tornavis/source/blender/blenlib/BLI_set.hh

901 lines
26 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup bli
*
* A `blender::Set<Key>` is an unordered container for unique elements of type `Key`. It is
* designed to be a more convenient and efficient replacement for `std::unordered_set`. All core
* operations (add, remove and contains) can be done in O(1) amortized expected time.
*
* In most cases, your default choice for a hash set in Blender should be `blender::Set`.
*
* blender::Set is implemented using open addressing in a slot array with a power-of-two size.
* Every slot is in one of three states: empty, occupied or removed. If a slot is occupied, it
* contains an instance of the key type.
*
* Bench-marking and comparing hash tables is hard, because many factors influence the result. The
* performance of a hash table depends on the combination of the hash function, probing strategy,
* max load factor, key type, slot type and the data distribution. This implementation is designed
* to be relatively fast by default in all cases. However, it also offers many customization
* points that allow it to be optimized for a specific use case.
*
* A rudimentary benchmark can be found in BLI_set_test.cc. The results of that benchmark are
* there as well. The numbers show that in this specific case blender::Set outperforms
* std::unordered_set consistently by a good amount.
*
* Some noteworthy information:
* - Key must be a movable type.
* - Pointers to keys might be invalidated when the set is changed or moved.
* - The hash function can be customized. See BLI_hash.hh for details.
* - The probing strategy can be customized. See BLI_probing_stragies.hh for details.
* - The slot type can be customized. See BLI_set_slots.hh for details.
* - Small buffer optimization is enabled by default, if the key is not too large.
* - The methods `add_new` and `remove_contained` should be used instead of `add` and `remove`
* whenever appropriate. Assumptions and intention are described better this way.
* - Lookups can be performed using types other than Key without conversion. For that use the
* methods ending with `_as`. The template parameters Hash and #IsEqual have to support the other
* key type. This can greatly improve performance when the set contains strings.
* - The default constructor is cheap, even when a large #InlineBufferCapacity is used. A large
* slot array will only be initialized when the first key is added.
* - The `print_stats` method can be used to get information about the distribution of keys and
* memory usage of the set.
* - The method names don't follow the std::unordered_set names in many cases. Searching for such
* names in this file will usually let you discover the new name.
*
* Possible Improvements:
* - Use a branch-less loop over slots in grow function (measured ~10% performance improvement when
* the distribution of occupied slots is sufficiently random).
* - Support max load factor customization.
* - Improve performance with large data sets through software prefetching. I got fairly
* significant improvements in simple tests (~30% faster). It still needs to be investigated how
* to make a nice interface for this functionality.
*/
#include "BLI_array.hh"
#include "BLI_hash.hh"
#include "BLI_hash_tables.hh"
#include "BLI_probing_strategies.hh"
#include "BLI_set_slots.hh"
namespace blender {
template<
/**
* Type of the elements that are stored in this set. It has to be movable.
* Furthermore, the hash and is-equal functions have to support it.
*/
typename Key,
/**
* The minimum number of elements that can be stored in this Set without doing a heap
* allocation. This is useful when you expect to have many small sets. However, keep in mind
* that (unlike vector) initializing a set has a O(n) cost in the number of slots.
*/
int64_t InlineBufferCapacity = default_inline_buffer_capacity(sizeof(Key)),
/**
* The strategy used to deal with collisions. They are defined in BLI_probing_strategies.hh.
*/
typename ProbingStrategy = DefaultProbingStrategy,
/**
* The hash function used to hash the keys. There is a default for many types. See BLI_hash.hh
* for examples on how to define a custom hash function.
*/
typename Hash = DefaultHash<Key>,
/**
* The equality operator used to compare keys. By default it will simply compare keys using the
* `==` operator.
*/
typename IsEqual = DefaultEquality<Key>,
/**
* This is what will actually be stored in the hash table array. At a minimum a slot has to
* be able to hold a key and information about whether the slot is empty, occupied or removed.
