tornavis/source/blender/editors/transform/transform_input.c

386 lines
9.5 KiB
C
Raw Normal View History

/**
2009-06-23 02:09:26 +02:00
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <stdlib.h>
#include <math.h>
#include "DNA_screen_types.h"
#include "DNA_windowmanager_types.h"
#include "BLI_math.h"
#include "WM_types.h"
#include "transform.h"
#include "MEM_guardedalloc.h"
/* ************************** INPUT FROM MOUSE *************************** */
void InputVector(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
{
float vec[3], dvec[3];
if(mi->precision)
{
/* calculate the main translation and the precise one separate */
convertViewVec(t, dvec, (short)(mval[0] - mi->precision_mval[0]), (short)(mval[1] - mi->precision_mval[1]));
mul_v3_fl(dvec, 0.1f);
convertViewVec(t, vec, (short)(mi->precision_mval[0] - t->imval[0]), (short)(mi->precision_mval[1] - t->imval[1]));
add_v3_v3v3(output, vec, dvec);
}
else
{
convertViewVec(t, output, (short)(mval[0] - t->imval[0]), (short)(mval[1] - t->imval[1]));
}
}
void InputSpring(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
{
float ratio, precise_ratio, dx, dy;
if(mi->precision)
{
/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
dx = (float)(mi->center[0] - mi->precision_mval[0]);
dy = (float)(mi->center[1] - mi->precision_mval[1]);
ratio = (float)sqrt( dx*dx + dy*dy);
dx= (float)(mi->center[0] - mval[0]);
dy= (float)(mi->center[1] - mval[1]);
precise_ratio = (float)sqrt( dx*dx + dy*dy);
ratio = (ratio + (precise_ratio - ratio) / 10.0f) / mi->factor;
}
else
{
dx = (float)(mi->center[0] - mval[0]);
dy = (float)(mi->center[1] - mval[1]);
ratio = (float)sqrt( dx*dx + dy*dy) / mi->factor;
}
output[0] = ratio;
}
void InputSpringFlip(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
{
InputSpring(t, mi, mval, output);
/* flip scale */
if ((mi->center[0] - mval[0]) * (mi->center[0] - mi->imval[0]) +
(mi->center[1] - mval[1]) * (mi->center[1] - mi->imval[1]) < 0)
{
output[0] *= -1.0f;
}
}
void InputTrackBall(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
{
if(mi->precision)
{
output[0] = ( mi->imval[1] - mi->precision_mval[1] ) + ( mi->precision_mval[1] - mval[1] ) * 0.1f;
output[1] = ( mi->precision_mval[0] - mi->imval[0] ) + ( mval[0] - mi->precision_mval[0] ) * 0.1f;
}
else
{
output[0] = (float)( mi->imval[1] - mval[1] );
output[1] = (float)( mval[0] - mi->imval[0] );
}
output[0] *= mi->factor;
output[1] *= mi->factor;
}
void InputHorizontalRatio(TransInfo *t, MouseInput *mi, short mval[2], float output[3]) {
float x, pad;
pad = t->ar->winx / 10;
if (mi->precision)
{
/* deal with Shift key by adding motion / 10 to motion before shift press */
x = mi->precision_mval[0] + (float)(mval[0] - mi->precision_mval[0]) / 10.0f;
}
else {
x = mval[0];
}
output[0] = (x - pad) / (t->ar->winx - 2 * pad);
}
void InputHorizontalAbsolute(TransInfo *t, MouseInput *mi, short mval[2], float output[3]) {
float vec[3];
InputVector(t, mi, mval, vec);
project_v3_v3v3(vec, vec, t->viewinv[0]);
output[0] = dot_v3v3(t->viewinv[0], vec) * 2.0f;
}
void InputVerticalRatio(TransInfo *t, MouseInput *mi, short mval[2], float output[3]) {
float y, pad;
pad = t->ar->winy / 10;
if (mi->precision) {
/* deal with Shift key by adding motion / 10 to motion before shift press */
y = mi->precision_mval[1] + (float)(mval[1] - mi->precision_mval[1]) / 10.0f;
}
else {
y = mval[0];
}
output[0] = (y - pad) / (t->ar->winy - 2 * pad);
}
void InputVerticalAbsolute(TransInfo *t, MouseInput *mi, short mval[2], float output[3]) {
float vec[3];
InputVector(t, mi, mval, vec);
project_v3_v3v3(vec, vec, t->viewinv[1]);
output[0] = dot_v3v3(t->viewinv[1], vec) * 2.0f;
}
void setCustomPoints(TransInfo *t, MouseInput *mi, short start[2], short end[2])
{
short *data = mi->data;
data[0] = start[0];
data[1] = start[1];
data[2] = end[0];
data[3] = end[1];
}
void InputCustomRatio(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
{
float length;
float distance;
short *data = mi->data;
short dx, dy;
dx = data[2] - data[0];
dy = data[3] - data[1];
length = (float)sqrtf(dx*dx + dy*dy);
if (mi->precision) {
/* deal with Shift key by adding motion / 10 to motion before shift press */
short mdx, mdy;
mdx = (mi->precision_mval[0] + (float)(mval[0] - mi->precision_mval[0]) / 10.0f) - data[2];
