tornavis/source/blender/nodes/NOD_node_declaration.hh

737 lines
22 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
#include <functional>
#include <type_traits>
#include "BLI_string_ref.hh"
#include "BLI_vector.hh"
#include "DNA_node_types.h"
struct bNode;
namespace blender::nodes {
class NodeDeclarationBuilder;
enum class InputSocketFieldType {
/** The input is required to be a single value. */
None,
/** The input can be a field. */
IsSupported,
/** The input can be a field and is a field implicitly if nothing is connected. */
Implicit,
};
enum class OutputSocketFieldType {
/** The output is always a single value. */
None,
/** The output is always a field, independent of the inputs. */
FieldSource,
/** If any input is a field, this output will be a field as well. */
DependentField,
/** If any of a subset of inputs is a field, this out will be a field as well.
* The subset is defined by the vector of indices. */
PartiallyDependent,
};
/**
* Contains information about how a node output's field state depends on inputs of the same node.
*/
class OutputFieldDependency {
private:
OutputSocketFieldType type_ = OutputSocketFieldType::None;
Vector<int> linked_input_indices_;
public:
static OutputFieldDependency ForFieldSource();
static OutputFieldDependency ForDataSource();
static OutputFieldDependency ForDependentField();
static OutputFieldDependency ForPartiallyDependentField(Vector<int> indices);
OutputSocketFieldType field_type() const;
Span<int> linked_input_indices() const;
friend bool operator==(const OutputFieldDependency &a, const OutputFieldDependency &b);
};
/**
* Information about how a node interacts with fields.
*/
struct FieldInferencingInterface {
Vector<InputSocketFieldType> inputs;
Vector<OutputFieldDependency> outputs;
};
namespace anonymous_attribute_lifetime {
/**
* Attributes can be propagated from an input geometry to an output geometry.
*/
struct PropagateRelation {
int from_geometry_input;
int to_geometry_output;
friend bool operator==(const PropagateRelation &a, const PropagateRelation &b)
{
return a.from_geometry_input == b.from_geometry_input &&
a.to_geometry_output == b.to_geometry_output;
}
};
/**
* References to attributes can be propagated from an input field to an output field.
*/
struct ReferenceRelation {
int from_field_input;
int to_field_output;
friend bool operator==(const ReferenceRelation &a, const ReferenceRelation &b)
{
return a.from_field_input == b.from_field_input && a.to_field_output == b.to_field_output;
}
};
/**
* An input field is evaluated on an input geometry.
*/
struct EvalRelation {
int field_input;
int geometry_input;
friend bool operator==(const EvalRelation &a, const EvalRelation &b)
{
return a.field_input == b.field_input && a.geometry_input == b.geometry_input;
}
};
/**
* An output field is available on an output geometry.
*/
struct AvailableRelation {
int field_output;
int geometry_output;
friend bool operator==(const AvailableRelation &a, const AvailableRelation &b)
{
return a.field_output == b.field_output && a.geometry_output == b.geometry_output;
}
};
struct RelationsInNode {
Vector<PropagateRelation> propagate_relations;
Vector<ReferenceRelation> reference_relations;
Vector<EvalRelation> eval_relations;
Vector<AvailableRelation> available_relations;
Vector<int> available_on_none;
};
bool operator==(const RelationsInNode &a, const RelationsInNode &b);
bool operator!=(const RelationsInNode &a, const RelationsInNode &b);
std::ostream &operator<<(std::ostream &stream, const RelationsInNode &relations);
} // namespace anonymous_attribute_lifetime
namespace aal = anonymous_attribute_lifetime;
using ImplicitInputValueFn = std::function<void(const bNode &node, void *r_value)>;
/**
* Describes a single input or output socket. This is subclassed for different socket types.