* Using a non-standard slot type can improve performance or reduce the memory footprint. For
* example, a hash can be stored in the slot, to make inequality checks more efficient. Some
* types have special values that can represent an empty or removed state, eliminating the need
* for an additional variable. Also see BLI_set_slots.hh.
*/
typename Slot = typename DefaultSetSlot<Key>::type,
/**
* The allocator used by this set. Should rarely be changed, except when you don't want that
* MEM_* is used internally.
*/
typename Allocator = GuardedAllocator>
class Set {
public:
class Iterator;
using value_type = Key;
using pointer = Key *;
using const_pointer = const Key *;
using reference = Key &;
using const_reference = const Key &;
using iterator = Iterator;
using size_type = int64_t;
private:
/**
* Slots are either empty, occupied or removed. The number of occupied slots can be computed by
* subtracting the removed slots from the occupied-and-removed slots.
*/
int64_t removed_slots_;
int64_t occupied_and_removed_slots_;
/**
* The maximum number of slots that can be used (either occupied or removed) until the set has to
* grow. This is the total number of slots times the max load factor.
*/
int64_t usable_slots_;
/**
* The number of slots minus one. This is a bit mask that can be used to turn any integer into a
* valid slot index efficiently.
*/
uint64_t slot_mask_;
/** This is called to hash incoming keys. */
BLI_NO_UNIQUE_ADDRESS Hash hash_;
/** This is called to check equality of two keys. */
BLI_NO_UNIQUE_ADDRESS IsEqual is_equal_;
/** The max load factor is 1/2 = 50% by default. */
#define LOAD_FACTOR 1, 2
LoadFactor max_load_factor_ = LoadFactor(LOAD_FACTOR);
using SlotArray =
Array<Slot, LoadFactor::compute_total_slots(InlineBufferCapacity, LOAD_FACTOR), Allocator>;
#undef LOAD_FACTOR
/**
* This is the array that contains the actual slots. There is always at least one empty slot and
* the size of the array is a power of two.
*/
SlotArray slots_;
/** Iterate over a slot index sequence for a given hash. */
#define SET_SLOT_PROBING_BEGIN(HASH, R_SLOT) \
SLOT_PROBING_BEGIN (ProbingStrategy, HASH, slot_mask_, SLOT_INDEX) \
auto &R_SLOT = slots_[SLOT_INDEX];
#define SET_SLOT_PROBING_END() SLOT_PROBING_END()
public:
/**
* Initialize an empty set. This is a cheap operation no matter how large the inline buffer
* is. This is necessary to avoid a high cost when no elements are added at all. An optimized
* grow operation is performed on the first insertion.
*/
Set(Allocator allocator = {}) noexcept
: removed_slots_(0),
occupied_and_removed_slots_(0),
usable_slots_(0),
slot_mask_(0),
slots_(1, allocator)
{
}
Set(NoExceptConstructor, Allocator allocator = {}) noexcept : Set(allocator) {}
Set(Span<Key> values, Allocator allocator = {}) : Set(NoExceptConstructor(), allocator)
{
this->add_multiple(values);
}
/**
* Construct a set that contains the given keys. Duplicates will be removed automatically.
*/
Set(const std::initializer_list<Key> &values) : Set(Span<Key>(values)) {}
~Set() = default;
Set(const Set &other) = default;
Set(Set &&other) noexcept(std::is_nothrow_move_constructible_v<SlotArray>)
: Set(NoExceptConstructor(), other.slots_.allocator())
{
if constexpr (std::is_nothrow_move_constructible_v<SlotArray>) {
slots_ = std::move(other.slots_);
}
else {
try {
slots_ = std::move(other.slots_);
}
catch (...) {
other.noexcept_reset();
throw;
}
}
removed_slots_ = other.removed_slots_;
occupied_and_removed_slots_ = other.occupied_and_removed_slots_;
usable_slots_ = other.usable_slots_;
slot_mask_ = other.slot_mask_;
hash_ = std::move(other.hash_);
is_equal_ = std::move(other.is_equal_);
other.noexcept_reset();
}
Set &operator=(const Set &other)
{
return copy_assign_container(*this, other);
}
Set &operator=(Set &&other)
{
return move_assign_container(*this, std::move(other));
}
/**
* Add a new key to the set. This invokes undefined behavior when the key is in the set already.
