Recommitted eltopo collision code (but disabled by default)
with Genscher's permission.

To use, you need to install liblapack and libblas
This commit is contained in:
Joseph Eagar 2011-05-01 21:39:13 +00:00
parent 7cc98cbb0b
commit 088899236b
17 changed files with 1052 additions and 29 deletions

View File

@ -114,6 +114,7 @@ option(WITH_BUILDINFO "Include extra build details (only disable for develop
option(WITH_IK_ITASC "Enable ITASC IK solver (only disable for development & for incompatible C++ compilers)" ON)
option(WITH_FFTW3 "Enable FFTW3 support (Used for smoke and audio effects)" OFF)
option(WITH_BULLET "Enable Bullet (Physics Engine)" ON)
option(WITH_ELTOPO "Enable Eltopo Continuous Collision Engine" OFF)
option(WITH_GAMEENGINE "Enable Game Engine" ON)
option(WITH_PLAYER "Build Player" OFF)
# (unix defaults to OpenMP On)

View File

@ -99,7 +99,7 @@ def validate_arguments(args, bc):
'WITH_BF_INTERNATIONAL',
'BF_GETTEXT', 'BF_GETTEXT_INC', 'BF_GETTEXT_LIB', 'WITH_BF_GETTEXT_STATIC', 'BF_GETTEXT_LIB_STATIC', 'BF_GETTEXT_LIBPATH',
'WITH_BF_ICONV', 'BF_ICONV', 'BF_ICONV_INC', 'BF_ICONV_LIB', 'BF_ICONV_LIBPATH',
'WITH_BF_GAMEENGINE', 'WITH_BF_BULLET', 'BF_BULLET', 'BF_BULLET_INC', 'BF_BULLET_LIB',
'WITH_BF_GAMEENGINE', 'WITH_BF_BULLET', 'WITH_BF_ELTOPO', 'BF_BULLET', 'BF_BULLET_INC', 'BF_BULLET_LIB',
'BF_WINTAB', 'BF_WINTAB_INC',
'WITH_BF_FREETYPE', 'BF_FREETYPE', 'BF_FREETYPE_INC', 'BF_FREETYPE_LIB', 'BF_FREETYPE_LIBPATH', 'BF_FREETYPE_LIB_STATIC', 'WITH_BF_FREETYPE_STATIC',
'WITH_BF_QUICKTIME', 'BF_QUICKTIME', 'BF_QUICKTIME_INC', 'BF_QUICKTIME_LIB', 'BF_QUICKTIME_LIBPATH',
@ -365,6 +365,8 @@ def read_opts(env, cfg, args):
(BoolVariable('WITH_BF_GAMEENGINE', 'Build with gameengine' , False)),
(BoolVariable('WITH_BF_BULLET', 'Use Bullet if true', True)),
(BoolVariable('WITH_BF_ELTOPO', 'Use Eltopo collision library if true', False)),
('BF_BULLET', 'Bullet base dir', ''),
('BF_BULLET_INC', 'Bullet include path', ''),
('BF_BULLET_LIB', 'Bullet library', ''),

View File

@ -31,6 +31,10 @@ if(WITH_BULLET)
add_subdirectory(bullet2)
endif()
if(WITH_ELTOPO)
add_subdirectory(eltopo)
endif()
if(WITH_BINRELOC)
add_subdirectory(binreloc)
endif()

3
extern/SConscript vendored
View File

@ -4,6 +4,9 @@ Import('env')
SConscript(['glew/SConscript'])
if env['WITH_BF_ELTOPO']:
SConscript(['eltopo/SConscript'])
if env['WITH_BF_BULLET']:
SConscript(['bullet2/src/SConscript'])

View File

@ -157,6 +157,8 @@ class PHYSICS_PT_cloth_collision(PhysicButtonsPanel, bpy.types.Panel):
col = split.column()
col.prop(cloth, "collision_quality", slider=True, text="Quality")
col.prop(cloth, "distance_min", slider=True, text="Distance")
col.prop(cloth, "repel_force", slider=True, text="Repel")
col.prop(cloth, "distance_repel", slider=True, text="Repel Distance")
col.prop(cloth, "friction")
col = split.column()

View File

@ -35,6 +35,7 @@
*/
#include <float.h>
#include "BLI_math_inline.h"
struct Object;
struct ListBase;
@ -44,16 +45,7 @@ struct DerivedMesh;
struct ClothModifierData;
struct CollisionTree;
// this is needed for inlining behaviour
#if defined _WIN32
# define DO_INLINE __inline
#elif defined (__sgi)
# define DO_INLINE
#elif defined (__sun) || defined (__sun__)
# define DO_INLINE
#else
# define DO_INLINE static inline
#endif
#define DO_INLINE MALWAYS_INLINE
#define CLOTH_MAX_THREAD 2

