercut_items,
int *innercut_item_indices);
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 06:10:43 +01:00
typedef bool (*MeshRemapIslandsCalc)(const float (*vert_positions)[3],
int totvert,
Mesh: Move edges to a generic attribute Implements #95966, as the final step of #95965. This commit changes the storage of mesh edge vertex indices from the `MEdge` type to the generic `int2` attribute type. This follows the general design for geometry and the attribute system, where the data storage type and the usage semantics are separated. The main benefit of the change is reduced memory usage-- the requirements of storing mesh edges is reduced by 1/3. For example, this saves 8MB on a 1 million vertex grid. This also gives performance benefits to any memory-bound mesh processing algorithm that uses edges. Another benefit is that all of the edge's vertex indices are contiguous. In a few cases, it's helpful to process all of them as `Span<int>` rather than `Span<int2>`. Similarly, the type is more likely to match a generic format used by a library, or code that shouldn't know about specific Blender `Mesh` types. Various Notes: - The `.edge_verts` name is used to reflect a mapping between domains, similar to `.corner_verts`, etc. The period means that it the data shouldn't change arbitrarily by the user or procedural operations. - `edge[0]` is now used instead of `edge.v1` - Signed integers are used instead of unsigned to reduce the mixing of signed-ness, which can be error prone. - All of the previously used core mesh data types (`MVert`, `MEdge`, `MLoop`, `MPoly` are now deprecated. Only generic types are used). - The `vec2i` DNA type is used in the few C files where necessary. Pull Request: https://projects.blender.org/blender/blender/pulls/106638
2023-04-17 13:47:41 +02:00
const blender::int2 *edges,
int totedge,
const bool *uv_seams,
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
blender::OffsetIndices<int> polys,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const int *corner_verts,
const int *corner_edges,
int totloop,
struct MeshIslandStore *r_island_store);
/* Above vert/UV mapping stuff does not do what we need here, but does things we do not need here.
* So better keep them separated for now, I think. */
/**
* Calculate 'generic' UV islands, i.e. based only on actual geometry data (edge seams),
* not some UV layers coordinates.
*/
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 06:10:43 +01:00
bool BKE_mesh_calc_islands_loop_poly_edgeseam(const float (*vert_positions)[3],
int totvert,
Mesh: Move edges to a generic attribute Implements #95966, as the final step of #95965. This commit changes the storage of mesh edge vertex indices from the `MEdge` type to the generic `int2` attribute type. This follows the general design for geometry and the attribute system, where the data storage type and the usage semantics are separated. The main benefit of the change is reduced memory usage-- the requirements of storing mesh edges is reduced by 1/3. For example, this saves 8MB on a 1 million vertex grid. This also gives performance benefits to any memory-bound mesh processing algorithm that uses edges. Another benefit is that all of the edge's vertex indices are contiguous. In a few cases, it's helpful to process all of them as `Span<int>` rather than `Span<int2>`. Similarly, the type is more likely to match a generic format used by a library, or code that shouldn't know about specific Blender `Mesh` types. Various Notes: - The `.edge_verts` name is used to reflect a mapping between domains, similar to `.corner_verts`, etc. The period means that it the data shouldn't change arbitrarily by the user or procedural operations. - `edge[0]` is now used instead of `edge.v1` - Signed integers are used instead of unsigned to reduce the mixing of signed-ness, which can be error prone. - All of the previously used core mesh data types (`MVert`, `MEdge`, `MLoop`, `MPoly` are now deprecated. Only generic types are used). - The `vec2i` DNA type is used in the few C files where necessary. Pull Request: https://projects.blender.org/blender/blender/pulls/106638
2023-04-17 13:47:41 +02:00
const blender::int2 *edges,
int totedge,
const bool *uv_seams,
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
blender::OffsetIndices<int> polys,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const int *corner_verts,
const int *corner_edges,
int totloop,
MeshIslandStore *r_island_store);
/**
* Calculate UV islands.
