tornavis/source/blender/blenkernel/intern/armature_update.c

708 lines
23 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2015 Blender Foundation.
* All rights reserved.
*
* Original Author: Joshua Leung
* Contributor(s): None Yet
*
* ***** END GPL LICENSE BLOCK *****
*
* Defines and code for core node types
*/
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_action.h"
#include "BKE_anim.h"
#include "BKE_armature.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_fcurve.h"
#include "BKE_scene.h"
#include "BIK_api.h"
#include "BKE_global.h"
#include "BKE_main.h"
#define DEBUG_PRINT if (G.debug & G_DEBUG_DEPSGRAPH) printf
/* ********************** SPLINE IK SOLVER ******************* */
/* Temporary evaluation tree data used for Spline IK */
typedef struct tSplineIK_Tree {
struct tSplineIK_Tree *next, *prev;
int type; /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
bool free_points; /* free the point positions array */
short chainlen; /* number of bones in the chain */
float *points; /* parametric positions for the joints along the curve */
bPoseChannel **chain; /* chain of bones to affect using Spline IK (ordered from the tip) */
bPoseChannel *root; /* bone that is the root node of the chain */
bConstraint *con; /* constraint for this chain */
bSplineIKConstraint *ikData; /* constraint settings for this chain */
} tSplineIK_Tree;
/* ----------- */
/* Tag the bones in the chain formed by the given bone for IK */
static void splineik_init_tree_from_pchan(Scene *scene, Object *UNUSED(ob), bPoseChannel *pchan_tip)
{
bPoseChannel *pchan, *pchanRoot = NULL;
bPoseChannel *pchanChain[255];
bConstraint *con = NULL;
bSplineIKConstraint *ikData = NULL;
float boneLengths[255], *jointPoints;
float totLength = 0.0f;
bool free_joints = 0;
int segcount = 0;
/* find the SplineIK constraint */
for (con = pchan_tip->constraints.first; con; con = con->next) {
if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
ikData = con->data;
/* target can only be curve */
if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE))
continue;
/* skip if disabled */
if ((con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)))
continue;
/* otherwise, constraint is ok... */
break;
}
}
if (con == NULL)
return;
/* make sure that the constraint targets are ok
* - this is a workaround for a depsgraph bug...
*/
if (ikData->tar) {
/* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
* currently for paths to work it needs to go through the bevlist/displist system (ton)
*/
/* TODO: Make sure this doesn't crash. */
#if 0
/* only happens on reload file, but violates depsgraph still... fix! */
if (ELEM(NULL, ikData->tar->curve_cache, ikData->tar->curve_cache->path, ikData->tar->curve_cache->path->data)) {
BKE_displist_make_curveTypes(eval_ctx, scene, ikData->tar, 0);
/* path building may fail in EditMode after removing verts [#33268]*/
if (ELEM(NULL, ikData->tar->curve_cache->path, ikData->tar->curve_cache->path->data)) {
/* BLI_assert(cu->path != NULL); */
return;
}
}
#else
(void) scene;
#endif
}
/* find the root bone and the chain of bones from the root to the tip
* NOTE: this assumes that the bones are connected, but that may not be true... */
for (pchan = pchan_tip; pchan && (segcount < ikData->chainlen); pchan = pchan->parent, segcount++) {
/* store this segment in the chain */
pchanChain[segcount] = pchan;
/* if performing rebinding, calculate the length of the bone */
boneLengths[segcount] = pchan->bone->length;
totLength += boneLengths[segcount];
}
if (segcount == 0)
return;
else
pchanRoot = pchanChain[segcount - 1];
/* perform binding step if required */
if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
float segmentLen = (1.0f / (float)segcount);
int i;
/* setup new empty array for the points list */
if (ikData->points)
MEM_freeN(ikData->points);
ikData->numpoints = ikData->chainlen + 1;
ikData->points = MEM_mallocN(sizeof(float) * ikData->numpoints, "Spline IK Binding");
/* bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint) */
ikData->points[0] = 1.0f;
/* perform binding of the joints to parametric positions along the curve based
* proportion of the total length that each bone occupies
*/
for (i = 0; i < segcount; i++) {
/* 'head' joints, traveling towards the root of the chain
* - 2 methods; the one chosen depends on whether we've got usable lengths
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
/* 1) equi-spaced joints */
ikData->points[i + 1] = ikData->points[i] - segmentLen;