View File

@ -63,7 +63,11 @@ struct LinkNode;
/* COLLISION FLAGS */
typedef enum
{
COLLISION_IN_FUTURE = ( 1 << 1 ),
COLLISION_IN_FUTURE = (1 << 1),
#ifdef USE_ELTOPO
COLLISION_USE_COLLFACE = (1 << 2),
COLLISION_IS_EDGES = (1 << 3),
#endif
} COLLISION_FLAGS;
@ -81,7 +85,13 @@ typedef struct CollPair
float pa[3], pb[3]; // collision point p1 on face1, p2 on face2
int flag;
float time; // collision time, from 0 up to 1
#ifdef USE_ELTOPO /*either ap* or bp* can be set, but not both*/
float bary[3];
int ap1, ap2, ap3, collp, bp1, bp2, bp3;
int collface;
#else
int ap1, ap2, ap3, bp1, bp2, bp3;
#endif
int pointsb[4];
}
CollPair;
@ -109,6 +119,7 @@ typedef struct FaceCollPair
float pa[3], pb[3]; // collision point p1 on face1, p2 on face2
}
FaceCollPair;
////////////////////////////////////////

View File

@ -145,7 +145,7 @@ set(SRC
intern/writeavi.c
intern/writeffmpeg.c
intern/writeframeserver.c
BKE_DerivedMesh.h
BKE_action.h
BKE_anim.h
@ -240,6 +240,11 @@ if(WITH_BULLET)
add_definitions(-DUSE_BULLET)
endif()
if(WITH_ELTOPO)
list(APPEND INC ../../../extern/eltopo)
add_definitions(-DUSE_ELTOPO)
endif()
if(WITH_IMAGE_OPENEXR)
add_definitions(-DWITH_OPENEXR)
endif()

View File

@ -27,6 +27,10 @@ if env['WITH_BF_PYTHON']:
if env['BF_DEBUG']:
defs.append('DEBUG')
if env['WITH_BF_ELTOPO']:
incs += ' ../../../extern/eltopo'
defs.append('USE_ELTOPO')
if env['WITH_BF_QUICKTIME']:
incs += ' ../quicktime'

View File

@ -919,7 +919,7 @@ static int cloth_from_object(Object *ob, ClothModifierData *clmd, DerivedMesh *d
if(!first)
implicit_set_positions(clmd);
clmd->clothObject->bvhtree = bvhtree_build_from_cloth ( clmd, clmd->coll_parms->epsilon );
clmd->clothObject->bvhtree = bvhtree_build_from_cloth ( clmd, MAX2(clmd->coll_parms->epsilon, clmd->coll_parms->distance_repel) );
for(i = 0; i < dm->getNumVerts(dm); i++)
{

