Simulation: extract node tree parsing code to separate file

This commit is contained in:
Jacques Lucke 2020-07-17 21:19:48 +02:00
parent 25582aef61
commit aa8279648e
6 changed files with 293 additions and 228 deletions

View File

@ -41,13 +41,15 @@ set(SRC
intern/hair_volume.cpp
intern/implicit_blender.c
intern/implicit_eigen.cpp
intern/simulation_solver.cc
intern/particle_function.cc
intern/simulation_collect_influences.cc
intern/simulation_solver.cc
intern/simulation_update.cc
intern/ConstrainedConjugateGradient.h
intern/eigen_utils.h
intern/implicit.h
intern/simulation_collect_influences.hh
intern/simulation_solver.hh
SIM_mass_spring.h

View File

@ -0,0 +1,236 @@
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "simulation_collect_influences.hh"
#include "SIM_particle_function.hh"
#include "FN_attributes_ref.hh"
#include "FN_multi_function_network_evaluation.hh"
#include "FN_multi_function_network_optimization.hh"
#include "NOD_node_tree_multi_function.hh"
namespace blender::sim {
extern "C" {
void WM_clipboard_text_set(const char *buf, bool selection);
}
static Map<const fn::MFOutputSocket *, std::string> deduplicate_attribute_nodes(
fn::MFNetwork &network,
nodes::MFNetworkTreeMap &network_map,
const nodes::DerivedNodeTree &tree)
{
Span<const nodes::DNode *> attribute_dnodes = tree.nodes_by_type(
"SimulationNodeParticleAttribute");
uint amount = attribute_dnodes.size();
if (amount == 0) {
return {};
}
Vector<fn::MFInputSocket *> name_sockets;
for (const nodes::DNode *dnode : attribute_dnodes) {
fn::MFInputSocket &name_socket = network_map.lookup_dummy(dnode->input(0));
name_sockets.append(&name_socket);
}
fn::MFNetworkEvaluator network_fn{{}, name_sockets.as_span()};
fn::MFParamsBuilder params{network_fn, 1};
Array<std::string> attribute_names{amount, NoInitialization()};
for (uint i : IndexRange(amount)) {
params.add_uninitialized_single_output(
fn::GMutableSpan(fn::CPPType::get<std::string>(), attribute_names.data() + i, 1));
}
fn::MFContextBuilder context;
/* Todo: Check that the names don't depend on dummy nodes. */
network_fn.call({0}, params, context);
Map<std::pair<std::string, fn::MFDataType>, Vector<fn::MFNode *>>
attribute_nodes_by_name_and_type;
for (uint i : IndexRange(amount)) {
attribute_nodes_by_name_and_type
.lookup_or_add_default({attribute_names[i], name_sockets[i]->node().output(0).data_type()})
.append(&name_sockets[i]->node());
}
Map<const fn::MFOutputSocket *, std::string> attribute_inputs;
for (auto item : attribute_nodes_by_name_and_type.items()) {
StringRef attribute_name = item.key.first;
fn::MFDataType data_type = item.key.second;
Span<fn::MFNode *> nodes = item.value;
fn::MFOutputSocket &new_attribute_socket = network.add_input(
"Attribute '" + attribute_name + "'", data_type);
for (fn::MFNode *node : nodes) {
network.relink(node->output(0), new_attribute_socket);
}
network.remove(nodes);
attribute_inputs.add_new(&new_attribute_socket, attribute_name);
}
return attribute_inputs;
}
class ParticleAttributeInput : public ParticleFunctionInput {
private:
std::string attribute_name_;
const fn::CPPType &attribute_type_;
public:
ParticleAttributeInput(std::string attribute_name, const fn::CPPType &attribute_type)
: attribute_name_(std::move(attribute_name)), attribute_type_(attribute_type)
{
}
void add_input(fn::AttributesRef attributes,
fn::MFParamsBuilder &params,
ResourceCollector &UNUSED(resources)) const override
{
std::optional<fn::GSpan> span = attributes.try_get(attribute_name_, attribute_type_);
if (span.has_value()) {
params.add_readonly_single_input(*span);
}
else {
params.add_readonly_single_input(fn::GVSpan::FromDefault(attribute_type_));
}
}
};
static const ParticleFunction *create_particle_function_for_inputs(
Span<const fn::MFInputSocket *> sockets_to_compute,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs)
{