}
else {
/* 2) to find this point on the curve, we take a step from the previous joint
* a distance given by the proportion that this bone takes
*/
ikData->points[i + 1] = ikData->points[i] - (boneLengths[i] / totLength);
}
}
/* spline has now been bound */
ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
}
/* disallow negative values (happens with float precision) */
CLAMP_MIN(ikData->points[segcount], 0.0f);
/* apply corrections for sensitivity to scaling on a copy of the bind points,
* since it's easier to determine the positions of all the joints beforehand this way
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_SCALE_LIMITED) && (totLength != 0.0f)) {
float splineLen, maxScale;
int i;
/* make a copy of the points array, that we'll store in the tree
* - although we could just multiply the points on the fly, this approach means that
* we can introduce per-segment stretchiness later if it is necessary
*/
jointPoints = MEM_dupallocN(ikData->points);
free_joints = 1;
/* get the current length of the curve */
/* NOTE: this is assumed to be correct even after the curve was resized */
splineLen = ikData->tar->curve_cache->path->totdist;
/* calculate the scale factor to multiply all the path values by so that the
* bone chain retains its current length, such that
* maxScale * splineLen = totLength
*/
maxScale = totLength / splineLen;
/* apply scaling correction to all of the temporary points */
/* TODO: this is really not adequate enough on really short chains */
for (i = 0; i < segcount; i++)
jointPoints[i] *= maxScale;
}
else {
/* just use the existing points array */
jointPoints = ikData->points;
free_joints = 0;
}
/* make a new Spline-IK chain, and store it in the IK chains */
2016-07-16 09:48:57 +02:00
/* TODO: we should check if there is already an IK chain on this, since that would take precedence... */
{
/* make new tree */
tSplineIK_Tree *tree = MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
tree->type = CONSTRAINT_TYPE_SPLINEIK;
tree->chainlen = segcount;
/* copy over the array of links to bones in the chain (from tip to root) */
tree->chain = MEM_mallocN(sizeof(bPoseChannel *) * segcount, "SplineIK Chain");
memcpy(tree->chain, pchanChain, sizeof(bPoseChannel *) * segcount);
/* store reference to joint position array */
tree->points = jointPoints;
tree->free_points = free_joints;
/* store references to different parts of the chain */
tree->root = pchanRoot;
tree->con = con;
tree->ikData = ikData;
/* AND! link the tree to the root */
BLI_addtail(&pchanRoot->siktree, tree);
}
/* mark root channel having an IK tree */
pchanRoot->flag |= POSE_IKSPLINE;
}
/* Tag which bones are members of Spline IK chains */
static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
{
bPoseChannel *pchan;
/* find the tips of Spline IK chains, which are simply the bones which have been tagged as such */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
if (pchan->constflag & PCHAN_HAS_SPLINEIK)
splineik_init_tree_from_pchan(scene, ob, pchan);
}
}
/* ----------- */
/* Evaluate spline IK for a given bone */
static void splineik_evaluate_bone(struct EvaluationContext *eval_ctx, tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan,
int index, float ctime)
{
bSplineIKConstraint *ikData = tree->ikData;
float poseHead[3], poseTail[3], poseMat[4][4];
float splineVec[3], scaleFac, radius = 1.0f;
/* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
BKE_pose_where_is_bone(eval_ctx, scene, ob, pchan, ctime, 1);
copy_v3_v3(poseHead, pchan->pose_head);
copy_v3_v3(poseTail, pchan->pose_tail);
/* step 1: determine the positions for the endpoints of the bone */
{
float vec[4], dir[3], rad;
float tailBlendFac = 1.0f;
/* determine if the bone should still be affected by SplineIK */
if (tree->points[index + 1] >= 1.0f) {
/* spline doesn't affect the bone anymore, so done... */
pchan->flag |= POSE_DONE;
return;
}
else if ((tree->points[index] >= 1.0f) && (tree->points[index + 1] < 1.0f)) {
/* blending factor depends on the amount of the bone still left on the chain */
tailBlendFac = (1.0f - tree->points[index + 1]) / (tree->points[index] - tree->points[index + 1]);
}
/* tail endpoint */
if (where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL)) {
/* apply curve's object-mode transforms to the position
* unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
mul_m4_v3(ikData->tar->obmat, vec);
/* convert the position to pose-space, then store it */
mul_m4_v3(ob->imat, vec);
interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);
/* set the new radius */
radius = rad;
}
/* head endpoint */
if (where_on_path(ikData->tar, tree->points[index + 1], vec, dir, NULL, &rad, NULL)) {
/* apply curve's object-mode transforms to the position
* unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
mul_m4_v3(ikData->tar->obmat, vec);
/* store the position, and convert it to pose space */
mul_m4_v3(ob->imat, vec);
copy_v3_v3(poseHead, vec);
/* set the new radius (it should be the average value) */
radius = (radius + rad) / 2;
}
}
/* step 2: determine the implied transform from these endpoints
* - splineVec: the vector direction that the spline applies on the bone
* - scaleFac: the factor that the bone length is scaled by to get the desired amount
*/
sub_v3_v3v3(splineVec, poseTail, poseHead);
scaleFac = len_v3(splineVec) / pchan->bone->length;
/* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis
* - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
*/
{
float dmat[3][3], rmat[3][3], tmat[3][3];
float raxis[3], rangle;
/* compute the raw rotation matrix from the bone's current matrix by extracting only the
* orientation-relevant axes, and normalizing them
*/
copy_v3_v3(rmat[0], pchan->pose_mat[0]);
copy_v3_v3(rmat[1], pchan->pose_mat[1]);
copy_v3_v3(rmat[2], pchan->pose_mat[2]);
normalize_m3(rmat);
/* also, normalize the orientation imposed by the bone, now that we've extracted the scale factor */
normalize_v3(splineVec);
/* calculate smallest axis-angle rotation necessary for getting from the
* current orientation of the bone, to the spline-imposed direction
*/
cross_v3_v3v3(raxis, rmat[1], splineVec);
rangle = dot_v3v3(rmat[1], splineVec);
CLAMP(rangle, -1.0f, 1.0f);
rangle = acosf(rangle);
/* multiply the magnitude of the angle by the influence of the constraint to
* control the influence of the SplineIK effect
*/
rangle *= tree->con->enforce;
/* construct rotation matrix from the axis-angle rotation found above
* - this call takes care to make sure that the axis provided is a unit vector first
*/
axis_angle_to_mat3(dmat, raxis, rangle);
/* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
* while still maintaining roll control from the existing bone animation
*/
mul_m3_m3m3(tmat, dmat, rmat); /* m1, m3, m2 */
normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
copy_m4_m3(poseMat, tmat);
}
/* step 4: set the scaling factors for the axes */
{
/* only multiply the y-axis by the scaling factor to get nice volume-preservation */
mul_v3_fl(poseMat[1], scaleFac);
/* set the scaling factors of the x and z axes from... */
switch (ikData->xzScaleMode) {
case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
{
/* original scales get used */
float scale;
/* x-axis scale */
scale = len_v3(pchan->pose_mat[0]);
mul_v3_fl(poseMat[0], scale);
/* z-axis scale */
scale = len_v3(pchan->pose_mat[2]);
mul_v3_fl(poseMat[2], scale);
break;
}
case CONSTRAINT_SPLINEIK_XZS_INVERSE:
{
/* old 'volume preservation' method using the inverse scale */
float scale;
/* calculate volume preservation factor which is
* basically the inverse of the y-scaling factor
*/
if (fabsf(scaleFac) != 0.0f) {
scale = 1.0f / fabsf(scaleFac);
/* we need to clamp this within sensible values */
/* NOTE: these should be fine for now, but should get sanitised in future */
CLAMP(scale, 0.0001f, 100000.0f);
}
else
scale = 1.0f;
/* apply the scaling */
mul_v3_fl(poseMat[0], scale);
mul_v3_fl(poseMat[2], scale);
break;
}
case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
{
/* improved volume preservation based on the Stretch To constraint */
float final_scale;
/* as the basis for volume preservation, we use the inverse scale factor... */
if (fabsf(scaleFac) != 0.0f) {
/* NOTE: The method here is taken wholesale from the Stretch To constraint */
float bulge = powf(1.0f / fabsf(scaleFac), ikData->bulge);
if (bulge > 1.0f) {
if (ikData->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MAX) {
float bulge_max = max_ff(ikData->bulge_max, 1.0f);
float hard = min_ff(bulge, bulge_max);
float range = bulge_max - 1.0f;
float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
float soft = 1.0f + range * atanf((bulge - 1.0f) * scale) / (float)M_PI_2;
bulge = interpf(soft, hard, ikData->bulge_smooth);
}
}
if (bulge < 1.0f) {
if (ikData->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MIN) {
float bulge_min = CLAMPIS(ikData->bulge_min, 0.0f, 1.0f);
float hard = max_ff(bulge, bulge_min);