View File

@ -48,6 +48,9 @@
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BLI_utildefines.h"
#include "BLI_ghash.h"
#include "BLI_memarena.h"
#include "BLI_rand.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
@ -63,6 +66,10 @@
#include "BLI_kdopbvh.h"
#include "BKE_collision.h"
#ifdef USE_ELTOPO
#include "eltopo-capi.h"
#endif
/***********************************
Collision modifier code start
@ -486,7 +493,7 @@ DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float
VECADDMUL ( to, v3, w3 );
}
#ifndef USE_ELTOPO
static int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
@ -601,19 +608,807 @@ static int cloth_collision_response_static ( ClothModifierData *clmd, CollisionM
}
return result;
}
#endif
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
static CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap *overlap, CollPair *collpair )
#ifdef USE_ELTOPO
typedef struct edgepairkey {
int a1, a2, b1, b2;
} edgepairkey;
unsigned int edgepair_hash(void *vkey)
{
edgepairkey *key = vkey;
int keys[4] = {key->a1, key->a2, key->b1, key->b2};
int i, j;
for (i=0; i<4; i++) {
for (j=0; j<3; j++) {
if (keys[j] >= keys[j+1]) {
SWAP(int, keys[j], keys[j+1]);
}
}
}
return keys[0]*101 + keys[1]*72 + keys[2]*53 + keys[3]*34;
}
int edgepair_cmp(const void *va, const void *vb)
{
edgepairkey *a = va, *b = vb;
int keysa[4] = {a->a1, a->a2, a->b1, a->b2};
int keysb[4] = {b->a1, b->a2, b->b1, b->b2};
int i;
for (i=0; i<4; i++) {
int j, ok=0;
for (j=0; j<4; j++) {
if (keysa[i] == keysa[j]) {
ok = 1;
break;
}
}
if (!ok)
return -1;
}
return 0;
}
static void get_edgepairkey(edgepairkey *key, int a1, int a2, int b1, int b2)
{
key->a1 = a1;
key->a2 = a2;
key->b1 = b1;
key->b2 = b2;
}
/*an immense amount of duplication goes on here. . .a major performance hit, I'm sure*/
static CollPair* cloth_edge_collision ( ModifierData *md1, ModifierData *md2,
BVHTreeOverlap *overlap, CollPair *collpair,
GHash *visithash, MemArena *arena)
{
ClothModifierData *clmd = ( ClothModifierData * ) md1;
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
MFace *face1=NULL, *face2 = NULL;
ClothVertex *verts1 = clmd->clothObject->verts;
double distance = 0;
edgepairkey *key, tstkey;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
float no[3], uv[3], t, relnor;
int i, i1, i2, i3, i4, i5, i6;
Cloth *cloth = clmd->clothObject;
float n1[3], n2[3], off[3], v1[2][3], v2[2][3], v3[2][3], v4[2][3], v5[2][3], v6[2][3];
void **verts[] = {v1, v2, v3, v4, v5, v6};
int j, ret, bp1, bp2, bp3, ap1, ap2, ap3, table[6];
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
face2 = & ( collmd->mfaces[overlap->indexB] );
// check all 4 possible collisions
for ( i = 0; i < 4; i++ )
{
if ( i == 0 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v2;
ap3 = face1->v3;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v2;
bp3 = face2->v3;
}
else if ( i == 1 )
{
if ( face1->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v3;
ap3 = face1->v4;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v2;
bp3 = face2->v3;
}
else {
continue;
}
}
if ( i == 2 )
{
if ( face2->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v2;
ap3 = face1->v3;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v3;
bp3 = face2->v4;
}
else {
continue;
}
}
else if ( i == 3 )
{
if ( face1->v4 && face2->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v3;
ap3 = face1->v4;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v3;
bp3 = face2->v4;
}
else {
continue;
}
}
copy_v3_v3(v1[0], cloth->verts[ap1].txold);
copy_v3_v3(v1[1], cloth->verts[ap1].tx);
copy_v3_v3(v2[0], cloth->verts[ap2].txold);
copy_v3_v3(v2[1], cloth->verts[ap2].tx);
copy_v3_v3(v3[0], cloth->verts[ap3].txold);
copy_v3_v3(v3[1], cloth->verts[ap3].tx);
copy_v3_v3(v4[0], collmd->current_x[bp1].co);
copy_v3_v3(v4[1], collmd->current_xnew[bp1].co);
copy_v3_v3(v5[0], collmd->current_x[bp2].co);
copy_v3_v3(v5[1], collmd->current_xnew[bp2].co);
copy_v3_v3(v6[0], collmd->current_x[bp3].co);
copy_v3_v3(v6[1], collmd->current_xnew[bp3].co);
normal_tri_v3(n2, v4[1], v5[1], v6[1]);
/*offset new positions a bit, to account for margins*/
i1 = ap1; i2 = ap2; i3 = ap3;
i4 = bp1; i5 = bp2; i6 = bp3;
for (j=0; j<3; j++) {
int collp1, collp2, k, j2 = (j+1)%3;
table[0] = ap1; table[1] = ap2; table[2] = ap3;
table[3] = bp1; table[4] = bp2; table[5] = bp3;
for (k=0; k<3; k++) {
float p1[3], p2[3];
int k2 = (k+1)%3;
get_edgepairkey(&tstkey, table[j], table[j2], table[k+3], table[k2+3]);
//if (BLI_ghash_haskey(visithash, &tstkey))
// continue;
key = BLI_memarena_alloc(arena, sizeof(edgepairkey));
*key = tstkey;
BLI_ghash_insert(visithash, key, NULL);
sub_v3_v3v3(p1, verts[j], verts[j2]);
sub_v3_v3v3(p2, verts[k+3], verts[k2+3]);
cross_v3_v3v3(off, p1, p2);
normalize_v3(off);
if (dot_v3v3(n2, off) < 0.0)
negate_v3(off);
mul_v3_fl(off, epsilon1 + epsilon2 + ALMOST_ZERO);
copy_v3_v3(p1, verts[k+3]);
copy_v3_v3(p2, verts[k2+3]);
add_v3_v3(p1, off);
add_v3_v3(p2, off);
ret = eltopo_line_line_moving_isect_v3v3_f(verts[j], table[j], verts[j2], table[j2],
p1, table[k+3], p2, table[k2+3],
no, uv, &t, &relnor);
/*cloth vert versus coll face*/
if (ret) {
collpair->ap1 = table[j]; collpair->ap2 = table[j2];
collpair->bp1 = table[k+3]; collpair->bp2 = table[k2+3];
/*I'm not sure if this is correct, but hopefully it's
better then simply ignoring back edges*/
if (dot_v3v3(n2, no) < 0.0) {
negate_v3(no);
}
copy_v3_v3(collpair->normal, no);
mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
