implemented select (x-)mirrored. I used a topological approach, which will be later reused in x-mirror editing, weight painting, etc. also ported select randon, select linked flat faces, and select sharp (as in, surroundined by non-flat faces, not sharp as in the sharp flag) edges, and select non-manifold. need to merge in recent trunk changes next.

This commit is contained in:
Joseph Eagar 2010-03-04 01:07:26 +00:00
parent 08351bf3d6
commit ea540496c8
4 changed files with 653 additions and 131 deletions

View File

@ -2073,3 +2073,251 @@ int EM_view3d_poll(bContext *C)
return 1;
return 0;
}
static int select_sharp_edges_exec(bContext *C, wmOperator *op)
{
/* Find edges that have exactly two neighboring faces,
* check the angle between those faces, and if angle is
* small enough, select the edge
*/
Object *obedit= CTX_data_edit_object(C);
BMEditMesh *em= ((Mesh *)obedit->data)->edit_btmesh;
BMIter iter;
BMEdge *e;
BLI_array_declare(stack);
BMLoop *l1, *l2;
float sharp = RNA_float_get(op->ptr, "sharpness"), angle;
sharp = (sharp * M_PI) / 180.0;
BM_ITER(e, &iter, em->bm, BM_EDGES_OF_MESH, NULL) {
if (BM_TestHFlag(e, BM_HIDDEN) || !e->loop)
continue;
l1 = e->loop;
l2 = l1->radial.next->data;
if (l1 == l2)
continue;
/* edge has exactly two neighboring faces, check angle */
angle = saacos(l1->f->no[0]*l2->f->no[0]+l1->f->no[1]*l2->f->no[1]+l1->f->no[2]*l2->f->no[2]);
if (fabs(angle) < sharp) {
BM_Select(em->bm, e, 1);
}
}
WM_event_add_notifier(C, NC_GEOM|ND_SELECT, obedit->data);
return OPERATOR_FINISHED;
}
void MESH_OT_edges_select_sharp(wmOperatorType *ot)
{
/* identifiers */
ot->name= "Select Sharp Edges";
ot->description= "Marked selected edges as sharp.";
ot->idname= "MESH_OT_edges_select_sharp";
/* api callbacks */
ot->exec= select_sharp_edges_exec;
ot->poll= ED_operator_editmesh;
/* flags */
ot->flag= OPTYPE_REGISTER|OPTYPE_UNDO;
/* props */
RNA_def_float(ot->srna, "sharpness", 1.0f, 0.01f, FLT_MAX, "sharpness", "", 1.0f, 180.0f);
}
static int select_linked_flat_faces_exec(bContext *C, wmOperator *op)
{
Object *obedit= CTX_data_edit_object(C);
BMEditMesh *em= ((Mesh *)obedit->data)->edit_btmesh;
BMIter iter, liter, liter2;
BMFace *f, **stack = NULL;
BLI_array_declare(stack);
BMLoop *l, *l2;
float sharp = RNA_float_get(op->ptr, "sharpness");
int i;
sharp = (sharp * M_PI) / 180.0;
BM_ITER(f, &iter, em->bm, BM_FACES_OF_MESH, NULL) {
BMINDEX_SET(f, 0);
}
BM_ITER(f, &iter, em->bm, BM_FACES_OF_MESH, NULL) {
if (BM_TestHFlag(f, BM_HIDDEN) || !BM_TestHFlag(f, BM_SELECT) || BMINDEX_GET(f))
continue;
BLI_array_empty(stack);
i = 1;
BLI_array_growone(stack);
stack[i-1] = f;
while (i) {
f = stack[i-1];
i--;
BM_Select(em->bm, f, 1);
BMINDEX_SET(f, 1);
BM_ITER(l, &liter, em->bm, BM_LOOPS_OF_FACE, f) {
BM_ITER(l2, &liter2, em->bm, BM_LOOPS_OF_LOOP, l) {
float angle;
if (BMINDEX_GET(l2->f) || BM_TestHFlag(l2->f, BM_HIDDEN))
continue;
/* edge has exactly two neighboring faces, check angle */