*
Mesh: Move UV layers to generic attributes Currently the `MLoopUV` struct stores UV coordinates and flags related to editing UV maps in the UV editor. This patch changes the coordinates to use the generic 2D vector type, and moves the flags into three separate boolean attributes. This follows the design in T95965, with the ultimate intention of simplifying code and improving performance. Importantly, the change allows exporters and renderers to use UVs "touched" by geometry nodes, which only creates generic attributes. It also allows geometry nodes to create "proper" UV maps from scratch, though only with the Store Named Attribute node for now. The new design considers any 2D vector attribute on the corner domain to be a UV map. In the future, they might be distinguished from regular 2D vectors with attribute metadata, which may be helpful because they are often interpolated differently. Most of the code changes deal with passing around UV BMesh custom data offsets and tracking the boolean "sublayers". The boolean layers are use the following prefixes for attribute names: vert selection: `.vs.`, edge selection: `.es.`, pinning: `.pn.`. Currently these are short to avoid using up the maximum length of attribute names. To accommodate for these 4 extra characters, the name length limit is enlarged to 68 bytes, while the maximum user settable name length is still 64 bytes. Unfortunately Python/RNA API access to the UV flag data becomes slower. Accessing the boolean layers directly is be better for performance in general. Like the other mesh SoA refactors, backward and forward compatibility aren't affected, and won't be changed until 4.0. We pay for that by making mesh reading and writing more expensive with conversions. Resolves T85962 Differential Revision: https://developer.blender.org/D14365
2023-01-10 06:47:04 +01:00
* \note If no UV layer is passed, we only consider edges tagged as seams as UV boundaries.
* This has the advantages of simplicity, and being valid/common to all UV maps.
* However, it means actual UV islands without matching UV seams will not be handled correctly.
* If a valid UV layer is passed as \a luvs parameter,
* UV coordinates are also used to detect islands boundaries.
*
* \note All this could be optimized.
* Not sure it would be worth the more complex code, though,
* those loops are supposed to be really quick to do.
*/
Mesh: Move positions to a generic attribute **Changes** As described in T93602, this patch removes all use of the `MVert` struct, replacing it with a generic named attribute with the name `"position"`, consistent with other geometry types. Variable names have been changed from `verts` to `positions`, to align with the attribute name and the more generic design (positions are not vertices, they are just an attribute stored on the point domain). This change is made possible by previous commits that moved all other data out of `MVert` to runtime data or other generic attributes. What remains is mostly a simple type change. Though, the type still shows up 859 times, so the patch is quite large. One compromise is that now `CD_MASK_BAREMESH` now contains `CD_PROP_FLOAT3`. With the general move towards generic attributes over custom data types, we are removing use of these type masks anyway. **Benefits** The most obvious benefit is reduced memory usage and the benefits that brings in memory-bound situations. `float3` is only 3 bytes, in comparison to `MVert` which was 4. When there are millions of vertices this starts to matter more. The other benefits come from using a more generic type. Instead of writing algorithms specifically for `MVert`, code can just use arrays of vectors. This will allow eliminating many temporary arrays or wrappers used to extract positions. Many possible improvements aren't implemented in this patch, though I did switch simplify or remove the process of creating temporary position arrays in a few places. The design clarity that "positions are just another attribute" brings allows removing explicit copying of vertices in some procedural operations-- they are just processed like most other attributes. **Performance** This touches so many areas that it's hard to benchmark exhaustively, but I observed some areas as examples. * The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster. * The Spring splash screen went from ~4.3 to ~4.5 fps. * The subdivision surface modifier/node was slightly faster RNA access through Python may be slightly slower, since now we need a name lookup instead of just a custom data type lookup for each index. **Future Improvements** * Remove uses of "vert_coords" functions: * `BKE_mesh_vert_coords_alloc` * `BKE_mesh_vert_coords_get` * `BKE_mesh_vert_coords_apply{_with_mat4}` * Remove more hidden copying of positions * General simplification now possible in many areas * Convert more code to C++ to use `float3` instead of `float[3]` * Currently `reinterpret_cast` is used for those C-API functions Differential Revision: https://developer.blender.org/D15982
