tornavis/source/blender/blenkernel/intern/armature_update.c

755 lines
25 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2015 Blender Foundation.
* All rights reserved.
*
* Original Author: Joshua Leung
* Contributor(s): None Yet
*
* ***** END GPL LICENSE BLOCK *****
*
* Defines and code for core node types
*/
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_action.h"
#include "BKE_anim.h"
#include "BKE_armature.h"
#include "BKE_curve.h"
#include "BKE_depsgraph.h"
#include "BKE_displist.h"
#include "BKE_fcurve.h"
#include "BKE_scene.h"
#include "BIK_api.h"
#include "BKE_main.h"
Depsgraph: New dependency graph integration commit This commit integrates the work done so far on the new dependency graph system, where goal was to replace legacy depsgraph with the new one, supporting loads of neat features like: - More granular dependency relation nature, which solves issues with fake cycles in the dependencies. - Move towards all-animatable, by better integration of drivers into the system. - Lay down some basis for upcoming copy-on-write, overrides and so on. The new system is living side-by-side with the previous one and disabled by default, so nothing will become suddenly broken. The way to enable new depsgraph is to pass `--new-depsgraph` command line argument. It's a bit early to consider the system production-ready, there are some TODOs and issues were discovered during the merge period, they'll be addressed ASAP. But it's important to merge, because it's the only way to attract artists to really start testing this system. There are number of assorted documents related on the design of the new system: * http://wiki.blender.org/index.php/User:Aligorith/GSoC2013_Depsgraph#Design_Documents * http://wiki.blender.org/index.php/User:Nazg-gul/DependencyGraph There are also some user-related information online: * http://code.blender.org/2015/02/blender-dependency-graph-branch-for-users/ * http://code.blender.org/2015/03/more-dependency-graph-tricks/ Kudos to everyone who was involved into the project: - Joshua "Aligorith" Leung -- design specification, initial code - Lukas "lukas_t" Toenne -- integrating code into blender, with further fixes - Sergey "Sergey" "Sharybin" -- some mocking around, trying to wrap up the project and so - Bassam "slikdigit" Kurdali -- stressing the new system, reporting all the issues and recording/writing documentation. - Everyone else who i forgot to mention here :)
2015-05-12 12:05:57 +02:00
#include "DEG_depsgraph.h"
/* ********************** SPLINE IK SOLVER ******************* */
/* Temporary evaluation tree data used for Spline IK */
typedef struct tSplineIK_Tree {
struct tSplineIK_Tree *next, *prev;
int type; /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
bool free_points; /* free the point positions array */
short chainlen; /* number of bones in the chain */
float *points; /* parametric positions for the joints along the curve */
bPoseChannel **chain; /* chain of bones to affect using Spline IK (ordered from the tip) */
bPoseChannel *root; /* bone that is the root node of the chain */
bConstraint *con; /* constraint for this chain */
bSplineIKConstraint *ikData; /* constraint settings for this chain */
} tSplineIK_Tree;
/* ----------- */
/* Tag the bones in the chain formed by the given bone for IK */
static void splineik_init_tree_from_pchan(Scene *scene, Object *UNUSED(ob), bPoseChannel *pchan_tip)
{
bPoseChannel *pchan, *pchanRoot = NULL;
bPoseChannel *pchanChain[255];
bConstraint *con = NULL;
bSplineIKConstraint *ikData = NULL;
float boneLengths[255], *jointPoints;
float totLength = 0.0f;
bool free_joints = 0;
int segcount = 0;
/* find the SplineIK constraint */
for (con = pchan_tip->constraints.first; con; con = con->next) {
if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
ikData = con->data;
/* target can only be curve */
if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE))
continue;
/* skip if disabled */
if ((con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)))
continue;
/* otherwise, constraint is ok... */
break;
}
}
if (con == NULL)
return;
/* make sure that the constraint targets are ok
* - this is a workaround for a depsgraph bug...