angle = saacos(f->no[0]*l2->f->no[0]+f->no[1]*l2->f->no[1]+f->no[2]*l2->f->no[2]);
/* invalidate: edge too sharp */
if (fabs(angle) < sharp) {
BLI_array_growone(stack);
stack[i] = l2->f;
i++;
}
}
}
}
}
BLI_array_free(stack);
WM_event_add_notifier(C, NC_GEOM|ND_SELECT, obedit->data);
return OPERATOR_FINISHED;
}
void MESH_OT_faces_select_linked_flat(wmOperatorType *ot)
{
/* identifiers */
ot->name= "Select Linked Flat Faces";
ot->description= "Select linked faces by angle.";
ot->idname= "MESH_OT_faces_select_linked_flat";
/* api callbacks */
ot->exec= select_linked_flat_faces_exec;
ot->poll= ED_operator_editmesh;
/* flags */
ot->flag= OPTYPE_REGISTER|OPTYPE_UNDO;
/* props */
RNA_def_float(ot->srna, "sharpness", 1.0f, 0.01f, FLT_MAX, "sharpness", "", 1.0f, 180.0f);
}
static int select_non_manifold_exec(bContext *C, wmOperator *op)
{
Object *obedit= CTX_data_edit_object(C);
BMEditMesh *em= ((Mesh *)obedit->data)->edit_btmesh;
BMVert *v;
BMEdge *e;
BMIter iter;
/* Selects isolated verts, and edges that do not have 2 neighboring
* faces
*/
if(em->selectmode==SCE_SELECT_FACE) {
BKE_report(op->reports, RPT_ERROR, "Doesn't work in face selection mode");
return OPERATOR_CANCELLED;
}
BM_ITER(v, &iter, em->bm, BM_VERTS_OF_MESH, NULL) {
if (!BM_TestHFlag(em->bm, BM_HIDDEN) && BM_Nonmanifold_Vert(em->bm, v))
BM_Select(em->bm, v, 1);
}
BM_ITER(e, &iter, em->bm, BM_EDGES_OF_MESH, NULL) {
if (!BM_TestHFlag(em->bm, BM_HIDDEN) && BM_Nonmanifold_Edge(em->bm, e))
BM_Select(em->bm, e, 1);
}
WM_event_add_notifier(C, NC_GEOM|ND_SELECT, obedit->data);
return OPERATOR_FINISHED;
}
void MESH_OT_select_non_manifold(wmOperatorType *ot)
{
/* identifiers */
ot->name= "Select Non Manifold";
ot->description= "Select all non-manifold vertices or edges.";
ot->idname= "MESH_OT_select_non_manifold";
/* api callbacks */
ot->exec= select_non_manifold_exec;
ot->poll= ED_operator_editmesh;
/* flags */
ot->flag= OPTYPE_REGISTER|OPTYPE_UNDO;
}
static int mesh_select_random_exec(bContext *C, wmOperator *op)
{
Object *obedit= CTX_data_edit_object(C);
BMEditMesh *em= ((Mesh *)obedit->data)->edit_btmesh;
BMVert *eve;
BMEdge *eed;
BMFace *efa;
BMIter iter;
float randfac = RNA_float_get(op->ptr, "percent")/100.0f;
BLI_srand( BLI_rand() ); /* random seed */
if(!RNA_boolean_get(op->ptr, "extend"))
EDBM_clear_flag_all(em, BM_SELECT);
if(em->selectmode & SCE_SELECT_VERTEX) {
BM_ITER(eve, &iter, em->bm, BM_VERTS_OF_MESH, NULL) {
if (!BM_TestHFlag(eve, BM_HIDDEN) && BLI_frand() < randfac)
BM_Select(em->bm, eve, 1);
}
EDBM_selectmode_flush(em);
}
else if(em->selectmode & SCE_SELECT_EDGE) {
BM_ITER(eed, &iter, em->bm, BM_EDGES_OF_MESH, NULL) {
if (!BM_TestHFlag(eed, BM_HIDDEN) && BLI_frand() < randfac)
BM_Select(em->bm, eed, 1);
}
EDBM_selectmode_flush(em);
}
else {
BM_ITER(efa, &iter, em->bm, BM_FACES_OF_MESH, NULL) {
if (!BM_TestHFlag(efa, BM_HIDDEN) && BLI_frand() < randfac)
BM_Select(em->bm, efa, 1);