2023-01-10 06:10:43 +01:00
bool BKE_mesh_calc_islands_loop_poly_uvmap(float (*vert_positions)[3],
int totvert,
Mesh: Move edges to a generic attribute Implements #95966, as the final step of #95965. This commit changes the storage of mesh edge vertex indices from the `MEdge` type to the generic `int2` attribute type. This follows the general design for geometry and the attribute system, where the data storage type and the usage semantics are separated. The main benefit of the change is reduced memory usage-- the requirements of storing mesh edges is reduced by 1/3. For example, this saves 8MB on a 1 million vertex grid. This also gives performance benefits to any memory-bound mesh processing algorithm that uses edges. Another benefit is that all of the edge's vertex indices are contiguous. In a few cases, it's helpful to process all of them as `Span<int>` rather than `Span<int2>`. Similarly, the type is more likely to match a generic format used by a library, or code that shouldn't know about specific Blender `Mesh` types. Various Notes: - The `.edge_verts` name is used to reflect a mapping between domains, similar to `.corner_verts`, etc. The period means that it the data shouldn't change arbitrarily by the user or procedural operations. - `edge[0]` is now used instead of `edge.v1` - Signed integers are used instead of unsigned to reduce the mixing of signed-ness, which can be error prone. - All of the previously used core mesh data types (`MVert`, `MEdge`, `MLoop`, `MPoly` are now deprecated. Only generic types are used). - The `vec2i` DNA type is used in the few C files where necessary. Pull Request: https://projects.blender.org/blender/blender/pulls/106638
2023-04-17 13:47:41 +02:00
blender::int2 *edges,
int totedge,
const bool *uv_seams,
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
blender::OffsetIndices<int> polys,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const int *corner_verts,
const int *corner_edges,
int totloop,
Mesh: Move UV layers to generic attributes Currently the `MLoopUV` struct stores UV coordinates and flags related to editing UV maps in the UV editor. This patch changes the coordinates to use the generic 2D vector type, and moves the flags into three separate boolean attributes. This follows the design in T95965, with the ultimate intention of simplifying code and improving performance. Importantly, the change allows exporters and renderers to use UVs "touched" by geometry nodes, which only creates generic attributes. It also allows geometry nodes to create "proper" UV maps from scratch, though only with the Store Named Attribute node for now. The new design considers any 2D vector attribute on the corner domain to be a UV map. In the future, they might be distinguished from regular 2D vectors with attribute metadata, which may be helpful because they are often interpolated differently. Most of the code changes deal with passing around UV BMesh custom data offsets and tracking the boolean "sublayers". The boolean layers are use the following prefixes for attribute names: vert selection: `.vs.`, edge selection: `.es.`, pinning: `.pn.`. Currently these are short to avoid using up the maximum length of attribute names. To accommodate for these 4 extra characters, the name length limit is enlarged to 68 bytes, while the maximum user settable name length is still 64 bytes. Unfortunately Python/RNA API access to the UV flag data becomes slower. Accessing the boolean layers directly is be better for performance in general. Like the other mesh SoA refactors, backward and forward compatibility aren't affected, and won't be changed until 4.0. We pay for that by making mesh reading and writing more expensive with conversions. Resolves T85962 Differential Revision: https://developer.blender.org/D14365
2023-01-10 06:47:04 +01:00
const float (*luvs)[2],
MeshIslandStore *r_island_store);
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
#endif
/**
* Calculate smooth groups from sharp edges.
*
* \param r_totgroup: The total number of groups, 1 or more.
* \return Polygon aligned array of group index values (bitflags if use_bitflags is true),
* starting at 1 (0 being used as 'invalid' flag).
* Note it's callers's responsibility to MEM_freeN returned array.