*/
if (ikData->tar) {
/* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
* currently for paths to work it needs to go through the bevlist/displist system (ton)
*/
/* only happens on reload file, but violates depsgraph still... fix! */
if (ELEM(NULL, ikData->tar->curve_cache, ikData->tar->curve_cache->path, ikData->tar->curve_cache->path->data)) {
BKE_displist_make_curveTypes(scene, ikData->tar, 0);
2018-06-17 17:05:51 +02:00
/* path building may fail in EditMode after removing verts [#33268]*/
if (ELEM(NULL, ikData->tar->curve_cache->path, ikData->tar->curve_cache->path->data)) {
/* BLI_assert(cu->path != NULL); */
return;
}
}
}
/* find the root bone and the chain of bones from the root to the tip
* NOTE: this assumes that the bones are connected, but that may not be true... */
for (pchan = pchan_tip; pchan && (segcount < ikData->chainlen); pchan = pchan->parent, segcount++) {
/* store this segment in the chain */
pchanChain[segcount] = pchan;
/* if performing rebinding, calculate the length of the bone */
boneLengths[segcount] = pchan->bone->length;
totLength += boneLengths[segcount];
}
if (segcount == 0)
return;
else
pchanRoot = pchanChain[segcount - 1];
/* perform binding step if required */
if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
float segmentLen = (1.0f / (float)segcount);
int i;
/* setup new empty array for the points list */
if (ikData->points)
MEM_freeN(ikData->points);
ikData->numpoints = ikData->chainlen + 1;
ikData->points = MEM_mallocN(sizeof(float) * ikData->numpoints, "Spline IK Binding");
/* bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint) */
ikData->points[0] = 1.0f;
/* perform binding of the joints to parametric positions along the curve based
* proportion of the total length that each bone occupies
*/
for (i = 0; i < segcount; i++) {
/* 'head' joints, traveling towards the root of the chain
* - 2 methods; the one chosen depends on whether we've got usable lengths
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
/* 1) equi-spaced joints */
ikData->points[i + 1] = ikData->points[i] - segmentLen;
}
else {
/* 2) to find this point on the curve, we take a step from the previous joint
* a distance given by the proportion that this bone takes
*/
ikData->points[i + 1] = ikData->points[i] - (boneLengths[i] / totLength);
}
}
/* spline has now been bound */
ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
}
/* disallow negative values (happens with float precision) */
CLAMP_MIN(ikData->points[segcount], 0.0f);
/* apply corrections for sensitivity to scaling on a copy of the bind points,
* since it's easier to determine the positions of all the joints beforehand this way
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_SCALE_LIMITED) && (totLength != 0.0f)) {
float splineLen, maxScale;
int i;
/* make a copy of the points array, that we'll store in the tree
* - although we could just multiply the points on the fly, this approach means that
* we can introduce per-segment stretchiness later if it is necessary
*/
jointPoints = MEM_dupallocN(ikData->points);
free_joints = 1;
/* get the current length of the curve */
/* NOTE: this is assumed to be correct even after the curve was resized */
splineLen = ikData->tar->curve_cache->path->totdist;
/* calculate the scale factor to multiply all the path values by so that the
* bone chain retains its current length, such that
* maxScale * splineLen = totLength
*/
maxScale = totLength / splineLen;
/* apply scaling correction to all of the temporary points */
/* TODO: this is really not adequate enough on really short chains */
for (i = 0; i < segcount; i++)
jointPoints[i] *= maxScale;
}
else {
/* just use the existing points array */
jointPoints = ikData->points;
free_joints = 0;
}
/* make a new Spline-IK chain, and store it in the IK chains */
2016-07-16 09:48:57 +02:00
/* TODO: we should check if there is already an IK chain on this, since that would take precedence... */
{
/* make new tree */
tSplineIK_Tree *tree = MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
tree->type = CONSTRAINT_TYPE_SPLINEIK;
tree->chainlen = segcount;