}
EDBM_selectmode_flush(em);
}
WM_event_add_notifier(C, NC_GEOM|ND_SELECT, obedit->data);
return OPERATOR_FINISHED;
}
void MESH_OT_select_random(wmOperatorType *ot)
{
/* identifiers */
ot->name= "Select Random";
ot->description= "Randomly select vertices.";
ot->idname= "MESH_OT_select_random";
/* api callbacks */
ot->exec= mesh_select_random_exec;
ot->poll= ED_operator_editmesh;
/* flags */
ot->flag= OPTYPE_REGISTER|OPTYPE_UNDO;
/* props */
RNA_def_float_percentage(ot->srna, "percent", 50.f, 0.0f, 100.0f, "Percent", "Percentage of elements to select randomly.", 0.f, 100.0f);
RNA_def_boolean(ot->srna, "extend", FALSE, "Extend Selection", "Extend selection instead of deselecting everything first.");
}

View File

@ -4645,18 +4645,41 @@ void MESH_OT_select_by_number_vertices(wmOperatorType *ot)
}
#define MIRROR_THRESH 1.0f
int select_mirror_exec(bContext *C, wmOperator *op)
{
#if 0
Object *obedit= CTX_data_edit_object(C);
EditMesh *em= BKE_mesh_get_editmesh(((Mesh *)obedit->data));
BMEditMesh *em= ((Mesh *)obedit->data)->edit_btmesh;
BMBVHTree *tree = BMBVH_NewBVH(em);
BMVert *v1, *v2;
BMIter iter;
int extend= RNA_boolean_get(op->ptr, "extend");
float mirror_co[3];
EM_select_mirrored(obedit, em, extend);
BM_ITER(v1, &iter, em->bm, BM_VERTS_OF_MESH, NULL) {
if (!BM_TestHFlag(v1, BM_SELECT) || BM_TestHFlag(v1, BM_HIDDEN))
BMINDEX_SET(v1, 0);
else BMINDEX_SET(v1, 1);
}
if (!extend)
EDBM_clear_flag_all(em, BM_SELECT);
BM_ITER(v1, &iter, em->bm, BM_VERTS_OF_MESH, NULL) {
if (!BMINDEX_GET(v1) || BM_TestHFlag(v1, BM_HIDDEN))
continue;
VECCOPY(mirror_co, v1->co);
mirror_co[0] *= -1.0f;
v2 = BMBVH_FindClosestVertTopo(tree, mirror_co, MIRROR_THRESH, v1);
if (v2 && !BM_TestHFlag(v2, BM_HIDDEN))
BM_Select(em->bm, v2, 1);
}
WM_event_add_notifier(C, NC_GEOM|ND_SELECT, obedit->data);
#endif
return OPERATOR_FINISHED;
}
@ -4677,129 +4700,3 @@ void MESH_OT_select_mirror(wmOperatorType *ot)
/* props */
RNA_def_boolean(ot->srna, "extend", 0, "Extend", "Extend the existing selection");
}
static int select_sharp_edges_exec(bContext *C, wmOperator *op)
{
/* Find edges that have exactly two neighboring faces,
* check the angle between those faces, and if angle is
* small enough, select the edge
*/
}
void MESH_OT_edges_select_sharp(wmOperatorType *ot)
{
/* identifiers */
ot->name= "Select Sharp Edges";
ot->description= "Marked selected edges as sharp.";
ot->idname= "MESH_OT_edges_select_sharp";
/* api callbacks */
ot->exec= select_sharp_edges_exec;
ot->poll= ED_operator_editmesh;
/* flags */
ot->flag= OPTYPE_REGISTER|OPTYPE_UNDO;
/* props */
RNA_def_float(ot->srna, "sharpness", 0.01f, 0.0f, FLT_MAX, "sharpness", "", 0.0f, 180.0f);
}
static int select_linked_flat_faces_exec(bContext *C, wmOperator *op)
{
#if 0
Object *obedit= CTX_data_edit_object(C);
EditMesh *em= BKE_mesh_get_editmesh(((Mesh *)obedit->data));
select_linked_flat_faces(em, op, RNA_float_get(op->ptr, "sharpness"));