* When you know for certain that a key is not in the set yet, use this method for better
* performance. This also expresses the intent better.
*/
void add_new(const Key &key)
{
this->add_new__impl(key, hash_(key));
}
void add_new(Key &&key)
{
this->add_new__impl(std::move(key), hash_(key));
}
/**
* Add a key to the set. If the key exists in the set already, nothing is done. The return value
* is true if the key was newly added to the set.
*
* This is similar to std::unordered_set::insert.
*/
bool add(const Key &key)
{
return this->add_as(key);
}
bool add(Key &&key)
{
return this->add_as(std::move(key));
}
template<typename ForwardKey> bool add_as(ForwardKey &&key)
{
return this->add__impl(std::forward<ForwardKey>(key), hash_(key));
}
/**
* Convenience function to add many keys to the set at once. Duplicates are removed
* automatically.
*
* We might be able to make this faster than sequentially adding all keys, but that is not
* implemented yet.
*/
void add_multiple(Span<Key> keys)
{
for (const Key &key : keys) {
this->add(key);
}
}
/**
* Convenience function to add many new keys to the set at once. The keys must not exist in the
* set before and there must not be duplicates in the array.
*/
void add_multiple_new(Span<Key> keys)
{
for (const Key &key : keys) {
this->add_new(key);
}
}
/**
* Returns true if the key is in the set.
*
* This is similar to std::unordered_set::find() != std::unordered_set::end().
*/
bool contains(const Key &key) const
{
return this->contains_as(key);
}
template<typename ForwardKey> bool contains_as(const ForwardKey &key) const
{
return this->contains__impl(key, hash_(key));
}
/**
* Returns the key that is stored in the set that compares equal to the given key. This invokes
* undefined behavior when the key is not in the set.
*/
const Key &lookup_key(const Key &key) const
{
return this->lookup_key_as(key);
}
template<typename ForwardKey> const Key &lookup_key_as(const ForwardKey &key) const
{
return this->lookup_key__impl(key, hash_(key));
}
/**
* Returns the key that is stored in the set that compares equal to the given key. If the key is
* not in the set, the given default value is returned instead.
*/
const Key &lookup_key_default(const Key &key, const Key &default_value) const
{
return this->lookup_key_default_as(key, default_value);
}
template<typename ForwardKey>
const Key &lookup_key_default_as(const ForwardKey &key, const Key &default_key) const
{
const Key *ptr = this->lookup_key_ptr__impl(key, hash_(key));
if (ptr == nullptr) {
return default_key;
}
return *ptr;
}
/**
* Returns a pointer to the key that is stored in the set that compares equal to the given key.
* If the key is not in the set, nullptr is returned instead.
*/
const Key *lookup_key_ptr(const Key &key) const
{
return this->lookup_key_ptr_as(key);
}
template<typename ForwardKey> const Key *lookup_key_ptr_as(const ForwardKey &key) const
{
return this->lookup_key_ptr__impl(key, hash_(key));
}
/**
* Returns the key in the set that compares equal to the given key. If it does not exist, the key
* is newly added.
*/
const Key &lookup_key_or_add(const Key &key)
{
return this->lookup_key_or_add_as(key);
}
const Key &lookup_key_or_add(Key &&key)
{
return this->lookup_key_or_add_as(std::move(key));
}
template<typename ForwardKey> const Key &lookup_key_or_add_as(ForwardKey &&key)
{
return this->lookup_key_or_add__impl(std::forward<ForwardKey>(key), hash_(key));
}
/**
* Deletes the key from the set. Returns true when the key did exist beforehand, otherwise false.
*
* This is similar to std::unordered_set::erase.