BLI_assert(sockets_to_compute.size() >= 1);
const fn::MFNetwork &network = sockets_to_compute[0]->node().network();
VectorSet<const fn::MFOutputSocket *> dummy_deps;
VectorSet<const fn::MFInputSocket *> unlinked_input_deps;
network.find_dependencies(sockets_to_compute, dummy_deps, unlinked_input_deps);
BLI_assert(unlinked_input_deps.size() == 0);
Vector<const ParticleFunctionInput *> per_particle_inputs;
for (const fn::MFOutputSocket *socket : dummy_deps) {
const std::string *attribute_name = attribute_inputs.lookup_ptr(socket);
if (attribute_name == nullptr) {
return nullptr;
}
per_particle_inputs.append(&resources.construct<ParticleAttributeInput>(
AT, *attribute_name, socket->data_type().single_type()));
}
const fn::MultiFunction &per_particle_fn = resources.construct<fn::MFNetworkEvaluator>(
AT, dummy_deps.as_span(), sockets_to_compute);
Array<bool> output_is_global(sockets_to_compute.size(), false);
const ParticleFunction &particle_fn = resources.construct<ParticleFunction>(
AT,
nullptr,
&per_particle_fn,
Span<const ParticleFunctionInput *>(),
per_particle_inputs.as_span(),
output_is_global.as_span());
return &particle_fn;
}
class ParticleFunctionForce : public ParticleForce {
private:
const ParticleFunction &particle_fn_;
public:
ParticleFunctionForce(const ParticleFunction &particle_fn) : particle_fn_(particle_fn)
{
}
void add_force(fn::AttributesRef attributes, MutableSpan<float3> r_combined_force) const override
{
IndexMask mask = IndexRange(attributes.size());
ParticleFunctionEvaluator evaluator{particle_fn_, mask, attributes};
evaluator.compute();
fn::VSpan<float3> forces = evaluator.get<float3>(0, "Force");
for (uint i : mask) {
r_combined_force[i] += forces[i];
}
}
};
static Vector<const ParticleForce *> create_forces_for_particle_simulation(
const nodes::DNode &simulation_node,
nodes::MFNetworkTreeMap &network_map,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs)
{
Vector<const ParticleForce *> forces;
for (const nodes::DOutputSocket *origin_socket :
simulation_node.input(2, "Forces").linked_sockets()) {
const nodes::DNode &origin_node = origin_socket->node();
if (origin_node.idname() != "SimulationNodeForce") {
continue;
}
const fn::MFInputSocket &force_socket = network_map.lookup_dummy(
origin_node.input(0, "Force"));
const ParticleFunction *particle_fn = create_particle_function_for_inputs(
{&force_socket}, resources, attribute_inputs);
if (particle_fn == nullptr) {
continue;
}
const ParticleForce &force = resources.construct<ParticleFunctionForce>(AT, *particle_fn);
forces.append(&force);
}
return forces;
}
static void collect_forces(nodes::MFNetworkTreeMap &network_map,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs,
SimulationInfluences &r_influences)
{
for (const nodes::DNode *dnode :
network_map.tree().nodes_by_type("SimulationNodeParticleSimulation")) {
std::string name = dnode_to_path(*dnode);
Vector<const ParticleForce *> forces = create_forces_for_particle_simulation(
*dnode, network_map, resources, attribute_inputs);
r_influences.particle_forces.add_new(std::move(name), std::move(forces));
}
}
void collect_simulation_influences(const nodes::DerivedNodeTree &tree,
ResourceCollector &resources,
SimulationInfluences &r_influences)
{
fn::MFNetwork &network = resources.construct<fn::MFNetwork>(AT);
nodes::MFNetworkTreeMap network_map = insert_node_tree_into_mf_network(network, tree, resources);
Map<const fn::MFOutputSocket *, std::string> attribute_inputs = deduplicate_attribute_nodes(
network, network_map, tree);
fn::mf_network_optimization::constant_folding(network, resources);
fn::mf_network_optimization::common_subnetwork_elimination(network);
fn::mf_network_optimization::dead_node_removal(network);
// WM_clipboard_text_set(network.to_dot().c_str(), false);
collect_forces(network_map, resources, attribute_inputs, r_influences);
}
} // namespace blender::sim