WM_event_add_notifier(C, NC_GEOM|ND_SELECT, obedit->data);
BKE_mesh_end_editmesh(obedit->data, em);
return OPERATOR_FINISHED;
#endif
}
void MESH_OT_faces_select_linked_flat(wmOperatorType *ot)
{
/* identifiers */
ot->name= "Select Linked Flat Faces";
ot->description= "Select linked faces by angle.";
ot->idname= "MESH_OT_faces_select_linked_flat";
/* api callbacks */
ot->exec= select_linked_flat_faces_exec;
ot->poll= ED_operator_editmesh;
/* flags */
ot->flag= OPTYPE_REGISTER|OPTYPE_UNDO;
/* props */
RNA_def_float(ot->srna, "sharpness", 0.0f, 0.0f, FLT_MAX, "sharpness", "", 0.0f, 180.0f);
}
static int select_non_manifold_exec(bContext *C, wmOperator *op)
{
#if 0
Object *obedit= CTX_data_edit_object(C);
EditMesh *em= BKE_mesh_get_editmesh(((Mesh *)obedit->data));
select_non_manifold(em, op);
WM_event_add_notifier(C, NC_GEOM|ND_SELECT, obedit->data);
BKE_mesh_end_editmesh(obedit->data, em);
return OPERATOR_FINISHED;
#endif
}
void MESH_OT_select_non_manifold(wmOperatorType *ot)
{
/* identifiers */
ot->name= "Select Non Manifold";
ot->description= "Select all non-manifold vertices or edges.";
ot->idname= "MESH_OT_select_non_manifold";
/* api callbacks */
ot->exec= select_non_manifold_exec;
ot->poll= ED_operator_editmesh;
/* flags */
ot->flag= OPTYPE_REGISTER|OPTYPE_UNDO;
}
static int mesh_select_random_exec(bContext *C, wmOperator *op)
{
#if 0
Object *obedit= CTX_data_edit_object(C);
EditMesh *em= BKE_mesh_get_editmesh(((Mesh *)obedit->data));
if(!RNA_boolean_get(op->ptr, "extend"))
EM_deselect_all(em);
selectrandom_mesh(em, RNA_float_get(op->ptr, "percent")/100.0f);
WM_event_add_notifier(C, NC_GEOM|ND_SELECT, obedit->data);
BKE_mesh_end_editmesh(obedit->data, em);
#endif
return OPERATOR_FINISHED;
}
void MESH_OT_select_random(wmOperatorType *ot)
{
/* identifiers */
ot->name= "Select Random";
ot->description= "Randomly select vertices.";
ot->idname= "MESH_OT_select_random";
/* api callbacks */
ot->exec= mesh_select_random_exec;
ot->poll= ED_operator_editmesh;
/* flags */
ot->flag= OPTYPE_REGISTER|OPTYPE_UNDO;
/* props */
RNA_def_float_percentage(ot->srna, "percent", 50.f, 0.0f, 100.0f, "Percent", "Percentage of elements to select randomly.", 0.f, 100.0f);
RNA_def_boolean(ot->srna, "extend", FALSE, "Extend Selection", "Extend selection instead of deselecting everything first.");
}

View File

@ -98,6 +98,14 @@ typedef struct BMBVHTree {
BMesh *bm;
BVHTree *tree;
float epsilon;
float maxdist; //for nearest point search
/*stuff for topological vert search*/
BMVert *v, *curv;
GHash *gh;
float curw, curd;
float co[3];
int curtag;
} BMBVHTree;
BMBVHTree *BMBVH_NewBVH(BMEditMesh *em)
@ -219,6 +227,369 @@ BMFace *BMBVH_RayCast(BMBVHTree *tree, float *co, float *dir, float *hitout)
return NULL;
}
static void vertsearchcallback(void *userdata, int index, const float *co, BVHTreeNearest *hit)
{
BMBVHTree *tree = userdata;
BMLoop **ls = tree->em->looptris[index];
float dist, maxdist, v[3];