*/
bool remove(const Key &key)
{
return this->remove_as(key);
}
template<typename ForwardKey> bool remove_as(const ForwardKey &key)
{
return this->remove__impl(key, hash_(key));
}
/**
* Deletes the key from the set. This invokes undefined behavior when the key is not in the map.
*/
void remove_contained(const Key &key)
{
this->remove_contained_as(key);
}
template<typename ForwardKey> void remove_contained_as(const ForwardKey &key)
{
this->remove_contained__impl(key, hash_(key));
}
/**
* An iterator that can iterate over all keys in the set. The iterator is invalidated when the
* set is moved or when it is grown.
*
* Keys returned by this iterator are always const. They should not change, because this might
* also change their hash.
*/
class Iterator {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = Key;
using pointer = const Key *;
using reference = const Key &;
using difference_type = std::ptrdiff_t;
private:
const Slot *slots_;
int64_t total_slots_;
int64_t current_slot_;
friend Set;
public:
Iterator(const Slot *slots, int64_t total_slots, int64_t current_slot)
: slots_(slots), total_slots_(total_slots), current_slot_(current_slot)
{
}
Iterator &operator++()
{
while (++current_slot_ < total_slots_) {
if (slots_[current_slot_].is_occupied()) {
break;
}
}
return *this;
}
Iterator operator++(int)
{
Iterator copied_iterator = *this;
++(*this);
return copied_iterator;
}
const Key &operator*() const
{
return *slots_[current_slot_].key();
}
const Key *operator->() const
{
return slots_[current_slot_].key();
}
friend bool operator!=(const Iterator &a, const Iterator &b)
{
BLI_assert(a.slots_ == b.slots_);
BLI_assert(a.total_slots_ == b.total_slots_);
return a.current_slot_ != b.current_slot_;
}
friend bool operator==(const Iterator &a, const Iterator &b)
{
return !(a != b);
}
protected:
const Slot &current_slot() const
{
return slots_[current_slot_];
}
};
Iterator begin() const
{
for (int64_t i = 0; i < slots_.size(); i++) {
if (slots_[i].is_occupied()) {
return Iterator(slots_.data(), slots_.size(), i);
}
}
return this->end();
}
Iterator end() const
{
return Iterator(slots_.data(), slots_.size(), slots_.size());
}
/**
* Remove the key that the iterator is currently pointing at. It is valid to call this method
* while iterating over the set. However, after this method has been called, the removed element
* must not be accessed anymore.
*/
void remove(const Iterator &it)
{
/* The const cast is valid because this method itself is not const. */
Slot &slot = const_cast<Slot &>(it.current_slot());
BLI_assert(slot.is_occupied());
slot.remove();
removed_slots_++;
}
/**
* Remove all values for which the given predicate is true and return the number of removed
* values.
*
* This is similar to std::erase_if.
*/
template<typename Predicate> int64_t remove_if(Predicate &&predicate)
{
const int64_t prev_size = this->size();
for (Slot &slot : slots_) {
if (slot.is_occupied()) {
const Key &key = *slot.key();
if (predicate(key)) {
slot.remove();
removed_slots_++;
}
}
}
return prev_size - this->size();
}
/**
* Print common statistics like size and collision count. This is useful for debugging purposes.
*/
void print_stats(StringRef name = "") const
{
HashTableStats stats(*this, *this);
stats.print(name);
}
/**
* Get the number of collisions that the probing strategy has to go through to find the key or
* determine that it is not in the set.
*/
int64_t count_collisions(const Key &key) const
{
return this->count_collisions__impl(key, hash_(key));
}
/**
* Remove all elements from the set.
*/
void clear()
{
for (Slot &slot : slots_) {
slot.~Slot();
new (&slot) Slot();
}
removed_slots_ = 0;
occupied_and_removed_slots_ = 0;
}
/**
* Removes all keys from the set and frees any allocated memory.
*/
void clear_and_shrink()
{
std::destroy_at(this);
new (this) Set(NoExceptConstructor{});
}
/**
* Creates a new slot array and reinserts all keys inside of that. This method can be used to get
* rid of removed slots. Also this is useful for benchmarking the grow function.