*/
class SocketDeclaration {
public:
std::string name;
std::string identifier;
std::string description;
/** Defined by whether the socket is part of the node's input or
* output socket declaration list. Included here for convenience. */
eNodeSocketInOut in_out;
bool hide_label = false;
bool hide_value = false;
bool compact = false;
bool is_multi_input = false;
bool no_mute_links = false;
bool is_unavailable = false;
bool is_attribute_name = false;
bool is_default_link_socket = false;
InputSocketFieldType input_field_type = InputSocketFieldType::None;
OutputFieldDependency output_field_dependency;
/** The priority of the input for determining the domain of the node. See
* realtime_compositor::InputDescriptor for more information. */
int compositor_domain_priority_ = 0;
/** This input shouldn't be realized on the operation domain of the node. See
* realtime_compositor::InputDescriptor for more information. */
bool compositor_skip_realization_ = false;
/** This input expects a single value and can't operate on non-single values. See
* realtime_compositor::InputDescriptor for more information. */
bool compositor_expects_single_value_ = false;
/** Utility method to make the socket available if there is a straightforward way to do so. */
std::function<void(bNode &)> make_available_fn_;
/** Some input sockets can have non-trivial values in the case when they are unlinked. This
* callback computes the default input of a values in geometry nodes when nothing is linked. */
std::unique_ptr<ImplicitInputValueFn> implicit_input_fn_;
friend NodeDeclarationBuilder;
template<typename SocketDecl> friend class SocketDeclarationBuilder;
public:
virtual ~SocketDeclaration() = default;
virtual bNodeSocket &build(bNodeTree &ntree, bNode &node) const = 0;
virtual bool matches(const bNodeSocket &socket) const = 0;
virtual bNodeSocket &update_or_build(bNodeTree &ntree, bNode &node, bNodeSocket &socket) const;
/**
* Determine if a new socket described by this declaration could have a valid connection
* the other socket.
*/
virtual bool can_connect(const bNodeSocket &socket) const = 0;
/**
* Change the node such that the socket will become visible. The node type's update method
* should be called afterwards.
* \note this is not necessarily implemented for all node types.
*/
void make_available(bNode &node) const;
int compositor_domain_priority() const;
bool compositor_skip_realization() const;
bool compositor_expects_single_value() const;
const ImplicitInputValueFn *implicit_input_fn() const
{
return implicit_input_fn_.get();
}
protected:
void set_common_flags(bNodeSocket &socket) const;
bool matches_common_data(const bNodeSocket &socket) const;
};
class NodeDeclarationBuilder;
class BaseSocketDeclarationBuilder {
protected:
int index_ = -1;
bool reference_pass_all_ = false;
bool field_on_all_ = false;
bool propagate_from_all_ = false;
NodeDeclarationBuilder *node_decl_builder_ = nullptr;
friend class NodeDeclarationBuilder;
public:
virtual ~BaseSocketDeclarationBuilder() = default;
protected:
virtual SocketDeclaration *declaration() = 0;
};
/**
* Wraps a #SocketDeclaration and provides methods to set it up correctly.
* This is separate from #SocketDeclaration, because it allows separating the API used by nodes to
* declare themselves from how the declaration is stored internally.
*/
template<typename SocketDecl>
class SocketDeclarationBuilder : public BaseSocketDeclarationBuilder {
protected:
using Self = typename SocketDecl::Builder;
static_assert(std::is_base_of_v<SocketDeclaration, SocketDecl>);
SocketDecl *decl_;
friend class NodeDeclarationBuilder;
public:
Self &hide_label(bool value = true)
{
decl_->hide_label = value;
return *(Self *)this;
}
Self &hide_value(bool value = true)
{
decl_->hide_value = value;
return *(Self *)this;
}
Self &multi_input(bool value = true)
{
decl_->is_multi_input = value;
return *(Self *)this;
}
Self &description(std::string value = "")
{
decl_->description = std::move(value);
return *(Self *)this;
}
Self &no_muted_links(bool value = true)
{
decl_->no_mute_links = value;
return *(Self *)this;
}
/**
* Used for sockets that are always unavailable and should not be seen by the user.
* Ideally, no new calls to this method should be added over time.