int i;
maxdist = tree->maxdist;
for (i=0; i<3; i++) {
sub_v3_v3v3(v, hit->co, ls[i]->v->co);
dist = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
if (dist < hit->dist && dist < maxdist) {
VECCOPY(hit->co, ls[i]->v->co);
VECCOPY(hit->no, ls[i]->v->no);
hit->dist = dist;
}
}
}
BMVert *BMBVH_FindClosestVert(BMBVHTree *tree, float *co, float maxdist)
{
BVHTreeNearest hit;
VECCOPY(hit.co, co);
hit.dist = maxdist*5;
hit.index = -1;
tree->maxdist = maxdist;
BLI_bvhtree_find_nearest(tree->tree, co, &hit, vertsearchcallback, tree);
if (hit.dist != FLT_MAX && hit.index != -1) {
BMLoop **ls = tree->em->looptris[hit.index];
float dist, curdist = tree->maxdist, v[3];
int cur=0, i;
maxdist = tree->maxdist;
for (i=0; i<3; i++) {
sub_v3_v3v3(v, hit.co, ls[i]->v->co);
dist = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
if (dist < curdist) {
cur = i;
curdist = dist;
}
}
return ls[i]->v;
}
return NULL;
}
typedef struct walklist {
BMVert *v;
int valence;
int depth;
float w, r;
int totwalked;
/*state data*/
BMVert *lastv;
BMLoop *curl, *firstl;
BMEdge *cure;
} walklist;
static short winding(float *v1, float *v2, float *v3)
/* is v3 to the right of v1-v2 ? With exception: v3==v1 || v3==v2 */
{
double inp;
//inp= (v2[cox]-v1[cox])*(v1[coy]-v3[coy]) +(v1[coy]-v2[coy])*(v1[cox]-v3[cox]);
inp= (v2[0]-v1[0])*(v1[1]-v3[1]) +(v1[1]-v2[1])*(v1[0]-v3[0]);
if(inp<0.0) return 0;
else if(inp==0) {
if(v1[0]==v3[0] && v1[1]==v3[1]) return 0;
if(v2[0]==v3[0] && v2[1]==v3[1]) return 0;
}
return 1;
}
static float topo_compare(BMesh *bm, BMVert *v1, BMVert *v2, int tag)
{
BMIter iter1, iter2;
BMEdge *e1, *e2, *cure1 = NULL, *cure2 = NULL;
BMLoop *l1, *l2;
BMVert *lastv1, *lastv2;
GHash *gh;
walklist *stack1=NULL, *stack2=NULL;
BLI_array_declare(stack1);
BLI_array_declare(stack2);
float vec1[3], vec2[3], minangle=FLT_MAX, w;
int lvl=1;
static int maxlevel = 8;
/*ok. see how similar v is to v2, based on topological similaritys in the local
topological neighborhood*/
/*step 1: find two edges, one that contains v and one that contains v2, with the
smallest angle between the two edges*/
BM_ITER(e1, &iter1, bm, BM_EDGES_OF_VERT, v1) {
BM_ITER(e2, &iter2, bm, BM_EDGES_OF_VERT, v2) {
float angle;
if (e1->v1 == e2->v1 || e1->v2 == e2->v2 || e1->v1 == e2->v2 || e1->v2 == e2->v1)
continue;
sub_v3_v3v3(vec1, BM_OtherEdgeVert(e1, v1)->co, v1->co);
sub_v3_v3v3(vec2, BM_OtherEdgeVert(e2, v2)->co, v2->co);
angle = fabs(angle_v3v3(vec1, vec2));
if (angle < minangle) {
minangle = angle;
cure1 = e1;
cure2 = e2;
}
}
}
if (!cure1 || !cure1->loop || !cure2->loop) {
/*just return 1.0 in this case*/
return 1.0f;
}
/*assumtions
we assume a 2-manifold mesh here. if at any time this isn't the case,
e.g. a hole or an edge with more then 2 faces around it, we um ignore
that edge I guess, and try to make the algorithm go around as necassary.*/
l1 = cure1->loop;
l2 = cure2->loop;