float range = 1.0f - bulge_min;
float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
float soft = 1.0f - range * atanf((1.0f - bulge) * scale) / (float)M_PI_2;
bulge = interpf(soft, hard, ikData->bulge_smooth);
}
}
/* compute scale factor for xz axes from this value */
final_scale = sqrtf(bulge);
}
else {
/* no scaling, so scale factor is simple */
final_scale = 1.0f;
}
/* apply the scaling (assuming normalised scale) */
mul_v3_fl(poseMat[0], final_scale);
mul_v3_fl(poseMat[2], final_scale);
break;
}
}
/* finally, multiply the x and z scaling by the radius of the curve too,
* to allow automatic scales to get tweaked still
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
mul_v3_fl(poseMat[0], radius);
mul_v3_fl(poseMat[2], radius);
}
}
/* step 5: set the location of the bone in the matrix */
if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
/* when the 'no-root' option is affected, the chain can retain
* the shape but be moved elsewhere
*/
copy_v3_v3(poseHead, pchan->pose_head);
}
else if (tree->con->enforce < 1.0f) {
/* when the influence is too low
* - blend the positions for the 'root' bone
* - stick to the parent for any other
*/
if (pchan->parent) {
copy_v3_v3(poseHead, pchan->pose_head);
}
else {
/* FIXME: this introduces popping artifacts when we reach 0.0 */
interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
}
}
copy_v3_v3(poseMat[3], poseHead);
/* finally, store the new transform */
copy_m4_m4(pchan->pose_mat, poseMat);
copy_v3_v3(pchan->pose_head, poseHead);
/* recalculate tail, as it's now outdated after the head gets adjusted above! */
BKE_pose_where_is_bone_tail(pchan);
/* done! */
pchan->flag |= POSE_DONE;
}
/* Evaluate the chain starting from the nominated bone */
static void splineik_execute_tree(struct EvaluationContext *eval_ctx, Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
tSplineIK_Tree *tree;
/* for each pose-tree, execute it if it is spline, otherwise just free it */
while ((tree = pchan_root->siktree.first) != NULL) {
int i;
/* walk over each bone in the chain, calculating the effects of spline IK
* - the chain is traversed in the opposite order to storage order (i.e. parent to children)
* so that dependencies are correct
*/
for (i = tree->chainlen - 1; i >= 0; i--) {
bPoseChannel *pchan = tree->chain[i];
splineik_evaluate_bone(eval_ctx, tree, scene, ob, pchan, i, ctime);
}
/* free the tree info specific to SplineIK trees now */
if (tree->chain)
MEM_freeN(tree->chain);
if (tree->free_points)
MEM_freeN(tree->points);
/* free this tree */
BLI_freelinkN(&pchan_root->siktree, tree);
}
}
void BKE_pose_splineik_init_tree(Scene *scene, Object *ob, float ctime)
{
splineik_init_tree(scene, ob, ctime);
}
void BKE_splineik_execute_tree(struct EvaluationContext *eval_ctx, Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
splineik_execute_tree(eval_ctx, scene, ob, pchan_root, ctime);
}
/* *************** Depsgraph evaluation callbacks ************ */
void BKE_pose_eval_init(struct EvaluationContext *eval_ctx,
Scene *scene,
Object *ob,
bPose *pose)
{
float ctime = BKE_scene_frame_get(scene); /* not accurate... */
bPoseChannel *pchan;
DEBUG_PRINT("%s on %s\n", __func__, ob->id.name);
BLI_assert(ob->type == OB_ARMATURE);
/* We demand having proper pose. */
BLI_assert(ob->pose != NULL);
BLI_assert((ob->pose->flag & POSE_RECALC) == 0);
/* imat is needed for solvers. */
invert_m4_m4(ob->imat, ob->obmat);
/* 1. clear flags */
for (pchan = pose->chanbase.first; pchan != NULL; pchan = pchan->next) {
pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);
}
/* 2a. construct the IK tree (standard IK) */
BIK_initialize_tree(eval_ctx, scene, ob, ctime);
/* 2b. construct the Spline IK trees
* - this is not integrated as an IK plugin, since it should be able
* to function in conjunction with standard IK
*/
BKE_pose_splineik_init_tree(scene, ob, ctime);
}
void BKE_pose_eval_bone(struct EvaluationContext *eval_ctx,
Scene *scene,
Object *ob,
bPoseChannel *pchan)
{
bArmature *arm = (bArmature *)ob->data;
DEBUG_PRINT("%s on %s pchan %s\n", __func__, ob->id.name, pchan->name);
BLI_assert(ob->type == OB_ARMATURE);
if (arm->edbo || (arm->flag & ARM_RESTPOS)) {
Bone *bone = pchan->bone;
if (bone) {
copy_m4_m4(pchan->pose_mat, bone->arm_mat);
copy_v3_v3(pchan->pose_head, bone->arm_head);
copy_v3_v3(pchan->pose_tail, bone->arm_tail);
}
}
else {
/* TODO(sergey): Currently if there are constraints full transform is being
* evaluated in BKE_pose_constraints_evaluate.