collpair->distance = relnor;
collpair->time = t;
copy_v2_v2(collpair->bary, uv);
collpair->flag = COLLISION_IS_EDGES;
collpair++;
}
}
}
}
return collpair;
}
static int cloth_edge_collision_response_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel, pimpulse[3];
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
if (!(collpair->flag & COLLISION_IS_EDGES))
continue;
// was: txold
w1 = collpair->bary[0]; w2 = collpair->bary[1];
// Calculate relative "velocity".
VECADDFAC(v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, w1);
VECADDFAC(v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, w2);
VECSUB ( relativeVelocity, v2, v1);
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR ( relativeVelocity, collpair->normal );
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3], spf;
zero_v3(pimpulse);
// calculate tangential velocity
VECCOPY ( temp, collpair->normal );
mul_v3_fl( temp, magrelVel );
VECSUB ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
normalize_v3( vrel_t_pre );
impulse = magtangent;
VECADDMUL ( pimpulse, vrel_t_pre, impulse);
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel;
mul_v3_fl(collpair->normal, 0.5);
VECADDMUL ( pimpulse, collpair->normal, impulse);
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
d = collpair->distance;
if ( ( magrelVel < 0.1*d*spf && ( d > ALMOST_ZERO ) ) )
{
repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 5.0 ); // original 2.0 / 0.25
VECADDMUL ( pimpulse, collpair->normal, impulse);
}
w2 = 1.0f-w1;
if (w1 < 0.5)
w1 *= 2.0;
else
w2 *= 2.0;
VECADDFAC(cloth1->verts[collpair->ap1].impulse, cloth1->verts[collpair->ap1].impulse, pimpulse, w1*2.0);
VECADDFAC(cloth1->verts[collpair->ap2].impulse, cloth1->verts[collpair->ap2].impulse, pimpulse, w2*2.0);
cloth1->verts[collpair->ap1].impulse_count++;
cloth1->verts[collpair->ap2].impulse_count++;
result = 1;
}
}
return result;
}
static int cloth_collision_response_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
if (collpair->flag & COLLISION_IS_EDGES)
continue;
if ( collpair->flag & COLLISION_USE_COLLFACE ) {
// was: txold
w1 = collpair->bary[0]; w2 = collpair->bary[1]; w3 = collpair->bary[2];
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, w1, w2, w3);
VECSUB ( relativeVelocity, v1, cloth1->verts[collpair->collp].tv);
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR ( relativeVelocity, collpair->normal );
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3], spf;
// calculate tangential velocity
VECCOPY ( temp, collpair->normal );
mul_v3_fl( temp, magrelVel );
VECSUB ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
normalize_v3( vrel_t_pre );
impulse = magtangent; // 2.0 *
VECADDMUL ( cloth1->verts[collpair->collp].impulse, vrel_t_pre, impulse);
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel/2.0;
VECADDMUL ( cloth1->verts[collpair->collp].impulse, collpair->normal, impulse);
cloth1->verts[collpair->collp].impulse_count++;
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
d = -collpair->distance;
if ( ( magrelVel < 0.1*d*spf ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 5.0 ); // original 2.0 / 0.25
VECADDMUL ( cloth1->verts[collpair->collp].impulse, collpair->normal, impulse);
}
result = 1;
}
} else {
w1 = collpair->bary[0]; w2 = collpair->bary[1]; w3 = collpair->bary[2];
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
VECSUB ( relativeVelocity, collmd->current_v[collpair->collp].co, v1);
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR ( relativeVelocity, collpair->normal );
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3], pimpulse[3] = {0.0f, 0.0f, 0.0f};
float temp[3], spf;
// calculate tangential velocity
VECCOPY ( temp, collpair->normal );
mul_v3_fl( temp, magrelVel );
VECSUB ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
normalize_v3( vrel_t_pre );
impulse = magtangent; // 2.0 *
VECADDMUL ( pimpulse, vrel_t_pre, impulse);
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel/2.0;
VECADDMUL ( pimpulse, collpair->normal, impulse);
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
d = -collpair->distance;
if ( ( magrelVel < 0.1*d*spf ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 2.0 ); // original 2.0 / 0.25
VECADDMUL ( pimpulse, collpair->normal, impulse);
}
if (w1 < 0.5) w1 *= 2.0;
if (w2 < 0.5) w2 *= 2.0;
if (w3 < 0.5) w3 *= 2.0;
VECADDMUL(cloth1->verts[collpair->ap1].impulse, pimpulse, w1*2.0);
VECADDMUL(cloth1->verts[collpair->ap2].impulse, pimpulse, w2*2.0);
VECADDMUL(cloth1->verts[collpair->ap3].impulse, pimpulse, w3*2.0);;
cloth1->verts[collpair->ap1].impulse_count++;
cloth1->verts[collpair->ap2].impulse_count++;
cloth1->verts[collpair->ap3].impulse_count++;
result = 1;
}
}
}
return result;
}
typedef struct tripairkey {
int p, a1, a2, a3;
} tripairkey;
unsigned int tripair_hash(void *vkey)
{
tripairkey *key = vkey;
int keys[4] = {key->p, key->a1, key->a2, key->a3};
int i, j;
for (i=0; i<4; i++) {
for (j=0; j<3; j++) {
if (keys[j] >= keys[j+1]) {
SWAP(int, keys[j], keys[j+1]);
}
}
}
return keys[0]*101 + keys[1]*72 + keys[2]*53 + keys[3]*34;
}
int tripair_cmp(const void *va, const void *vb)
{
tripairkey *a = va, *b = vb;
int keysa[4] = {a->p, a->a1, a->a2, a->a3};
int keysb[4] = {b->p, b->a1, b->a2, b->a3};
int i;
for (i=0; i<4; i++) {
int j, ok=0;
for (j=0; j<4; j++) {
if (keysa[i] == keysa[j]) {
ok = 1;
break;
}
}
if (!ok)
return -1;
}
return 0;
}
static void get_tripairkey(tripairkey *key, int p, int a1, int a2, int a3)
{