View File

@ -0,0 +1,45 @@
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __SIM_SIMULATION_COLLECT_INFLUENCES_HH__
#define __SIM_SIMULATION_COLLECT_INFLUENCES_HH__
#include "NOD_derived_node_tree.hh"
#include "BLI_resource_collector.hh"
#include "simulation_solver.hh"
namespace blender::sim {
void collect_simulation_influences(const nodes::DerivedNodeTree &tree,
ResourceCollector &resources,
SimulationInfluences &r_influences);
/* TODO: Move this to a better place. */
inline std::string dnode_to_path(const nodes::DNode &dnode)
{
std::string path;
for (const nodes::DParentNode *parent = dnode.parent(); parent; parent = parent->parent()) {
path = parent->node_ref().name() + "/" + path;
}
path = path + dnode.name();
return path;
}
} // namespace blender::sim
#endif /* __SIM_SIMULATION_COLLECT_INFLUENCES_HH__ */

View File

@ -121,7 +121,8 @@ void solve_simulation_time_step(Simulation &simulation,
MutableSpan<float3> velocities = attributes.get<float3>("Velocity");
Array<float3> force_vectors{(uint)state->tot_particles, {0, 0, 0}};
const Vector<const ParticleForce *> *forces = influences.particle_forces.lookup_ptr(state);
const Vector<const ParticleForce *> *forces = influences.particle_forces.lookup_ptr(
state->head.name);
if (forces != nullptr) {
for (const ParticleForce *force : *forces) {
force->add_force(attributes, force_vectors);

View File

@ -36,7 +36,7 @@ class ParticleForce {
};
struct SimulationInfluences {
Map<const ParticleSimulationState *, Vector<const ParticleForce *>> particle_forces;
Map<std::string, Vector<const ParticleForce *>> particle_forces;
};
void initialize_simulation_states(Simulation &simulation,