*/
Self &unavailable(bool value = true)
{
decl_->is_unavailable = value;
return *(Self *)this;
}
Self &is_attribute_name(bool value = true)
{
decl_->is_attribute_name = value;
return *(Self *)this;
}
Self &is_default_link_socket(bool value = true)
{
decl_->is_default_link_socket = value;
return *(Self *)this;
}
/** The input socket allows passing in a field. */
Self &supports_field()
{
decl_->input_field_type = InputSocketFieldType::IsSupported;
return *(Self *)this;
}
/**
* For inputs this means that the input field is evaluated on all geometry inputs. For outputs
* it means that this contains an anonymous attribute reference that is available on all geometry
* outputs.
*/
Self &field_on_all()
{
if (decl_->in_out == SOCK_IN) {
this->supports_field();
}
else {
this->field_source();
}
field_on_all_ = true;
return *(Self *)this;
}
/** For inputs that are evaluated or available on a subset of the geometry sockets. */
Self &field_on(Span<int> indices);
/** The input supports a field and is a field by default when nothing is connected. */
Self &implicit_field(ImplicitInputValueFn fn)
{
this->hide_value();
decl_->input_field_type = InputSocketFieldType::Implicit;
decl_->implicit_input_fn_ = std::make_unique<ImplicitInputValueFn>(std::move(fn));
return *(Self *)this;
}
/** The input is an implicit field that is evaluated on all geometry inputs. */
Self &implicit_field_on_all(ImplicitInputValueFn fn)
{
this->implicit_field(fn);
field_on_all_ = true;
return *(Self *)this;
}
/** The input is evaluated on a subset of the geometry inputs. */
Self &implicit_field_on(ImplicitInputValueFn fn, const Span<int> input_indices)
{
this->field_on(input_indices);
this->implicit_field(fn);
return *(Self *)this;
}
/** The output is always a field, regardless of any inputs. */
Self &field_source()
{
decl_->output_field_dependency = OutputFieldDependency::ForFieldSource();
return *(Self *)this;
}
/** The output is a field if any of the inputs are a field. */
Self &dependent_field()
{
decl_->output_field_dependency = OutputFieldDependency::ForDependentField();
this->reference_pass_all();
return *(Self *)this;
}
/** The output is a field if any of the inputs with indices in the given list is a field. */
Self &dependent_field(Vector<int> input_dependencies)
{
this->reference_pass(input_dependencies);
decl_->output_field_dependency = OutputFieldDependency::ForPartiallyDependentField(
std::move(input_dependencies));
return *(Self *)this;
}
/**
* For outputs that combine all input fields into a new field. The output is a field even if none
* of the inputs is a field.
*/
Self &field_source_reference_all()
{
this->field_source();
this->reference_pass_all();
return *(Self *)this;
}
/**
* For outputs that combine a subset of input fields into a new field.
*/
Self &reference_pass(Span<int> input_indices);
/**
* For outputs that combine all input fields into a new field.
*/
Self &reference_pass_all()
{
reference_pass_all_ = true;
return *(Self *)this;
}
/** Attributes from the all geometry inputs can be propagated. */
Self &propagate_all()
{
propagate_from_all_ = true;
return *(Self *)this;
}
/** The priority of the input for determining the domain of the node. See
* realtime_compositor::InputDescriptor for more information. */
Self &compositor_domain_priority(int priority)
{
decl_->compositor_domain_priority_ = priority;
return *(Self *)this;
}
/** This input shouldn't be realized on the operation domain of the node. See
* realtime_compositor::InputDescriptor for more information. */
Self &compositor_skip_realization(bool value = true)
{
decl_->compositor_skip_realization_ = value;
return *(Self *)this;
}
/** This input expects a single value and can't operate on non-single values. See
* realtime_compositor::InputDescriptor for more information. */
Self &compositor_expects_single_value(bool value = true)
{
decl_->compositor_expects_single_value_ = value;
return *(Self *)this;
}
/**
* Pass a function that sets properties on the node required to make the corresponding socket
* available, if it is not available on the default state of the node. The function is allowed to
* make other sockets unavailable, since it is meant to be called when the node is first added.
* The node type's update function is called afterwards.