key->a1 = a1;
key->a2 = a2;
key->a3 = a3;
key->p = p;
}
static int checkvisit(MemArena *arena, GHash *gh, int p, int a1, int a2, int a3)
{
tripairkey key, *key2;
get_tripairkey(&key, p, a1, a2, a3);
if (BLI_ghash_haskey(gh, &key))
return 1;
key2 = BLI_memarena_alloc(arena, sizeof(*key2));
*key2 = key;
BLI_ghash_insert(gh, key2, NULL);
return 0;
}
int cloth_point_tri_moving_v3v3_f(float v1[2][3], int i1, float v2[2][3], int i2,
float v3[2][3], int i3, float v4[2][3], int i4,
float normal[3], float bary[3], float *t,
float *relnor, GHash *gh, MemArena *arena)
{
if (checkvisit(arena, gh, i1, i2, i3, i4))
return 0;
return eltopo_point_tri_moving_v3v3_f(v1, i1, v2, i2, v3, i3, v4, i4, normal, bary, t, relnor);
}
static CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap *overlap,
CollPair *collpair, double dt, GHash *gh, MemArena *arena)
{
ClothModifierData *clmd = ( ClothModifierData * ) md1;
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
MFace *face1=NULL, *face2 = NULL;
ClothVertex *verts1 = clmd->clothObject->verts;
double distance = 0;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
float no[3], uv[3], t, relnor;
int i, i1, i2, i3, i4, i5, i6;
Cloth *cloth = clmd->clothObject;
float n1[3], sdis, p[3], l, n2[3], off[3], v1[2][3], v2[2][3], v3[2][3], v4[2][3], v5[2][3], v6[2][3];
int j, ret, bp1, bp2, bp3, ap1, ap2, ap3;
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
face2 = & ( collmd->mfaces[overlap->indexB] );
// check all 4 possible collisions
for ( i = 0; i < 4; i++ )
{
if ( i == 0 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v2;
ap3 = face1->v3;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v2;
bp3 = face2->v3;
}
else if ( i == 1 )
{
if ( face1->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v3;
ap3 = face1->v4;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v2;
bp3 = face2->v3;
}
else {
continue;
}
}
if ( i == 2 )
{
if ( face2->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v2;
ap3 = face1->v3;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v3;
bp3 = face2->v4;
}
else {
continue;
}
}
else if ( i == 3 )
{
if ( face1->v4 && face2->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v3;
ap3 = face1->v4;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v3;
bp3 = face2->v4;
}
else {
continue;
}
}
copy_v3_v3(v1[0], cloth->verts[ap1].txold);
copy_v3_v3(v1[1], cloth->verts[ap1].tx);
copy_v3_v3(v2[0], cloth->verts[ap2].txold);
copy_v3_v3(v2[1], cloth->verts[ap2].tx);
copy_v3_v3(v3[0], cloth->verts[ap3].txold);
copy_v3_v3(v3[1], cloth->verts[ap3].tx);
copy_v3_v3(v4[0], collmd->current_x[bp1].co);
copy_v3_v3(v4[1], collmd->current_xnew[bp1].co);
copy_v3_v3(v5[0], collmd->current_x[bp2].co);
copy_v3_v3(v5[1], collmd->current_xnew[bp2].co);
copy_v3_v3(v6[0], collmd->current_x[bp3].co);
copy_v3_v3(v6[1], collmd->current_xnew[bp3].co);
normal_tri_v3(n2, v4[1], v5[1], v6[1]);
sdis = clmd->coll_parms->distance_repel + epsilon2 + FLT_EPSILON;
/*apply a repulsion force, to help the solver along*/
copy_v3_v3(off, n2);
negate_v3(off);
if (isect_ray_plane_v3(v1[1], off, v4[1], v5[1], v6[1], &l, 0)) {
if (l >= 0.0 && l < sdis) {
mul_v3_fl(off, (l-sdis)*cloth->verts[ap1].mass*dt*clmd->coll_parms->repel_force*0.1);
add_v3_v3(cloth->verts[ap1].tv, off);
add_v3_v3(cloth->verts[ap2].tv, off);
add_v3_v3(cloth->verts[ap3].tv, off);
}
}
/*offset new positions a bit, to account for margins*/
copy_v3_v3(off, n2);
mul_v3_fl(off, epsilon1 + epsilon2 + ALMOST_ZERO);
add_v3_v3(v4[1], off); add_v3_v3(v5[1], off); add_v3_v3(v6[1], off);
i1 = ap1; i2 = ap2; i3 = ap3;
i4 = bp1+cloth->numverts; i5 = bp2+cloth->numverts; i6 = bp3+cloth->numverts;
for (j=0; j<6; j++) {
int collp;
switch (j) {
case 0:
ret = cloth_point_tri_moving_v3v3_f(v1, i1, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
collp = ap1;
break;
case 1:
collp = ap2;
ret = cloth_point_tri_moving_v3v3_f(v2, i2, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
break;
case 2:
collp = ap3;
ret = cloth_point_tri_moving_v3v3_f(v3, i3, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
break;
case 3:
collp = bp1;
ret = cloth_point_tri_moving_v3v3_f(v4, i4, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
break;
case 4:
collp = bp2;
ret = cloth_point_tri_moving_v3v3_f(v5, i5, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
break;
case 5:
collp = bp3;
ret = cloth_point_tri_moving_v3v3_f(v6, i6, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
break;
}
/*cloth vert versus coll face*/
if (ret && j < 3) {
collpair->bp1 = bp1; collpair->bp2 = bp2; collpair->bp3 = bp3;
collpair->collp = collp;
copy_v3_v3(collpair->normal, no);
mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
collpair->distance = relnor;
collpair->time = t;
copy_v3_v3(collpair->bary, uv);
collpair->flag = COLLISION_USE_COLLFACE;
collpair++;
} else if (ret && j >= 3) { /*coll vert versus cloth face*/
collpair->ap1 = ap1; collpair->ap2 = ap2; collpair->ap3 = ap3;
collpair->collp = collp;
copy_v3_v3(collpair->normal, no);
mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
collpair->distance = relnor;
collpair->time = t;
copy_v3_v3(collpair->bary, uv);
collpair->flag = 0;
collpair++;
}
}
}
return collpair;
}
static void machine_epsilon_offset(Cloth *cloth) {
ClothVertex *cv;
int i, j;
cv = cloth->verts;
for (i=0; i<cloth->numverts; i++, cv++) {
/*aggrevatingly enough, it's necassary to offset the coordinates
by a multiple of the 32-bit floating point epsilon when switching
into doubles*/