View File

@ -32,18 +32,9 @@
#include "BLI_rand.h"
#include "BLI_vector.hh"
#include "NOD_node_tree_multi_function.hh"
#include "FN_attributes_ref.hh"
#include "FN_multi_function_network_evaluation.hh"
#include "FN_multi_function_network_optimization.hh"
#include "simulation_collect_influences.hh"
#include "simulation_solver.hh"
extern "C" {
void WM_clipboard_text_set(const char *buf, bool selection);
}
namespace blender::sim {
static void copy_states_to_cow(Simulation *simulation_orig, Simulation *simulation_cow)
@ -69,75 +60,6 @@ static void copy_states_to_cow(Simulation *simulation_orig, Simulation *simulati
}
}
static Map<const fn::MFOutputSocket *, std::string> deduplicate_attribute_nodes(
fn::MFNetwork &network,
nodes::MFNetworkTreeMap &network_map,
const nodes::DerivedNodeTree &tree)
{
Span<const nodes::DNode *> attribute_dnodes = tree.nodes_by_type(
"SimulationNodeParticleAttribute");
uint amount = attribute_dnodes.size();
if (amount == 0) {
return {};
}
Vector<fn::MFInputSocket *> name_sockets;
for (const nodes::DNode *dnode : attribute_dnodes) {
fn::MFInputSocket &name_socket = network_map.lookup_dummy(dnode->input(0));
name_sockets.append(&name_socket);
}
fn::MFNetworkEvaluator network_fn{{}, name_sockets.as_span()};
fn::MFParamsBuilder params{network_fn, 1};
Array<std::string> attribute_names{amount, NoInitialization()};
for (uint i : IndexRange(amount)) {
params.add_uninitialized_single_output(
fn::GMutableSpan(fn::CPPType::get<std::string>(), attribute_names.data() + i, 1));
}
fn::MFContextBuilder context;
/* Todo: Check that the names don't depend on dummy nodes. */
network_fn.call({0}, params, context);
Map<std::pair<std::string, fn::MFDataType>, Vector<fn::MFNode *>>
attribute_nodes_by_name_and_type;
for (uint i : IndexRange(amount)) {
attribute_nodes_by_name_and_type
.lookup_or_add_default({attribute_names[i], name_sockets[i]->node().output(0).data_type()})
.append(&name_sockets[i]->node());
}
Map<const fn::MFOutputSocket *, std::string> attribute_inputs;
for (auto item : attribute_nodes_by_name_and_type.items()) {
StringRef attribute_name = item.key.first;
fn::MFDataType data_type = item.key.second;
Span<fn::MFNode *> nodes = item.value;
fn::MFOutputSocket &new_attribute_socket = network.add_input(
"Attribute '" + attribute_name + "'", data_type);
for (fn::MFNode *node : nodes) {
network.relink(node->output(0), new_attribute_socket);
}
network.remove(nodes);
attribute_inputs.add_new(&new_attribute_socket, attribute_name);
}
return attribute_inputs;
}
static std::string dnode_to_path(const nodes::DNode &dnode)
{
std::string path;
for (const nodes::DParentNode *parent = dnode.parent(); parent; parent = parent->parent()) {
path = parent->node_ref().name() + "/" + path;
}
path = path + dnode.name();
return path;
}
static void remove_unused_states(Simulation *simulation, const VectorSet<std::string> &state_names)
{
LISTBASE_FOREACH_MUTABLE (SimulationState *, state, &simulation->states) {
@ -209,138 +131,6 @@ static void update_simulation_state_list(Simulation *simulation,
add_missing_particle_states(simulation, state_names);
}
class ParticleAttributeInput : public ParticleFunctionInput {
private:
std::string attribute_name_;
const fn::CPPType &attribute_type_;
public:
ParticleAttributeInput(std::string attribute_name, const fn::CPPType &attribute_type)
: attribute_name_(std::move(attribute_name)), attribute_type_(attribute_type)
{
}
void add_input(fn::AttributesRef attributes,
fn::MFParamsBuilder &params,
ResourceCollector &UNUSED(resources)) const override
{
std::optional<fn::GSpan> span = attributes.try_get(attribute_name_, attribute_type_);
if (span.has_value()) {
params.add_readonly_single_input(*span);
}
else {
params.add_readonly_single_input(fn::GVSpan::FromDefault(attribute_type_));
}
}
};
static const ParticleFunction *create_particle_function_for_inputs(
Span<const fn::MFInputSocket *> sockets_to_compute,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs)
{
BLI_assert(sockets_to_compute.size() >= 1);
const fn::MFNetwork &network = sockets_to_compute[0]->node().network();
VectorSet<const fn::MFOutputSocket *> dummy_deps;
VectorSet<const fn::MFInputSocket *> unlinked_input_deps;
network.find_dependencies(sockets_to_compute, dummy_deps, unlinked_input_deps);
BLI_assert(unlinked_input_deps.size() == 0);
Vector<const ParticleFunctionInput *> per_particle_inputs;
for (const fn::MFOutputSocket *socket : dummy_deps) {
const std::string *attribute_name = attribute_inputs.lookup_ptr(socket);
if (attribute_name == nullptr) {
return nullptr;
}