*/
Self &make_available(std::function<void(bNode &)> fn)
{
decl_->make_available_fn_ = std::move(fn);
return *(Self *)this;
}
protected:
SocketDeclaration *declaration() override
{
return decl_;
}
};
using SocketDeclarationPtr = std::unique_ptr<SocketDeclaration>;
class NodeDeclaration {
public:
Vector<SocketDeclarationPtr> inputs;
Vector<SocketDeclarationPtr> outputs;
std::unique_ptr<aal::RelationsInNode> anonymous_attribute_relations_;
friend NodeDeclarationBuilder;
bool matches(const bNode &node) const;
Span<SocketDeclarationPtr> sockets(eNodeSocketInOut in_out) const;
const aal::RelationsInNode *anonymous_attribute_relations() const
{
return anonymous_attribute_relations_.get();
}
MEM_CXX_CLASS_ALLOC_FUNCS("NodeDeclaration")
};
class NodeDeclarationBuilder {
private:
NodeDeclaration &declaration_;
Vector<std::unique_ptr<BaseSocketDeclarationBuilder>> input_builders_;
Vector<std::unique_ptr<BaseSocketDeclarationBuilder>> output_builders_;
bool is_function_node_ = false;
public:
NodeDeclarationBuilder(NodeDeclaration &declaration);
/**
* All inputs support fields, and all outputs are fields if any of the inputs is a field.
* Calling field status definitions on each socket is unnecessary.
*/
void is_function_node()
{
is_function_node_ = true;
}
void finalize();
template<typename DeclType>
typename DeclType::Builder &add_input(StringRef name, StringRef identifier = "");
template<typename DeclType>
typename DeclType::Builder &add_output(StringRef name, StringRef identifier = "");
aal::RelationsInNode &get_anonymous_attribute_relations()
{
if (!declaration_.anonymous_attribute_relations_) {
declaration_.anonymous_attribute_relations_ = std::make_unique<aal::RelationsInNode>();
}
return *declaration_.anonymous_attribute_relations_;
}
private:
template<typename DeclType>
typename DeclType::Builder &add_socket(StringRef name,
StringRef identifier,
eNodeSocketInOut in_out);
};
namespace implicit_field_inputs {
void position(const bNode &node, void *r_value);
void normal(const bNode &node, void *r_value);
void index(const bNode &node, void *r_value);
void id_or_index(const bNode &node, void *r_value);
} // namespace implicit_field_inputs
void build_node_declaration(const bNodeType &typeinfo, NodeDeclaration &r_declaration);
template<typename SocketDecl>
typename SocketDeclarationBuilder<SocketDecl>::Self &SocketDeclarationBuilder<
SocketDecl>::reference_pass(const Span<int> input_indices)
{
aal::RelationsInNode &relations = node_decl_builder_->get_anonymous_attribute_relations();
for (const int from_input : input_indices) {
aal::ReferenceRelation relation;
relation.from_field_input = from_input;
relation.to_field_output = index_;
relations.reference_relations.append(relation);
}
return *(Self *)this;
}
template<typename SocketDecl>
typename SocketDeclarationBuilder<SocketDecl>::Self &SocketDeclarationBuilder<
SocketDecl>::field_on(const Span<int> indices)
{
aal::RelationsInNode &relations = node_decl_builder_->get_anonymous_attribute_relations();
if (decl_->in_out == SOCK_IN) {
this->supports_field();
for (const int input_index : indices) {
aal::EvalRelation relation;
relation.field_input = index_;
relation.geometry_input = input_index;
relations.eval_relations.append(relation);
}
}
else {
this->field_source();
for (const int output_index : indices) {
aal::AvailableRelation relation;
relation.field_output = index_;
relation.geometry_output = output_index;
relations.available_relations.append(relation);
}
}
return *(Self *)this;
}
/* -------------------------------------------------------------------- */
/** \name #OutputFieldDependency Inline Methods
* \{ */
inline OutputFieldDependency OutputFieldDependency::ForFieldSource()
{
OutputFieldDependency field_dependency;
field_dependency.type_ = OutputSocketFieldType::FieldSource;
return field_dependency;
}
inline OutputFieldDependency OutputFieldDependency::ForDataSource()
{
OutputFieldDependency field_dependency;