#define RNDSIGN (float)(-1*(BLI_rand()%2==0)|1)
for (j=0; j<3; j++) {
cv->tx[j] += FLT_EPSILON*30.0f*RNDSIGN;
cv->txold[j] += FLT_EPSILON*30.0f*RNDSIGN;
cv->tv[j] += FLT_EPSILON*30.0f*RNDSIGN;
}
}
}
#else
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
static CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2,
BVHTreeOverlap *overlap, CollPair *collpair, float dt )
{
ClothModifierData *clmd = ( ClothModifierData * ) md1;
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
Cloth *cloth = clmd->clothObject;
MFace *face1=NULL, *face2 = NULL;
#ifdef USE_BULLET
ClothVertex *verts1 = clmd->clothObject->verts;
#endif
double distance = 0;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
float n2[3], sdis, l;
int i;
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
@ -685,7 +1480,28 @@ static CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTree
else
break;
}
normal_tri_v3(n2, collmd->current_xnew[collpair->bp1].co,
collmd->current_xnew[collpair->bp2].co,
collmd->current_xnew[collpair->bp3].co);
sdis = clmd->coll_parms->distance_repel + epsilon2 + FLT_EPSILON;
/*apply a repulsion force, to help the solver along.
this is kindof crude, it only tests one vert of the triangle*/
if (isect_ray_plane_v3(cloth->verts[collpair->ap1].tx, n2, collmd->current_xnew[collpair->bp1].co,
collmd->current_xnew[collpair->bp2].co,
collmd->current_xnew[collpair->bp3].co, &l, 0))
{
if (l >= 0.0 && l < sdis) {
mul_v3_fl(n2, (l-sdis)*cloth->verts[collpair->ap1].mass*dt*clmd->coll_parms->repel_force*0.1);
add_v3_v3(cloth->verts[collpair->ap1].tv, n2);
add_v3_v3(cloth->verts[collpair->ap2].tv, n2);
add_v3_v3(cloth->verts[collpair->ap3].tv, n2);
}
}
#ifdef USE_BULLET
// calc distance + normal
distance = plNearestPoints (
@ -741,6 +1557,8 @@ static CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTree
}
return collpair;
}
#endif
#if 0
static int cloth_collision_response_moving( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
@ -1446,17 +2264,45 @@ void free_collider_cache(ListBase **colliders)
}
}
static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap)
static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd,
CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap, double dt)
{
int i;
#ifdef USE_ELTOPO
GHash *visithash = BLI_ghash_new(edgepair_hash, edgepair_cmp, "visthash, collision.c");
GHash *tri_visithash = BLI_ghash_new(tripair_hash, tripair_cmp, "tri_visthash, collision.c");
MemArena *arena = BLI_memarena_new(1<<16, "edge hash arena, collision.c");
#endif
*collisions = ( CollPair* ) MEM_mallocN ( sizeof ( CollPair ) * numresult * 4, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
*collisions = ( CollPair* ) MEM_mallocN ( sizeof ( CollPair ) * numresult * 64, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
*collisions_index = *collisions;
#ifdef USE_ELTOPO
machine_epsilon_offset(clmd->clothObject);
for ( i = 0; i < numresult; i++ )
{
*collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd, overlap+i, *collisions_index );
*collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
overlap+i, *collisions_index, dt, tri_visithash, arena );
}
for ( i = 0; i < numresult; i++ )
{
*collisions_index = cloth_edge_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
overlap+i, *collisions_index, visithash, arena );
}
BLI_ghash_free(visithash, NULL, NULL);
BLI_ghash_free(tri_visithash, NULL, NULL);
BLI_memarena_free(arena);
#else
for ( i = 0; i < numresult; i++ )
{
*collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
overlap+i, *collisions_index, dt );
}
#endif
}
static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair *collisions, CollPair *collisions_index)
@ -1481,11 +2327,19 @@ static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, Collision
if ( collmd->bvhtree )
{
#ifdef USE_ELTOPO
result += cloth_collision_response_moving(clmd, collmd, collisions, collisions_index);
result += cloth_edge_collision_response_moving(clmd, collmd, collisions, collisions_index);
#else
result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
#endif
#ifdef USE_ELTOPO
{
#else
// apply impulses in parallel
if ( result )
{
#endif
for ( i = 0; i < numverts; i++ )
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
@ -1518,7 +2372,7 @@ int cloth_bvh_objcollision (Object *ob, ClothModifierData * clmd, float step, fl
if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || cloth_bvh==NULL)
return 0;
verts = cloth->verts;
numfaces = cloth->numfaces;
numverts = cloth->numverts;
@ -1557,6 +2411,7 @@ int cloth_bvh_objcollision (Object *ob, ClothModifierData * clmd, float step, fl
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
/* search for overlapping collision pairs */
@ -1565,7 +2420,8 @@ int cloth_bvh_objcollision (Object *ob, ClothModifierData * clmd, float step, fl
// go to next object if no overlap is there
if( result && overlap ) {
/* check if collisions really happen (costly near check) */
cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i], &collisions_index[i], result, overlap);
cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i],
&collisions_index[i], result, overlap, dt/(float)clmd->coll_parms->loop_count);
// resolve nearby collisions
ret += cloth_bvh_objcollisions_resolve ( clmd, collmd, collisions[i], collisions_index[i]);
@ -1721,5 +2577,5 @@ int cloth_bvh_objcollision (Object *ob, ClothModifierData * clmd, float step, fl
if(collobjs)
MEM_freeN(collobjs);
return MIN2 ( ret, 1 );
return 1|MIN2 ( ret, 1 );
}