per_particle_inputs.append(&resources.construct<ParticleAttributeInput>(
AT, *attribute_name, socket->data_type().single_type()));
}
const fn::MultiFunction &per_particle_fn = resources.construct<fn::MFNetworkEvaluator>(
AT, dummy_deps.as_span(), sockets_to_compute);
Array<bool> output_is_global(sockets_to_compute.size(), false);
const ParticleFunction &particle_fn = resources.construct<ParticleFunction>(
AT,
nullptr,
&per_particle_fn,
Span<const ParticleFunctionInput *>(),
per_particle_inputs.as_span(),
output_is_global.as_span());
return &particle_fn;
}
class ParticleFunctionForce : public ParticleForce {
private:
const ParticleFunction &particle_fn_;
public:
ParticleFunctionForce(const ParticleFunction &particle_fn) : particle_fn_(particle_fn)
{
}
void add_force(fn::AttributesRef attributes, MutableSpan<float3> r_combined_force) const override
{
IndexMask mask = IndexRange(attributes.size());
ParticleFunctionEvaluator evaluator{particle_fn_, mask, attributes};
evaluator.compute();
fn::VSpan<float3> forces = evaluator.get<float3>(0, "Force");
for (uint i : mask) {
r_combined_force[i] += forces[i];
}
}
};
static Vector<const ParticleForce *> create_forces_for_particle_simulation(
const nodes::DNode &simulation_node,
nodes::MFNetworkTreeMap &network_map,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs)
{
Vector<const ParticleForce *> forces;
for (const nodes::DOutputSocket *origin_socket :
simulation_node.input(2, "Forces").linked_sockets()) {
const nodes::DNode &origin_node = origin_socket->node();
if (origin_node.idname() != "SimulationNodeForce") {
continue;
}
const fn::MFInputSocket &force_socket = network_map.lookup_dummy(
origin_node.input(0, "Force"));
const ParticleFunction *particle_fn = create_particle_function_for_inputs(
{&force_socket}, resources, attribute_inputs);
if (particle_fn == nullptr) {
continue;
}
const ParticleForce &force = resources.construct<ParticleFunctionForce>(AT, *particle_fn);
forces.append(&force);
}
return forces;
}
static void collect_forces(Simulation &simulation,
nodes::MFNetworkTreeMap &network_map,
ResourceCollector &resources,
const Map<const fn::MFOutputSocket *, std::string> &attribute_inputs,
SimulationInfluences &r_influences)
{
for (const nodes::DNode *dnode :
network_map.tree().nodes_by_type("SimulationNodeParticleSimulation")) {
std::string name = dnode_to_path(*dnode);
Vector<const ParticleForce *> forces = create_forces_for_particle_simulation(
*dnode, network_map, resources, attribute_inputs);
ParticleSimulationState *state = (ParticleSimulationState *)try_find_state_by_name(&simulation,
name);
r_influences.particle_forces.add_new(state, std::move(forces));
}
}
void update_simulation_in_depsgraph(Depsgraph *depsgraph,
Scene *scene_cow,
Simulation *simulation_cow)
@ -360,24 +150,15 @@ void update_simulation_in_depsgraph(Depsgraph *depsgraph,
nodes::NodeTreeRefMap tree_refs;
/* TODO: Use simulation_cow, but need to add depsgraph relations before that. */
const nodes::DerivedNodeTree tree{simulation_orig->nodetree, tree_refs};
fn::MFNetwork network;
ResourceCollector resources;
nodes::MFNetworkTreeMap network_map = insert_node_tree_into_mf_network(network, tree, resources);
Map<const fn::MFOutputSocket *, std::string> attribute_inputs = deduplicate_attribute_nodes(
network, network_map, tree);
fn::mf_network_optimization::constant_folding(network, resources);
fn::mf_network_optimization::common_subnetwork_elimination(network);
fn::mf_network_optimization::dead_node_removal(network);
// WM_clipboard_text_set(network.to_dot().c_str(), false);
SimulationInfluences simulation_influences;
collect_forces(
*simulation_orig, network_map, resources, attribute_inputs, simulation_influences);
ResourceCollector resources;
SimulationInfluences influences;
collect_simulation_influences(tree, resources, influences);
if (current_frame == 1) {
reinitialize_empty_simulation_states(simulation_orig, tree);
initialize_simulation_states(*simulation_orig, *depsgraph, simulation_influences);
initialize_simulation_states(*simulation_orig, *depsgraph, influences);
simulation_orig->current_frame = 1;
copy_states_to_cow(simulation_orig, simulation_cow);
@ -386,7 +167,7 @@ void update_simulation_in_depsgraph(Depsgraph *depsgraph,
update_simulation_state_list(simulation_orig, tree);
float time_step = 1.0f / 24.0f;
solve_simulation_time_step(*simulation_orig, *depsgraph, simulation_influences, time_step);
solve_simulation_time_step(*simulation_orig, *depsgraph, influences, time_step);
simulation_orig->current_frame = current_frame;
copy_states_to_cow(simulation_orig, simulation_cow);