field_dependency.type_ = OutputSocketFieldType::None;
return field_dependency;
}
inline OutputFieldDependency OutputFieldDependency::ForDependentField()
{
OutputFieldDependency field_dependency;
field_dependency.type_ = OutputSocketFieldType::DependentField;
return field_dependency;
}
inline OutputFieldDependency OutputFieldDependency::ForPartiallyDependentField(Vector<int> indices)
{
OutputFieldDependency field_dependency;
if (indices.is_empty()) {
field_dependency.type_ = OutputSocketFieldType::None;
}
else {
field_dependency.type_ = OutputSocketFieldType::PartiallyDependent;
field_dependency.linked_input_indices_ = std::move(indices);
}
return field_dependency;
}
inline OutputSocketFieldType OutputFieldDependency::field_type() const
{
return type_;
}
inline Span<int> OutputFieldDependency::linked_input_indices() const
{
return linked_input_indices_;
}
inline bool operator==(const OutputFieldDependency &a, const OutputFieldDependency &b)
{
return a.type_ == b.type_ && a.linked_input_indices_ == b.linked_input_indices_;
}
inline bool operator!=(const OutputFieldDependency &a, const OutputFieldDependency &b)
{
return !(a == b);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #FieldInferencingInterface Inline Methods
* \{ */
inline bool operator==(const FieldInferencingInterface &a, const FieldInferencingInterface &b)
{
return a.inputs == b.inputs && a.outputs == b.outputs;
}
inline bool operator!=(const FieldInferencingInterface &a, const FieldInferencingInterface &b)
{
return !(a == b);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #SocketDeclaration Inline Methods
* \{ */
inline int SocketDeclaration::compositor_domain_priority() const
{
return compositor_domain_priority_;
}
inline bool SocketDeclaration::compositor_skip_realization() const
{
return compositor_skip_realization_;
}
inline bool SocketDeclaration::compositor_expects_single_value() const
{
return compositor_expects_single_value_;
}
inline void SocketDeclaration::make_available(bNode &node) const
{
if (make_available_fn_) {
make_available_fn_(node);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #NodeDeclarationBuilder Inline Methods
* \{ */
inline NodeDeclarationBuilder::NodeDeclarationBuilder(NodeDeclaration &declaration)
: declaration_(declaration)
{
}
template<typename DeclType>
inline typename DeclType::Builder &NodeDeclarationBuilder::add_input(StringRef name,
StringRef identifier)
{
return this->add_socket<DeclType>(name, identifier, SOCK_IN);
}
template<typename DeclType>
inline typename DeclType::Builder &NodeDeclarationBuilder::add_output(StringRef name,
StringRef identifier)
{
return this->add_socket<DeclType>(name, identifier, SOCK_OUT);
}
template<typename DeclType>
inline typename DeclType::Builder &NodeDeclarationBuilder::add_socket(StringRef name,
StringRef identifier,
eNodeSocketInOut in_out)
{
static_assert(std::is_base_of_v<SocketDeclaration, DeclType>);
using Builder = typename DeclType::Builder;
Vector<SocketDeclarationPtr> &declarations = in_out == SOCK_IN ? declaration_.inputs :
declaration_.outputs;
std::unique_ptr<DeclType> socket_decl = std::make_unique<DeclType>();
std::unique_ptr<Builder> socket_decl_builder = std::make_unique<Builder>();
socket_decl_builder->decl_ = &*socket_decl;
socket_decl_builder->node_decl_builder_ = this;
socket_decl->name = name;
socket_decl->identifier = identifier.is_empty() ? name : identifier;
socket_decl->in_out = in_out;
socket_decl_builder->index_ = declarations.append_and_get_index(std::move(socket_decl));
Builder &socket_decl_builder_ref = *socket_decl_builder;
((in_out == SOCK_IN) ? input_builders_ : output_builders_)
.append(std::move(socket_decl_builder));
return socket_decl_builder_ref;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #NodeDeclaration Inline Methods
* \{ */
inline Span<SocketDeclarationPtr> NodeDeclaration::sockets(eNodeSocketInOut in_out) const
{
if (in_out == SOCK_IN) {
return inputs;
}
return outputs;
}
/** \} */
} // namespace blender::nodes