View File

@ -50,7 +50,7 @@
#include "BKE_global.h"
#define CLOTH_OPENMP_LIMIT 25
#define CLOTH_OPENMP_LIMIT 512
#ifdef _WIN32
#include <windows.h>
@ -939,7 +939,7 @@ static int cg_filtered(lfVector *ldV, fmatrix3x3 *lA, lfVector *lB, lfVector *z
s = dot_lfvector(r, r, numverts);
starget = s * sqrt(conjgrad_epsilon);
while((s>starget && conjgrad_loopcount < conjgrad_looplimit))
while(s>starget && conjgrad_loopcount < conjgrad_looplimit)
{
// Mul(q,A,d); // q = A*d;
mul_bfmatrix_lfvector(q, lA, d);
@ -1749,15 +1749,93 @@ static void simulate_implicit_euler(lfVector *Vnew, lfVector *UNUSED(lX), lfVect
del_lfvector(dFdXmV);
}
/*computes where the cloth would be if it were subject to perfectly stiff edges
(edge distance constraints) in a lagrangian solver. then add forces to help
guide the implicit solver to that state. this function is called after
collisions*/
int cloth_calc_helper_forces(Object *ob, ClothModifierData * clmd, float (*initial_cos)[3], float step, float dt)
{
Cloth *cloth= clmd->clothObject;
float (*cos)[3] = MEM_callocN(sizeof(float)*3*cloth->numverts, "cos cloth_calc_helper_forces");
float *masses = MEM_callocN(sizeof(float)*cloth->numverts, "cos cloth_calc_helper_forces");
LinkNode *node;
ClothSpring *spring;
ClothVertex *cv;
int i, steps;
cv = cloth->verts;
for (i=0; i<cloth->numverts; i++, cv++) {
copy_v3_v3(cos[i], cv->tx);
if (cv->goal == 1.0f || len_v3v3(initial_cos[i], cv->tx) != 0.0) {
masses[i] = 1e+10;
} else {
masses[i] = cv->mass;
}
}
steps = 55;
for (i=0; i<steps; i++) {
for (node=cloth->springs; node; node=node->next) {
ClothVertex *cv1, *cv2;
int v1, v2;
float len, c, l, vec[3];
spring = node->link;
if (spring->type != CLOTH_SPRING_TYPE_STRUCTURAL && spring->type != CLOTH_SPRING_TYPE_SHEAR)
continue;
v1 = spring->ij; v2 = spring->kl;
cv1 = cloth->verts + v1;
cv2 = cloth->verts + v2;
len = len_v3v3(cos[v1], cos[v2]);
sub_v3_v3v3(vec, cos[v1], cos[v2]);
normalize_v3(vec);
c = (len - spring->restlen);
if (c == 0.0)
continue;
l = c / ((1.0/masses[v1]) + (1.0/masses[v2]));
mul_v3_fl(vec, -(1.0/masses[v1])*l);
add_v3_v3(cos[v1], vec);
sub_v3_v3v3(vec, cos[v2], cos[v1]);
normalize_v3(vec);
mul_v3_fl(vec, -(1.0/masses[v2])*l);
add_v3_v3(cos[v2], vec);
}
}
cv = cloth->verts;
for (i=0; i<cloth->numverts; i++, cv++) {
float vec[3];
/*compute forces*/
sub_v3_v3v3(vec, cos[i], cv->tx);
mul_v3_fl(vec, cv->mass*dt*20.0);
add_v3_v3(cv->tv, vec);
//copy_v3_v3(cv->tx, cos[i]);
}
MEM_freeN(cos);
MEM_freeN(masses);
return 1;
}
int implicit_solver (Object *ob, float frame, ClothModifierData *clmd, ListBase *effectors)
{
unsigned int i=0;
float step=0.0f, tf=clmd->sim_parms->timescale;
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts;
ClothVertex *verts = cloth->verts, *cv;
unsigned int numverts = cloth->numverts;
float dt = clmd->sim_parms->timescale / clmd->sim_parms->stepsPerFrame;
float spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
float (*initial_cos)[3] = MEM_callocN(sizeof(float)*3*cloth->numverts, "initial_cos implicit.c");
Implicit_Data *id = cloth->implicit;
int do_extra_solve;
@ -1817,15 +1895,26 @@ int implicit_solver (Object *ob, float frame, ClothModifierData *clmd, ListBase
VECCOPY(verts[i].v, verts[i].tv);
}
for (i=0, cv=cloth->verts; i<cloth->numverts; i++, cv++) {
copy_v3_v3(initial_cos[i], cv->tx);
}
// call collision function
// TODO: check if "step" or "step+dt" is correct - dg
do_extra_solve = cloth_bvh_objcollision(ob, clmd, step/clmd->sim_parms->timescale, dt/clmd->sim_parms->timescale);
// copy corrected positions back to simulation
for(i = 0; i < numverts; i++)
{
// correct velocity again, just to be sure we had to change it due to adaptive collisions
VECSUB(verts[i].tv, verts[i].tx, id->X[i]);
}
//if (do_extra_solve)
// cloth_calc_helper_forces(ob, clmd, initial_cos, step/clmd->sim_parms->timescale, dt/clmd->sim_parms->timescale);
for(i = 0; i < numverts; i++)
{
if(do_extra_solve)
{
@ -1886,6 +1975,8 @@ int implicit_solver (Object *ob, float frame, ClothModifierData *clmd, ListBase
}
}
MEM_freeN(initial_cos);
return 1;
}