/* copy over the array of links to bones in the chain (from tip to root) */
tree->chain = MEM_mallocN(sizeof(bPoseChannel *) * segcount, "SplineIK Chain");
memcpy(tree->chain, pchanChain, sizeof(bPoseChannel *) * segcount);
/* store reference to joint position array */
tree->points = jointPoints;
tree->free_points = free_joints;
/* store references to different parts of the chain */
tree->root = pchanRoot;
tree->con = con;
tree->ikData = ikData;
/* AND! link the tree to the root */
BLI_addtail(&pchanRoot->siktree, tree);
}
/* mark root channel having an IK tree */
pchanRoot->flag |= POSE_IKSPLINE;
}
/* Tag which bones are members of Spline IK chains */
static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
{
bPoseChannel *pchan;
/* find the tips of Spline IK chains, which are simply the bones which have been tagged as such */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
if (pchan->constflag & PCHAN_HAS_SPLINEIK)
splineik_init_tree_from_pchan(scene, ob, pchan);
}
}
/* ----------- */
/* Evaluate spline IK for a given bone */
static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan,
int index, float ctime)
{
bSplineIKConstraint *ikData = tree->ikData;
float poseHead[3], poseTail[3], poseMat[4][4];
float splineVec[3], scaleFac, radius = 1.0f;
/* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
copy_v3_v3(poseHead, pchan->pose_head);
copy_v3_v3(poseTail, pchan->pose_tail);
/* step 1: determine the positions for the endpoints of the bone */
{
float vec[4], dir[3], rad;
float tailBlendFac = 1.0f;
/* determine if the bone should still be affected by SplineIK */
if (tree->points[index + 1] >= 1.0f) {
/* spline doesn't affect the bone anymore, so done... */
pchan->flag |= POSE_DONE;
return;
}
else if ((tree->points[index] >= 1.0f) && (tree->points[index + 1] < 1.0f)) {
/* blending factor depends on the amount of the bone still left on the chain */
tailBlendFac = (1.0f - tree->points[index + 1]) / (tree->points[index] - tree->points[index + 1]);
}
/* tail endpoint */
if (where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL)) {
/* apply curve's object-mode transforms to the position
* unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
mul_m4_v3(ikData->tar->obmat, vec);
/* convert the position to pose-space, then store it */
mul_m4_v3(ob->imat, vec);
interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);
/* set the new radius */
radius = rad;
}
/* head endpoint */
if (where_on_path(ikData->tar, tree->points[index + 1], vec, dir, NULL, &rad, NULL)) {
/* apply curve's object-mode transforms to the position
* unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
mul_m4_v3(ikData->tar->obmat, vec);
/* store the position, and convert it to pose space */
mul_m4_v3(ob->imat, vec);
copy_v3_v3(poseHead, vec);
/* set the new radius (it should be the average value) */
radius = (radius + rad) / 2;
}
}
/* step 2: determine the implied transform from these endpoints
* - splineVec: the vector direction that the spline applies on the bone
* - scaleFac: the factor that the bone length is scaled by to get the desired amount
*/
sub_v3_v3v3(splineVec, poseTail, poseHead);
scaleFac = len_v3(splineVec) / pchan->bone->length;
/* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis
* - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
*/
{
float dmat[3][3], rmat[3][3], tmat[3][3];
float raxis[3], rangle;
/* compute the raw rotation matrix from the bone's current matrix by extracting only the
* orientation-relevant axes, and normalizing them
*/
copy_v3_v3(rmat[0], pchan->pose_mat[0]);
copy_v3_v3(rmat[1], pchan->pose_mat[1]);
copy_v3_v3(rmat[2], pchan->pose_mat[2]);
normalize_m3(rmat);
/* also, normalize the orientation imposed by the bone, now that we've extracted the scale factor */
normalize_v3(splineVec);
/* calculate smallest axis-angle rotation necessary for getting from the
* current orientation of the bone, to the spline-imposed direction
*/
cross_v3_v3v3(raxis, rmat[1], splineVec);
rangle = dot_v3v3(rmat[1], splineVec);
CLAMP(rangle, -1.0f, 1.0f);
rangle = acosf(rangle);