*/
int *BKE_mesh_calc_smoothgroups(int totedge,
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
const int *poly_offsets,
int totpoly,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
const int *corner_edges,
int totloop,
const bool *sharp_edges,
Mesh: Move face shade smooth flag to a generic attribute Currently the shade smooth status for mesh faces is stored as part of `MPoly::flag`. As described in #95967, this moves that information to a separate boolean attribute. It also flips its status, so the attribute is now called `sharp_face`, which mirrors the existing `sharp_edge` attribute. The attribute doesn't need to be allocated when all faces are smooth. Forward compatibility is kept until 4.0 like the other mesh refactors. This will reduce memory bandwidth requirements for some operations, since the array of booleans uses 12 times less memory than `MPoly`. It also allows faces to be stored more efficiently in the future, since the flag is now unused. It's also possible to use generic functions to process the values. For example, finding whether there is a sharp face is just `sharp_faces.contains(true)`. The `shade_smooth` attribute is no longer accessible with geometry nodes. Since there were dedicated accessor nodes for that data, that shouldn't be a problem. That's difficult to version automatically since the named attribute nodes could be used in arbitrary combinations. **Implementation notes:** - The attribute and array variables in the code use the `sharp_faces` term, to be consistent with the user-facing "sharp faces" wording, and to avoid requiring many renames when #101689 is implemented. - Cycles now accesses smooth face status with the generic attribute, to avoid overhead. - Changing the zero-value from "smooth" to "flat" takes some care to make sure defaults are the same. - Versioning for the edge mode extrude node is particularly complex. New nodes are added by versioning to propagate the attribute in its old inverted state. - A lot of access is still done through the `CustomData` API rather than the attribute API because of a few functions. That can be cleaned up easily in the future. - In the future we would benefit from a way to store attributes as a single value for when all faces are sharp. Pull Request: https://projects.blender.org/blender/blender/pulls/104422
2023-03-08 15:36:18 +01:00
const bool *sharp_faces,
int *r_totgroup,
bool use_bitflags);
/* use on looptri vertex values */
#define BKE_MESH_TESSTRI_VINDEX_ORDER(_tri, _v) \
2015-07-20 14:17:20 +02:00
((CHECK_TYPE_ANY( \
_tri, unsigned int *, int *, int[3], const unsigned int *, const int *, const int[3]), \
CHECK_TYPE_ANY(_v, unsigned int, const unsigned int, int, const int)), \
(((_tri)[0] == _v) ? 0 : \
((_tri)[1] == _v) ? 1 : \
((_tri)[2] == _v) ? 2 : \
-1))
#ifdef __cplusplus
}
#endif
#ifdef __cplusplus
namespace blender::bke::mesh_topology {
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
Array<int> build_loop_to_poly_map(OffsetIndices<int> polys);
Mesh: Move edges to a generic attribute Implements #95966, as the final step of #95965. This commit changes the storage of mesh edge vertex indices from the `MEdge` type to the generic `int2` attribute type. This follows the general design for geometry and the attribute system, where the data storage type and the usage semantics are separated. The main benefit of the change is reduced memory usage-- the requirements of storing mesh edges is reduced by 1/3. For example, this saves 8MB on a 1 million vertex grid. This also gives performance benefits to any memory-bound mesh processing algorithm that uses edges. Another benefit is that all of the edge's vertex indices are contiguous. In a few cases, it's helpful to process all of them as `Span<int>` rather than `Span<int2>`. Similarly, the type is more likely to match a generic format used by a library, or code that shouldn't know about specific Blender `Mesh` types. Various Notes: - The `.edge_verts` name is used to reflect a mapping between domains, similar to `.corner_verts`, etc. The period means that it the data shouldn't change arbitrarily by the user or procedural operations. - `edge[0]` is now used instead of `edge.v1` - Signed integers are used instead of unsigned to reduce the mixing of signed-ness, which can be error prone. - All of the previously used core mesh data types (`MVert`, `MEdge`, `MLoop`, `MPoly` are now deprecated. Only generic types are used). - The `vec2i` DNA type is used in the few C files where necessary. Pull Request: https://projects.blender.org/blender/blender/pulls/106638
2023-04-17 13:47:41 +02:00
Array<Vector<int>> build_vert_to_edge_map(Span<int2> edges, int verts_num);
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