View File

@ -91,6 +91,11 @@ int isect_line_line_v3(const float v1[3], const float v2[3],
int isect_line_line_strict_v3(const float v1[3], const float v2[3],
const float v3[3], const float v4[3], float vi[3], float *lambda);
/*if clip is nonzero, will only return true if lambda is >= 0.0
(i.e. intersection point is along positive d)*/
int isect_ray_plane_v3(float p1[3], float d[3], float v0[3],
float v1[3], float v2[3], float *lambda, int clip);
/* line/ray triangle */
int isect_line_tri_v3(const float p1[3], const float p2[3],
const float v0[3], const float v1[3], const float v2[3], float *lambda, float uv[2]);

View File

@ -486,7 +486,6 @@ int isect_line_tri_v3(const float p1[3], const float p2[3], const float v0[3], c
return 1;
}
/* moved from effect.c
test if the ray starting at p1 going in d direction intersects the triangle v0..v2
return non zero if it does
@ -527,6 +526,35 @@ int isect_ray_tri_v3(const float p1[3], const float d[3], const float v0[3], con
return 1;
}
int isect_ray_plane_v3(float p1[3], float d[3], float v0[3], float v1[3], float v2[3], float *lambda, int clip)
{
float p[3], s[3], e1[3], e2[3], q[3];
float a, f, u, v;
sub_v3_v3v3(e1, v1, v0);
sub_v3_v3v3(e2, v2, v0);
cross_v3_v3v3(p, d, e2);
a = dot_v3v3(e1, p);
/* note: these values were 0.000001 in 2.4x but for projection snapping on
* a human head (1BU==1m), subsurf level 2, this gave many errors - campbell */
if ((a > -0.00000001f) && (a < 0.00000001f)) return 0;
f = 1.0f/a;
sub_v3_v3v3(s, p1, v0);
u = f * dot_v3v3(s, p);
cross_v3_v3v3(q, s, e1);
v = f * dot_v3v3(d, q);
*lambda = f * dot_v3v3(e2, q);
if (clip && (*lambda < 0.0f)) return 0;
return 1;
}
int isect_ray_tri_epsilon_v3(const float p1[3], const float d[3], const float v0[3], const float v1[3], const float v2[3], float *lambda, float uv[2], const float epsilon)
{
float p[3], s[3], e1[3], e2[3], q[3];

View File

@ -96,6 +96,7 @@ typedef struct ClothCollSettings
float self_friction; /* Fiction/damping with self contact. */
float friction; /* Friction/damping applied on contact with other object.*/
float selfepsilon; /* for selfcollision */
float repel_force, distance_repel;
int flags; /* collision flags defined in BKE_cloth.h */
short self_loop_count; /* How many iterations for the selfcollision loop */
short loop_count; /* How many iterations for the collision loop. */

View File

@ -428,6 +428,20 @@ static void rna_def_cloth_collision_settings(BlenderRNA *brna)
RNA_def_property_boolean_sdna(prop, NULL, "flags", CLOTH_COLLSETTINGS_FLAG_ENABLED);
RNA_def_property_ui_text(prop, "Enable Collision", "Enable collisions with other objects");
RNA_def_property_update(prop, 0, "rna_cloth_update");
prop= RNA_def_property(srna, "repel_force", PROP_FLOAT, PROP_NONE);
RNA_def_property_float_sdna(prop, NULL, "repel_force");
RNA_def_property_range(prop, 0.0f, 20.0f);
RNA_def_property_float_default(prop, 1.0f);
RNA_def_property_ui_text(prop, "Repulsion Force", "Repulsion force to apply on cloth when close to colliding");
RNA_def_property_update(prop, 0, "rna_cloth_update");
prop= RNA_def_property(srna, "distance_repel", PROP_FLOAT, PROP_NONE);
RNA_def_property_float_sdna(prop, NULL, "distance_repel");
RNA_def_property_range(prop, 0.001f, 10.0f);
RNA_def_property_float_default(prop, 0.005f);
RNA_def_property_ui_text(prop, "Repulsion Distance", "Maximum distance to apply repulsion force, must be greater then minimum distance");
RNA_def_property_update(prop, 0, "rna_cloth_update");
prop= RNA_def_property(srna, "distance_min", PROP_FLOAT, PROP_NONE);
RNA_def_property_float_sdna(prop, NULL, "epsilon");

View File

@ -816,6 +816,10 @@ endif()
bf_intern_mikktspace
)
if(WITH_ELTOPO)
list(APPEND BLENDER_SORTED_LIBS extern_eltopo)
endif()
if(WITH_BUILTIN_GLEW)
list(APPEND BLENDER_SORTED_LIBS extern_glew)
endif()