*/
if (pchan->constraints.first == NULL) {
if (pchan->flag & POSE_IKTREE || pchan->flag & POSE_IKSPLINE) {
/* pass */
}
else {
if ((pchan->flag & POSE_DONE) == 0) {
/* TODO(sergey): Use time source node for time. */
float ctime = BKE_scene_frame_get(scene); /* not accurate... */
BKE_pose_where_is_bone(eval_ctx, scene, ob, pchan, ctime, 1);
}
}
}
}
}
void BKE_pose_constraints_evaluate(struct EvaluationContext *eval_ctx,
Scene *scene,
Object *ob,
bPoseChannel *pchan)
{
DEBUG_PRINT("%s on %s pchan %s\n", __func__, ob->id.name, pchan->name);
bArmature *arm = (bArmature *)ob->data;
if (arm->flag & ARM_RESTPOS) {
return;
}
else if (pchan->flag & POSE_IKTREE || pchan->flag & POSE_IKSPLINE) {
/* IK are being solved separately/ */
}
else {
if ((pchan->flag & POSE_DONE) == 0) {
float ctime = BKE_scene_frame_get(scene); /* not accurate... */
BKE_pose_where_is_bone(eval_ctx, scene, ob, pchan, ctime, 1);
}
}
}
void BKE_pose_bone_done(struct EvaluationContext *UNUSED(eval_ctx),
bPoseChannel *pchan)
{
float imat[4][4];
DEBUG_PRINT("%s on pchan %s\n", __func__, pchan->name);
if (pchan->bone) {
invert_m4_m4(imat, pchan->bone->arm_mat);
mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
}
}
void BKE_pose_iktree_evaluate(struct EvaluationContext *eval_ctx,
Scene *scene,
Object *ob,
bPoseChannel *rootchan)
{
float ctime = BKE_scene_frame_get(scene); /* not accurate... */
DEBUG_PRINT("%s on %s pchan %s\n", __func__, ob->id.name, rootchan->name);
BIK_execute_tree(eval_ctx, scene, ob, rootchan, ctime);
}
void BKE_pose_splineik_evaluate(struct EvaluationContext *eval_ctx,
Scene *scene,
Object *ob,
bPoseChannel *rootchan)
{
float ctime = BKE_scene_frame_get(scene); /* not accurate... */
DEBUG_PRINT("%s on %s pchan %s\n", __func__, ob->id.name, rootchan->name);
BKE_splineik_execute_tree(eval_ctx, scene, ob, rootchan, ctime);
}
void BKE_pose_eval_flush(struct EvaluationContext *UNUSED(eval_ctx),
Scene *scene,
Object *ob,
bPose *UNUSED(pose))
{
float ctime = BKE_scene_frame_get(scene); /* not accurate... */
DEBUG_PRINT("%s on %s\n", __func__, ob->id.name);
BLI_assert(ob->type == OB_ARMATURE);
/* 6. release the IK tree */
BIK_release_tree(scene, ob, ctime);
ob->recalc &= ~OB_RECALC_ALL;
}
void BKE_pose_eval_proxy_copy(struct EvaluationContext *UNUSED(eval_ctx), Object *ob)
{
BLI_assert(ID_IS_LINKED_DATABLOCK(ob) && ob->proxy_from != NULL);
DEBUG_PRINT("%s on %s\n", __func__, ob->id.name);
if (BKE_pose_copy_result(ob->pose, ob->proxy_from->pose) == false) {
printf("Proxy copy error, lib Object: %s proxy Object: %s\n",
ob->id.name + 2, ob->proxy_from->id.name + 2);
}
/* Rest of operations are NO-OP in depsgraph, so can clear
* flag now.
*/
ob->recalc &= ~OB_RECALC_ALL;
}