Array<Vector<int>> build_vert_to_poly_map(OffsetIndices<int> polys,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
Span<int> corner_verts,
int verts_num);
Array<Vector<int>> build_vert_to_loop_map(Span<int> corner_verts, int verts_num);
Array<Vector<int>> build_edge_to_loop_map(Span<int> corner_edges, int edges_num);
Mesh: Replace MPoly struct with offset indices Implements #95967. Currently the `MPoly` struct is 12 bytes, and stores the index of a face's first corner and the number of corners/verts/edges. Polygons and corners are always created in order by Blender, meaning each face's corners will be after the previous face's corners. We can take advantage of this fact and eliminate the redundancy in mesh face storage by only storing a single integer corner offset for each face. The size of the face is then encoded by the offset of the next face. The size of a single integer is 4 bytes, so this reduces memory usage by 3 times. The same method is used for `CurvesGeometry`, so Blender already has an abstraction to simplify using these offsets called `OffsetIndices`. This class is used to easily retrieve a range of corner indices for each face. This also gives the opportunity for sharing some logic with curves. Another benefit of the change is that the offsets and sizes stored in `MPoly` can no longer disagree with each other. Storing faces in the order of their corners can simplify some code too. Face/polygon variables now use the `IndexRange` type, which comes with quite a few utilities that can simplify code. Some: - The offset integer array has to be one longer than the face count to avoid a branch for every face, which means the data is no longer part of the mesh's `CustomData`. - We lose the ability to "reference" an original mesh's offset array until more reusable CoW from #104478 is committed. That will be added in a separate commit. - Since they aren't part of `CustomData`, poly offsets often have to be copied manually. - To simplify using `OffsetIndices` in many places, some functions and structs in headers were moved to only compile in C++. - All meshes created by Blender use the same order for faces and face corners, but just in case, meshes with mismatched order are fixed by versioning code. - `MeshPolygon.totloop` is no longer editable in RNA. This API break is necessary here unfortunately. It should be worth it in 3.6, since that's the best way to allow loading meshes from 4.0, which is important for an LTS version. Pull Request: https://projects.blender.org/blender/blender/pulls/105938
2023-04-04 20:39:28 +02:00
Array<Vector<int, 2>> build_edge_to_poly_map(OffsetIndices<int> polys,
Mesh: Replace MLoop struct with generic attributes Implements #102359. Split the `MLoop` struct into two separate integer arrays called `corner_verts` and `corner_edges`, referring to the vertex each corner is attached to and the next edge around the face at each corner. These arrays can be sliced to give access to the edges or vertices in a face. Then they are often referred to as "poly_verts" or "poly_edges". The main benefits are halving the necessary memory bandwidth when only one array is used and simplifications from using regular integer indices instead of a special-purpose struct. The commit also starts a renaming from "loop" to "corner" in mesh code. Like the other mesh struct of array refactors, forward compatibility is kept by writing files with the older format. This will be done until 4.0 to ease the transition process. Looking at a small portion of the patch should give a good impression for the rest of the changes. I tried to make the changes as small as possible so it's easy to tell the correctness from the diff. Though I found Blender developers have been very inventive over the last decade when finding different ways to loop over the corners in a face. For performance, nearly every piece of code that deals with `Mesh` is slightly impacted. Any algorithm that is memory bottle-necked should see an improvement. For example, here is a comparison of interpolating a vertex float attribute to face corners (Ryzen 3700x): **Before** (Average: 3.7 ms, Min: 3.4 ms) ``` threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) { for (const int64_t i : range) { dst[i] = src[loops[i].v]; } }); ``` **After** (Average: 2.9 ms, Min: 2.6 ms) ``` array_utils::gather(src, corner_verts, dst); ``` That's an improvement of 28% to the average timings, and it's also a simplification, since an index-based routine can be used instead. For more examples using the new arrays, see the design task. Pull Request: https://projects.blender.org/blender/blender/pulls/104424
2023-03-20 15:55:13 +01:00
Span<int> corner_edges,
int edges_num);
Vector<Vector<int>> build_edge_to_loop_map_resizable(Span<int> corner_edges, int edges_num);
} // namespace blender::bke::mesh_topology
#endif