tornavis/source/blender/blenlib/BLI_noise.hh

424 lines
15 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
#include "BLI_math_vector_types.hh"
namespace blender::noise {
/* -------------------------------------------------------------------- */
/** \name Hash Functions
*
* Create a randomized hash from the given inputs. Contrary to hash functions in `BLI_hash.hh`
* these functions produce better randomness but are more expensive to compute.
* \{ */
/* Hash integers to `uint32_t`. */
uint32_t hash(uint32_t kx);
uint32_t hash(uint32_t kx, uint32_t ky);
uint32_t hash(uint32_t kx, uint32_t ky, uint32_t kz);
uint32_t hash(uint32_t kx, uint32_t ky, uint32_t kz, uint32_t kw);
/* Hash floats to `uint32_t`. */
uint32_t hash_float(float kx);
uint32_t hash_float(float2 k);
uint32_t hash_float(float3 k);
uint32_t hash_float(float4 k);
/* Hash integers to `float` between 0 and 1. */
float hash_to_float(uint32_t kx);
float hash_to_float(uint32_t kx, uint32_t ky);
float hash_to_float(uint32_t kx, uint32_t ky, uint32_t kz);
float hash_to_float(uint32_t kx, uint32_t ky, uint32_t kz, uint32_t kw);
/* Hash floats to `float` between 0 and 1. */
float hash_float_to_float(float k);
float hash_float_to_float(float2 k);
float hash_float_to_float(float3 k);
float hash_float_to_float(float4 k);
float2 hash_float_to_float2(float2 k);
float3 hash_float_to_float3(float k);
float3 hash_float_to_float3(float2 k);
float3 hash_float_to_float3(float3 k);
float3 hash_float_to_float3(float4 k);
float4 hash_float_to_float4(float4 k);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Perlin Noise
* \{ */
/* Perlin noise in the range [-1, 1]. */
float perlin_signed(float position);
float perlin_signed(float2 position);
float perlin_signed(float3 position);
float perlin_signed(float4 position);
/* Perlin noise in the range [0, 1]. */
float perlin(float position);
float perlin(float2 position);
float perlin(float3 position);
float perlin(float4 position);
/* Fractal perlin noise in the range [0, 1]. */
float perlin_fractal(
float position, float octaves, float roughness, float lacunarity, bool normalize);
float perlin_fractal(
float2 position, float octaves, float roughness, float lacunarity, bool normalize);
float perlin_fractal(
float3 position, float octaves, float roughness, float lacunarity, bool normalize);
float perlin_fractal(
float4 position, float octaves, float roughness, float lacunarity, bool normalize);
/* Positive distorted fractal perlin noise. */
float perlin_fractal_distorted(float position,
float octaves,
float roughness,
float lacunarity,
float distortion,
bool normalize);
float perlin_fractal_distorted(float2 position,
float octaves,
float roughness,
float lacunarity,
float distortion,
bool normalize);
float perlin_fractal_distorted(float3 position,
float octaves,
float roughness,
float lacunarity,
float distortion,
bool normalize);
float perlin_fractal_distorted(float4 position,
float octaves,
float roughness,
float lacunarity,
float distortion,
bool normalize);
/* Positive distorted fractal perlin noise that outputs a float3. */
float3 perlin_float3_fractal_distorted(float position,
float octaves,
float roughness,
float lacunarity,
float distortion,
bool normalize);
float3 perlin_float3_fractal_distorted(float2 position,
float octaves,
float roughness,
float lacunarity,
float distortion,
bool normalize);
float3 perlin_float3_fractal_distorted(float3 position,
float octaves,
float roughness,
float lacunarity,
float distortion,
bool normalize);
float3 perlin_float3_fractal_distorted(float4 position,
float octaves,
float roughness,
float lacunarity,
float distortion,
bool normalize);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Musgrave Multi Fractal
* \{ */
/**
* 1D Ridged Multi-fractal Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_ridged_multi_fractal(
float co, float H, float lacunarity, float octaves, float offset, float gain);
/**
* 2D Ridged Multi-fractal Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_ridged_multi_fractal(
const float2 co, float H, float lacunarity, float octaves, float offset, float gain);
/**
* 3D Ridged Multi-fractal Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_ridged_multi_fractal(
const float3 co, float H, float lacunarity, float octaves, float offset, float gain);
/**
* 4D Ridged Multi-fractal Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_ridged_multi_fractal(
const float4 co, float H, float lacunarity, float octaves, float offset, float gain);
/**
* 1D Hybrid Additive/Multiplicative Multi-fractal Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_hybrid_multi_fractal(
float co, float H, float lacunarity, float octaves, float offset, float gain);
/**
* 2D Hybrid Additive/Multiplicative Multi-fractal Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_hybrid_multi_fractal(
const float2 co, float H, float lacunarity, float octaves, float offset, float gain);
/**
* 3D Hybrid Additive/Multiplicative Multi-fractal Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_hybrid_multi_fractal(
const float3 co, float H, float lacunarity, float octaves, float offset, float gain);
/**
* 4D Hybrid Additive/Multiplicative Multi-fractal Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_hybrid_multi_fractal(
const float4 co, float H, float lacunarity, float octaves, float offset, float gain);
/**
* 1D Musgrave fBm
*
* \param H: fractal increment parameter.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