/* multiply the magnitude of the angle by the influence of the constraint to
* control the influence of the SplineIK effect
*/
rangle *= tree->con->enforce;
/* construct rotation matrix from the axis-angle rotation found above
* - this call takes care to make sure that the axis provided is a unit vector first
*/
axis_angle_to_mat3(dmat, raxis, rangle);
/* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
* while still maintaining roll control from the existing bone animation
*/
mul_m3_m3m3(tmat, dmat, rmat); /* m1, m3, m2 */
normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
copy_m4_m3(poseMat, tmat);
}
/* step 4: set the scaling factors for the axes */
{
/* only multiply the y-axis by the scaling factor to get nice volume-preservation */
mul_v3_fl(poseMat[1], scaleFac);
/* set the scaling factors of the x and z axes from... */
switch (ikData->xzScaleMode) {
case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
{
/* original scales get used */
float scale;
/* x-axis scale */
scale = len_v3(pchan->pose_mat[0]);
mul_v3_fl(poseMat[0], scale);
/* z-axis scale */
scale = len_v3(pchan->pose_mat[2]);
mul_v3_fl(poseMat[2], scale);
break;
}
case CONSTRAINT_SPLINEIK_XZS_INVERSE:
{
/* old 'volume preservation' method using the inverse scale */
float scale;
/* calculate volume preservation factor which is
* basically the inverse of the y-scaling factor
*/
if (fabsf(scaleFac) != 0.0f) {
scale = 1.0f / fabsf(scaleFac);
/* we need to clamp this within sensible values */
/* NOTE: these should be fine for now, but should get sanitised in future */
CLAMP(scale, 0.0001f, 100000.0f);
}
else
scale = 1.0f;
/* apply the scaling */
mul_v3_fl(poseMat[0], scale);
mul_v3_fl(poseMat[2], scale);
break;
}
case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
{
/* improved volume preservation based on the Stretch To constraint */
float final_scale;
2018-06-17 17:05:51 +02:00
/* as the basis for volume preservation, we use the inverse scale factor... */
if (fabsf(scaleFac) != 0.0f) {
/* NOTE: The method here is taken wholesale from the Stretch To constraint */
float bulge = powf(1.0f / fabsf(scaleFac), ikData->bulge);
2018-06-17 17:05:51 +02:00
if (bulge > 1.0f) {
if (ikData->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MAX) {
float bulge_max = max_ff(ikData->bulge_max, 1.0f);
float hard = min_ff(bulge, bulge_max);
2018-06-17 17:05:51 +02:00
float range = bulge_max - 1.0f;
float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
float soft = 1.0f + range * atanf((bulge - 1.0f) * scale) / (float)M_PI_2;
2018-06-17 17:05:51 +02:00
bulge = interpf(soft, hard, ikData->bulge_smooth);
}
}
if (bulge < 1.0f) {
if (ikData->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MIN) {
float bulge_min = CLAMPIS(ikData->bulge_min, 0.0f, 1.0f);
float hard = max_ff(bulge, bulge_min);
2018-06-17 17:05:51 +02:00
float range = 1.0f - bulge_min;
float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
float soft = 1.0f - range * atanf((1.0f - bulge) * scale) / (float)M_PI_2;
2018-06-17 17:05:51 +02:00
bulge = interpf(soft, hard, ikData->bulge_smooth);
}
}
2018-06-17 17:05:51 +02:00
/* compute scale factor for xz axes from this value */
final_scale = sqrtf(bulge);
}
else {
/* no scaling, so scale factor is simple */
final_scale = 1.0f;
}
2018-06-17 17:05:51 +02:00
/* apply the scaling (assuming normalised scale) */
mul_v3_fl(poseMat[0], final_scale);
mul_v3_fl(poseMat[2], final_scale);
break;
}
}
/* finally, multiply the x and z scaling by the radius of the curve too,
* to allow automatic scales to get tweaked still
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
mul_v3_fl(poseMat[0], radius);
mul_v3_fl(poseMat[2], radius);
}
}
/* step 5: set the location of the bone in the matrix */
if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
/* when the 'no-root' option is affected, the chain can retain
* the shape but be moved elsewhere
*/
copy_v3_v3(poseHead, pchan->pose_head);
}
else if (tree->con->enforce < 1.0f) {
/* when the influence is too low
* - blend the positions for the 'root' bone
* - stick to the parent for any other
*/
if (pchan->parent) {