lastv1 = l1->v == v1 ? ((BMLoop*)l1->head.next)->v : ((BMLoop*)l1->head.prev)->v;
lastv2 = l2->v == v2 ? ((BMLoop*)l2->head.next)->v : ((BMLoop*)l2->head.prev)->v;
/*we can only provide meaningful comparisons if v1 and v2 have the same valence*/
if (BM_Vert_EdgeCount(v1) != BM_Vert_EdgeCount(v2))
return 1.0f; /*full mismatch*/
gh = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
#define SPUSH(s, d, vt, lv, e)\
if (BLI_array_count(s) <= lvl) BLI_array_growone(s);\
memset((s+lvl), 0, sizeof(*s));\
s[lvl].depth = d;\
s[lvl].v = vt;\
s[lvl].cure = e;\
s[lvl].lastv = lv;\
s[lvl].valence = BM_Vert_EdgeCount(vt);\
lvl = 0;
SPUSH(stack1, 0, v1, lastv1, cure1);
SPUSH(stack2, 0, v2, lastv2, cure2);
BLI_srand( BLI_rand() ); /* random seed */
lvl = 1;
while (lvl) {
int term = 0;
walklist *s1 = stack1 + lvl - 1, *s2 = stack2 + lvl - 1;
/*pop from the stack*/
lvl--;
if (s1->curl && s1->curl->e == s1->cure)
term = 1;
if (s2->curl && s2->curl->e == s2->cure)
term = 1;
/*find next case to do*/
if (!s1->curl)
s1->curl = s1->cure->loop;
if (!s2->curl) {
int wind1, wind2;
s2->curl = s2->cure->loop;
/*find which of two possible faces to use*/
wind1 = winding(s1->v->co, s1->lastv->co,
s1->v == s1->curl->v ? ((BMLoop*)s1->curl->head.prev->prev)->v->co : ((BMLoop*)s1->curl->head.next->next)->v->co);
wind2 = winding(s2->v->co, s2->lastv->co,
s2->v == s2->curl->v ? ((BMLoop*)s2->curl->head.prev->prev)->v->co : ((BMLoop*)s2->curl->head.next->next)->v->co);
if (wind1 == wind2)
s2->curl = s2->curl->radial.next->data;
}
/*handle termination cases of having already looped through all child
nodes, or the valence mismatching between v1 and v2, or we hit max
recursion depth*/
term |= s1->valence != s2->valence || lvl+1 > maxlevel;
term |= s1->curl->radial.next->data == (BMLoop*)l1;
term |= s2->curl->radial.next->data == (BMLoop*)l2;
if (!term) {
lastv1 = s1->v;
lastv2 = s2->v;
v1 = BM_OtherEdgeVert(s1->curl->e, lastv1);
v2 = BM_OtherEdgeVert(s2->curl->e, lastv2);
e1 = s1->curl->e;
e2 = s2->curl->e;
if (!BLI_ghash_haskey(gh, v1) && !BLI_ghash_haskey(gh, v2)) {
/*repush the current stack item*/
lvl++;
if (maxlevel % 2 == 0) {
BLI_ghash_insert(gh, v1, NULL);
BLI_ghash_insert(gh, v2, NULL);
}
/*now push the child node*/
SPUSH(stack1, lvl, v1, lastv1, e1);
SPUSH(stack2, lvl, v2, lastv2, e2);
lvl++;
s1 = stack1 + lvl - 2;
s2 = stack2 + lvl - 2;
}
s1->curl = s1->curl->v == s1->v ? (BMLoop*) s1->curl->head.prev : (BMLoop*) s1->curl->head.next;
s2->curl = s2->curl->v == s2->v ? (BMLoop*) s2->curl->head.prev : (BMLoop*) s2->curl->head.next;
s1->curl = (BMLoop*) s1->curl->radial.next->data;
s2->curl = (BMLoop*) s2->curl->radial.next->data;
}
#define WADD(stack, s)\
if (lvl) {/*silly attempt to make this non-commutative: randomize\
how much this particular weight adds to the total*/\
stack[lvl-1].r += r;\
s->w *= r;\
stack[lvl-1].totwalked++;\
stack[lvl-1].w += s->w;\
}
/*if no next case to do, update parent weight*/
if (term) {