mdy = (mi->precision_mval[1] + (float)(mval[1] - mi->precision_mval[1]) / 10.0f) - data[3];
distance = (mdx*dx + mdy*dy) / length;
}
else {
short mdx, mdy;
mdx = mval[0] - data[2];
mdy = mval[1] - data[3];
distance = (mdx*dx + mdy*dy) / length;
}
output[0] = distance / length;
}
void InputAngle(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
{
double dx2 = mval[0] - mi->center[0];
double dy2 = mval[1] - mi->center[1];
double B = sqrt(dx2*dx2+dy2*dy2);
double dx1 = mi->imval[0] - mi->center[0];
double dy1 = mi->imval[1] - mi->center[1];
double A = sqrt(dx1*dx1+dy1*dy1);
double dx3 = mval[0] - mi->imval[0];
double dy3 = mval[1] - mi->imval[1];
/* use doubles here, to make sure a "1.0" (no rotation) doesnt become 9.999999e-01, which gives 0.02 for acos */
double deler = ((dx1*dx1+dy1*dy1)+(dx2*dx2+dy2*dy2)-(dx3*dx3+dy3*dy3))
/ (2.0 * (A*B?A*B:1.0));
/* (A*B?A*B:1.0f) this takes care of potential divide by zero errors */
float dphi;
dphi = saacos((float)deler);
if( (dx1*dy2-dx2*dy1)>0.0 ) dphi= -dphi;
/* If the angle is zero, because of lack of precision close to the 1.0 value in acos
* approximate the angle with the oposite side of the normalized triangle
* This is a good approximation here since the smallest acos value seems to be around
* 0.02 degree and lower values don't even have a 0.01% error compared to the approximation
* */
if (dphi == 0)
{
double dx, dy;
dx2 /= A;
dy2 /= A;
dx1 /= B;
dy1 /= B;
dx = dx1 - dx2;
dy = dy1 - dy2;
dphi = sqrt(dx*dx + dy*dy);
if( (dx1*dy2-dx2*dy1)>0.0 ) dphi= -dphi;
}
if(mi->precision) dphi = dphi/30.0f;
/* if no delta angle, don't update initial position */
if (dphi != 0)
{
mi->imval[0] = mval[0];
mi->imval[1] = mval[1];
}
output[0] += dphi;
}
void initMouseInput(TransInfo *t, MouseInput *mi, int center[2], short mval[2])
{
mi->factor = 0;
mi->precision = 0;
mi->center[0] = center[0];
mi->center[1] = center[1];
mi->imval[0] = mval[0];
mi->imval[1] = mval[1];
}
static void calcSpringFactor(MouseInput *mi)
{
mi->factor = (float)sqrt(
(
((float)(mi->center[1] - mi->imval[1]))*((float)(mi->center[1] - mi->imval[1]))
+
((float)(mi->center[0] - mi->imval[0]))*((float)(mi->center[0] - mi->imval[0]))
) );
if (mi->factor==0.0f)
mi->factor= 1.0f; /* prevent Inf */
}
void initMouseInputMode(TransInfo *t, MouseInput *mi, MouseInputMode mode)
{
switch(mode)
{
case INPUT_VECTOR:
mi->apply = InputVector;
t->helpline = HLP_NONE;
break;
case INPUT_SPRING:
calcSpringFactor(mi);
mi->apply = InputSpring;
t->helpline = HLP_SPRING;
break;
case INPUT_SPRING_FLIP:
calcSpringFactor(mi);
mi->apply = InputSpringFlip;
t->helpline = HLP_SPRING;
break;
case INPUT_ANGLE:
mi->apply = InputAngle;
t->helpline = HLP_ANGLE;
break;
case INPUT_TRACKBALL:
/* factor has to become setting or so */
mi->factor = 0.01f;
mi->apply = InputTrackBall;
t->helpline = HLP_TRACKBALL;
break;
case INPUT_HORIZONTAL_RATIO:
mi->factor = (float)(mi->center[0] - mi->imval[0]);
mi->apply = InputHorizontalRatio;
t->helpline = HLP_HARROW;
break;
case INPUT_HORIZONTAL_ABSOLUTE:
mi->apply = InputHorizontalAbsolute;
t->helpline = HLP_HARROW;
break;
case INPUT_VERTICAL_RATIO:
mi->apply = InputVerticalRatio;
t->helpline = HLP_VARROW;
break;
case INPUT_VERTICAL_ABSOLUTE:
mi->apply = InputVerticalAbsolute;
t->helpline = HLP_VARROW;
break;
case INPUT_CUSTOM_RATIO:
mi->apply = InputCustomRatio;
t->helpline = HLP_NONE;
mi->data = MEM_callocN(sizeof(short) * 4, "custom points");
break;
case INPUT_NONE:
default:
mi->apply = NULL;
break;
}
/* bootstrap mouse input with initial values */
applyMouseInput(t, mi, mi->imval, t->values);
}
void applyMouseInput(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
{
if (mi->apply != NULL)
{
mi->apply(t, mi, mval, output);
}
}
int handleMouseInput(TransInfo *t, MouseInput *mi, wmEvent *event)
{
int redraw = 0;
switch (event->type)
{
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
if (event->val==KM_PRESS)
{
t->modifiers |= MOD_PRECISION;
/* shift is modifier for higher precision transform
* store the mouse position where the normal movement ended */
mi->precision_mval[0] = event->x - t->ar->winrct.xmin;
mi->precision_mval[1] = event->y - t->ar->winrct.ymin;
mi->precision = 1;
}
else
{
t->modifiers &= ~MOD_PRECISION;
mi->precision = 0;
}
redraw = 1;
break;
}
return redraw;
}