copy_v3_v3(poseHead, pchan->pose_head);
}
else {
/* FIXME: this introduces popping artifacts when we reach 0.0 */
interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
}
}
copy_v3_v3(poseMat[3], poseHead);
/* finally, store the new transform */
copy_m4_m4(pchan->pose_mat, poseMat);
copy_v3_v3(pchan->pose_head, poseHead);
/* recalculate tail, as it's now outdated after the head gets adjusted above! */
BKE_pose_where_is_bone_tail(pchan);
/* done! */
pchan->flag |= POSE_DONE;
}
/* Evaluate the chain starting from the nominated bone */
static void splineik_execute_tree(Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
tSplineIK_Tree *tree;
/* for each pose-tree, execute it if it is spline, otherwise just free it */
while ((tree = pchan_root->siktree.first) != NULL) {
int i;
/* walk over each bone in the chain, calculating the effects of spline IK
* - the chain is traversed in the opposite order to storage order (i.e. parent to children)
* so that dependencies are correct
*/
for (i = tree->chainlen - 1; i >= 0; i--) {
bPoseChannel *pchan = tree->chain[i];
splineik_evaluate_bone(tree, scene, ob, pchan, i, ctime);
}
/* free the tree info specific to SplineIK trees now */
if (tree->chain)
MEM_freeN(tree->chain);
if (tree->free_points)
MEM_freeN(tree->points);
/* free this tree */
BLI_freelinkN(&pchan_root->siktree, tree);
}
}
void BKE_pose_splineik_init_tree(Scene *scene, Object *ob, float ctime)
{
splineik_init_tree(scene, ob, ctime);
}
void BKE_splineik_execute_tree(Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
splineik_execute_tree(scene, ob, pchan_root, ctime);
}
/* *************** Depsgraph evaluation callbacks ************ */
BLI_INLINE bPoseChannel *pose_pchan_get_indexed(Object *ob, int pchan_index)
{
bPose *pose = ob->pose;
BLI_assert(pose != NULL);
BLI_assert(pchan_index >= 0);
BLI_assert(pchan_index < MEM_allocN_len(pose->chan_array) / sizeof(bPoseChannel *));
return pose->chan_array[pchan_index];
}
void BKE_pose_eval_init(EvaluationContext *UNUSED(eval_ctx),
Scene *UNUSED(scene),
Object *ob)
{
bPose *pose = ob->pose;
BLI_assert(pose != NULL);
DEG_debug_print_eval(__func__, ob->id.name, ob);
BLI_assert(ob->type == OB_ARMATURE);
/* We demand having proper pose. */
BLI_assert(ob->pose != NULL);
BLI_assert((ob->pose->flag & POSE_RECALC) == 0);
/* imat is needed for solvers. */
invert_m4_m4(ob->imat, ob->obmat);
const int num_channels = BLI_listbase_count(&pose->chanbase);
pose->chan_array = MEM_malloc_arrayN(
2018-04-06 10:47:39 +02:00
num_channels, sizeof(bPoseChannel *), "pose->chan_array");
/* clear flags */
int pchan_index = 0;
for (bPoseChannel *pchan = pose->chanbase.first; pchan != NULL; pchan = pchan->next) {
pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);
pose->chan_array[pchan_index++] = pchan;
}
}
void BKE_pose_eval_init_ik(EvaluationContext *UNUSED(eval_ctx),
Scene *scene,
Object *ob)
{
DEG_debug_print_eval(__func__, ob->id.name, ob);
BLI_assert(ob->type == OB_ARMATURE);
const float ctime = BKE_scene_frame_get(scene); /* not accurate... */
bArmature *arm = (bArmature *)ob->data;
if (arm->flag & ARM_RESTPOS) {
return;
}
/* construct the IK tree (standard IK) */
BIK_initialize_tree(scene, ob, ctime);
/* construct the Spline IK trees
* - this is not integrated as an IK plugin, since it should be able
* to function in conjunction with standard IK
*/
BKE_pose_splineik_init_tree(scene, ob, ctime);
}
void BKE_pose_eval_bone(EvaluationContext *UNUSED(eval_ctx),
Scene *scene,
Object *ob,
int pchan_index)
{
bPoseChannel *pchan = pose_pchan_get_indexed(ob, pchan_index);
DEG_debug_print_eval_subdata(
__func__, ob->id.name, ob, "pchan", pchan->name, pchan);
BLI_assert(ob->type == OB_ARMATURE);
bArmature *arm = (bArmature *)ob->data;
if (arm->edbo || (arm->flag & ARM_RESTPOS)) {
Bone *bone = pchan->bone;
if (bone) {
copy_m4_m4(pchan->pose_mat, bone->arm_mat);
copy_v3_v3(pchan->pose_head, bone->arm_head);
copy_v3_v3(pchan->pose_tail, bone->arm_tail);
}
}
else {
/* TODO(sergey): Currently if there are constraints full transform is being
* evaluated in BKE_pose_constraints_evaluate.