float r = 0.8f + BLI_frand()*0.2f - FLT_EPSILON;
if (s1->totwalked) {
s1->w /= s1->r;
} else
s1->w = s1->valence == s2->valence ? 1.0f : 0.0f;
WADD(stack1, s1);
if (s2->totwalked) {
s2->w /= s2->r;
} else
s2->w = s1->valence == s2->valence ? 1.0f : 0.0f;
WADD(stack2, s2);
/*apply additional penalty to weight mismatch*/
if (s2->w != s1->w)
s2->w *= 0.8f;
}
}
w = (stack1[0].w + stack2[0].w)*0.5f;
BLI_array_free(stack1);
BLI_array_free(stack2);
BLI_ghash_free(gh, NULL, NULL);
return 1.0f - w;
}
static void vertsearchcallback_topo(void *userdata, int index, const float *co, BVHTreeNearest *hit)
{
BMBVHTree *tree = userdata;
BMLoop **ls = tree->em->looptris[index];
int i;
float dist, maxdist, vec[3], w;
maxdist = tree->maxdist;
for (i=0; i<3; i++) {
float dis;
if (BLI_ghash_haskey(tree->gh, ls[i]->v))
continue;
sub_v3_v3v3(vec, tree->co, ls[i]->v->co);
dis = dot_v3v3(vec, vec);
w = topo_compare(tree->em->bm, tree->v, ls[i]->v, tree->curtag++);
if (w < tree->curw-FLT_EPSILON*4) {
tree->curw = w;
tree->curv = ls[i]->v;
sub_v3_v3v3(vec, tree->co, ls[i]->v->co);
tree->curd = dot_v3v3(vec, vec);
/*we deliberately check for equality using (smallest possible float)*4
comparison factor, to always prefer distance in cases of verts really
close to each other*/
} else if (fabs(tree->curw - w) < FLT_EPSILON*4) {
/*if w is equal to hitex->curw, sort by distance*/
sub_v3_v3v3(vec, tree->co, ls[i]->v->co);
dis = dot_v3v3(vec, vec);
if (dis < tree->curd) {
tree->curd = dis;
tree->curv = ls[i]->v;
}
}
BLI_ghash_insert(tree->gh, ls[i]->v, NULL);
}
}
BMVert *BMBVH_FindClosestVertTopo(BMBVHTree *tree, float *co, float maxdist, BMVert *sourcev)
{
BVHTreeNearest hit;
BMVert *v;
BMIter iter;
memset(&hit, 0, sizeof(hit));
VECCOPY(hit.co, co);
VECCOPY(tree->co, co);
hit.index = -1;
hit.dist = 10.0f;
tree->curw = FLT_MAX;
tree->curd = FLT_MAX;
tree->curv = NULL;
tree->curtag = 1;
BM_ITER(v, &iter, tree->bm, BM_VERTS_OF_MESH, NULL) {
BMINDEX_SET(v, 0);
}
tree->gh = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
tree->maxdist = maxdist;
tree->v = sourcev;
BLI_bvhtree_find_nearest(tree->tree, co, &hit, vertsearchcallback_topo, tree);
BLI_ghash_free(tree->gh, NULL, NULL);
tree->gh = NULL;
return tree->curv;
}
#if 0 //BMESH_TODO: not implemented yet
int BMBVH_VertVisible(BMBVHTree *tree, BMEdge *e, RegionView3D *r3d)
{

View File

@ -13,5 +13,11 @@ struct BMBVHTree *BMBVH_NewBVH(struct BMEditMesh *em);
void BMBVH_FreeBVH(struct BMBVHTree *tree);
struct BMFace *BMBVH_RayCast(struct BMBVHTree *tree, float *co, float *dir, float *hitout);
int BMBVH_EdgeVisible(struct BMBVHTree *tree, struct BMEdge *e,
struct RegionView3D *r3d, struct Object *obedit);
/*find a vert closest to co in a sphere of radius maxdist*/
struct BMVert *BMBVH_FindClosestVert(struct BMBVHTree *tree, float *co, float maxdist);
struct BMVert *BMBVH_FindClosestVertTopo(struct BMBVHTree *tree, float *co,
float maxdist, struct BMVert *sourcev);