*/
float musgrave_fBm(float co, float H, float lacunarity, float octaves);
/**
* 2D Musgrave fBm
*
* \param H: fractal increment parameter.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
*/
float musgrave_fBm(const float2 co, float H, float lacunarity, float octaves);
/**
* 3D Musgrave fBm
*
* \param H: fractal increment parameter.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
*/
float musgrave_fBm(const float3 co, float H, float lacunarity, float octaves);
/**
* 4D Musgrave fBm
*
* \param H: fractal increment parameter.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
*/
float musgrave_fBm(const float4 co, float H, float lacunarity, float octaves);
/**
* 1D Musgrave Multi-fractal
*
* \param H: highest fractal dimension.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
*/
float musgrave_multi_fractal(float co, float H, float lacunarity, float octaves);
/**
* 2D Musgrave Multi-fractal
*
* \param H: highest fractal dimension.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
*/
float musgrave_multi_fractal(const float2 co, float H, float lacunarity, float octaves);
/**
* 3D Musgrave Multi-fractal
*
* \param H: highest fractal dimension.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
*/
float musgrave_multi_fractal(const float3 co, float H, float lacunarity, float octaves);
/**
* 4D Musgrave Multi-fractal
*
* \param H: highest fractal dimension.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
*/
float musgrave_multi_fractal(const float4 co, float H, float lacunarity, float octaves);
/**
* 1D Musgrave Heterogeneous Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_hetero_terrain(float co, float H, float lacunarity, float octaves, float offset);
/**
* 2D Musgrave Heterogeneous Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_hetero_terrain(
const float2 co, float H, float lacunarity, float octaves, float offset);
/**
* 3D Musgrave Heterogeneous Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_hetero_terrain(
const float3 co, float H, float lacunarity, float octaves, float offset);
/**
* 4D Musgrave Heterogeneous Terrain
*
* \param H: fractal dimension of the roughest area.
* \param lacunarity: gap between successive frequencies.
* \param octaves: number of frequencies in the fBm.
* \param offset: raises the terrain from `sea level'.
*/
float musgrave_hetero_terrain(
const float4 co, float H, float lacunarity, float octaves, float offset);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Voronoi Noise
* \{ */
struct VoronoiParams {
float scale;
float detail;
float roughness;
float lacunarity;
float smoothness;
float exponent;
float randomness;
float max_distance;
bool normalize;
int feature;
int metric;
};
struct VoronoiOutput {
float distance = 0.0f;
float3 color{0.0f, 0.0f, 0.0f};
float4 position{0.0f, 0.0f, 0.0f, 0.0f};
};
/* ***** Distances ***** */
float voronoi_distance(const float a, const float b);
float voronoi_distance(const float2 a, const float2 b, const VoronoiParams &params);
float voronoi_distance(const float3 a, const float3 b, const VoronoiParams &params);
float voronoi_distance(const float4 a, const float4 b, const VoronoiParams &params);
/* **** 1D Voronoi **** */
float4 voronoi_position(const float coord);
VoronoiOutput voronoi_f1(const VoronoiParams &params, const float coord);
VoronoiOutput voronoi_smooth_f1(const VoronoiParams &params,
const float coord,
const bool calc_color);
VoronoiOutput voronoi_f2(const VoronoiParams &params, const float coord);
float voronoi_distance_to_edge(const VoronoiParams &params, const float coord);
float voronoi_n_sphere_radius(const VoronoiParams &params, const float coord);
/* **** 2D Voronoi **** */
float4 voronoi_position(const float2 coord);
VoronoiOutput voronoi_f1(const VoronoiParams &params, const float2 coord);
VoronoiOutput voronoi_smooth_f1(const VoronoiParams &params,
const float2 coord,
const bool calc_color);
VoronoiOutput voronoi_f2(const VoronoiParams &params, const float2 coord);
float voronoi_distance_to_edge(const VoronoiParams &params, const float2 coord);
float voronoi_n_sphere_radius(const VoronoiParams &params, const float2 coord);
/* **** 3D Voronoi **** */
float4 voronoi_position(const float3 coord);
VoronoiOutput voronoi_f1(const VoronoiParams &params, const float3 coord);
VoronoiOutput voronoi_smooth_f1(const VoronoiParams &params,
const float3 coord,
const bool calc_color);
VoronoiOutput voronoi_f2(const VoronoiParams &params, const float3 coord);
float voronoi_distance_to_edge(const VoronoiParams &params, const float3 coord);
float voronoi_n_sphere_radius(const VoronoiParams &params, const float3 coord);
/* **** 4D Voronoi **** */
float4 voronoi_position(const float4 coord);
VoronoiOutput voronoi_f1(const VoronoiParams &params, const float4 coord);
VoronoiOutput voronoi_smooth_f1(const VoronoiParams &params,
const float4 coord,
const bool calc_color);
VoronoiOutput voronoi_f2(const VoronoiParams &params, const float4 coord);
float voronoi_distance_to_edge(const VoronoiParams &params, const float4 coord);
float voronoi_n_sphere_radius(const VoronoiParams &params, const float4 coord);
/* Fractal Voronoi Noise */
template<typename T>
VoronoiOutput fractal_voronoi_x_fx(const VoronoiParams &params,
const T coord,
const bool calc_color);
template<typename T>
float fractal_voronoi_distance_to_edge(const VoronoiParams &params, const T coord);
/** \} */
} // namespace blender::noise