*/
if (pchan->constraints.first == NULL) {
if (pchan->flag & POSE_IKTREE || pchan->flag & POSE_IKSPLINE) {
/* pass */
}
else {
if ((pchan->flag & POSE_DONE) == 0) {
/* TODO(sergey): Use time source node for time. */
float ctime = BKE_scene_frame_get(scene); /* not accurate... */
BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
}
}
}
}
}
void BKE_pose_constraints_evaluate(EvaluationContext *UNUSED(eval_ctx),
Scene *scene,
Object *ob,
int pchan_index)
{
bPoseChannel *pchan = pose_pchan_get_indexed(ob, pchan_index);
DEG_debug_print_eval_subdata(
__func__, ob->id.name, ob, "pchan", pchan->name, pchan);
bArmature *arm = (bArmature *)ob->data;
if (arm->flag & ARM_RESTPOS) {
return;
}
else if (pchan->flag & POSE_IKTREE || pchan->flag & POSE_IKSPLINE) {
/* IK are being solved separately/ */
}
else {
if ((pchan->flag & POSE_DONE) == 0) {
float ctime = BKE_scene_frame_get(scene); /* not accurate... */
BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
}
}
}
void BKE_pose_bone_done(EvaluationContext *UNUSED(eval_ctx),
struct Object *ob,
int pchan_index)
{
bPoseChannel *pchan = pose_pchan_get_indexed(ob, pchan_index);
float imat[4][4];
DEG_debug_print_eval(__func__, pchan->name, pchan);
if (pchan->bone) {
invert_m4_m4(imat, pchan->bone->arm_mat);
mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
}
}
void BKE_pose_iktree_evaluate(EvaluationContext *UNUSED(eval_ctx),
Scene *scene,
Object *ob,
int rootchan_index)
{
bPoseChannel *rootchan = pose_pchan_get_indexed(ob, rootchan_index);
DEG_debug_print_eval_subdata(
__func__, ob->id.name, ob, "rootchan", rootchan->name, rootchan);
BLI_assert(ob->type == OB_ARMATURE);
const float ctime = BKE_scene_frame_get(scene); /* not accurate... */
bArmature *arm = (bArmature *)ob->data;
if (arm->flag & ARM_RESTPOS) {
return;
}
BIK_execute_tree(scene, ob, rootchan, ctime);
}
void BKE_pose_splineik_evaluate(EvaluationContext *UNUSED(eval_ctx),
Scene *scene,
Object *ob,
int rootchan_index)
{
bPoseChannel *rootchan = pose_pchan_get_indexed(ob, rootchan_index);
DEG_debug_print_eval_subdata(
__func__, ob->id.name, ob, "rootchan", rootchan->name, rootchan);
BLI_assert(ob->type == OB_ARMATURE);
const float ctime = BKE_scene_frame_get(scene); /* not accurate... */
bArmature *arm = (bArmature *)ob->data;
if (arm->flag & ARM_RESTPOS) {
return;
}
BKE_splineik_execute_tree(scene, ob, rootchan, ctime);
}
void BKE_pose_eval_flush(EvaluationContext *UNUSED(eval_ctx),
Scene *scene,
Object *ob)
{
bPose *pose = ob->pose;
BLI_assert(pose != NULL);
float ctime = BKE_scene_frame_get(scene); /* not accurate... */
DEG_debug_print_eval(__func__, ob->id.name, ob);
BLI_assert(ob->type == OB_ARMATURE);
/* release the IK tree */
BIK_release_tree(scene, ob, ctime);
ob->recalc &= ~OB_RECALC_ALL;
BLI_assert(pose->chan_array != NULL);
MEM_freeN(pose->chan_array);
pose->chan_array = NULL;
}
void BKE_pose_eval_proxy_copy(EvaluationContext *UNUSED(eval_ctx), Object *ob)
{
BLI_assert(ID_IS_LINKED(ob) && ob->proxy_from != NULL);
DEG_debug_print_eval(__func__, ob->id.name, ob);
if (BKE_pose_copy_result(ob->pose, ob->proxy_from->pose) == false) {
printf("Proxy copy error, lib Object: %s proxy Object: %s\n",
ob->id.name + 2, ob->proxy_from->id.name + 2);
}
/* Rest of operations are NO-OP in depsgraph, so can clear
* flag now.
*/
ob->recalc &= ~OB_RECALC_ALL;
}