*/
void rehash()
{
this->realloc_and_reinsert(this->size());
}
/**
* Returns the number of keys stored in the set.
*/
int64_t size() const
{
return occupied_and_removed_slots_ - removed_slots_;
}
/**
* Returns true if no keys are stored.
*/
bool is_empty() const
{
return occupied_and_removed_slots_ == removed_slots_;
}
/**
* Returns the number of available slots. This is mostly for debugging purposes.
*/
int64_t capacity() const
{
return slots_.size();
}
/**
* Returns the amount of removed slots in the set. This is mostly for debugging purposes.
*/
int64_t removed_amount() const
{
return removed_slots_;
}
/**
* Returns the bytes required per element. This is mostly for debugging purposes.
*/
int64_t size_per_element() const
{
return sizeof(Slot);
}
/**
* Returns the approximate memory requirements of the set in bytes. This is more correct for
* larger sets.
*/
int64_t size_in_bytes() const
{
return sizeof(Slot) * slots_.size();
}
/**
* Potentially resize the set such that it can hold the specified number of keys without another
* grow operation.
*/
void reserve(const int64_t n)
{
if (usable_slots_ < n) {
this->realloc_and_reinsert(n);
}
}
/**
* Returns true if there is a key that exists in both sets.
*/
static bool Intersects(const Set &a, const Set &b)
{
/* Make sure we iterate over the shorter set. */
if (a.size() > b.size()) {
return Intersects(b, a);
}
for (const Key &key : a) {
if (b.contains(key)) {
return true;
}
}
return false;
}
/**
* Returns true if no key from a is also in b and vice versa.
*/
static bool Disjoint(const Set &a, const Set &b)
{
return !Intersects(a, b);
}
friend bool operator==(const Set &a, const Set &b)
{
if (a.size() != b.size()) {
return false;
}
for (const Key &key : a) {
if (!b.contains(key)) {
return false;
}
}
return true;
}
friend bool operator!=(const Set &a, const Set &b)
{
return !(a == b);
}
private:
BLI_NOINLINE void realloc_and_reinsert(const int64_t min_usable_slots)
{
int64_t total_slots, usable_slots;
max_load_factor_.compute_total_and_usable_slots(
SlotArray::inline_buffer_capacity(), min_usable_slots, &total_slots, &usable_slots);
BLI_assert(total_slots >= 1);
const uint64_t new_slot_mask = uint64_t(total_slots) - 1;
/**
* Optimize the case when the set was empty beforehand. We can avoid some copies here.
*/
if (this->size() == 0) {
try {
slots_.reinitialize(total_slots);
}
catch (...) {
this->noexcept_reset();
throw;
}
removed_slots_ = 0;
occupied_and_removed_slots_ = 0;
usable_slots_ = usable_slots;
slot_mask_ = new_slot_mask;
return;
}
/* The grown array that we insert the keys into. */
SlotArray new_slots(total_slots);
try {
for (Slot &slot : slots_) {
if (slot.is_occupied()) {
this->add_after_grow(slot, new_slots, new_slot_mask);
slot.remove();
}
}
slots_ = std::move(new_slots);
}
catch (...) {
this->noexcept_reset();
throw;
}
occupied_and_removed_slots_ -= removed_slots_;
usable_slots_ = usable_slots;
removed_slots_ = 0;
slot_mask_ = new_slot_mask;
}
void add_after_grow(Slot &old_slot, SlotArray &new_slots, const uint64_t new_slot_mask)
{
const uint64_t hash = old_slot.get_hash(Hash());
SLOT_PROBING_BEGIN (ProbingStrategy, hash, new_slot_mask, slot_index) {
Slot &slot = new_slots[slot_index];
if (slot.is_empty()) {
slot.occupy(std::move(*old_slot.key()), hash);
return;
}
}
SLOT_PROBING_END();
}
/**
* In some cases when exceptions are thrown, it's best to just reset the entire container to make
* sure that invariants are maintained. This should happen very rarely in practice.
*/
void noexcept_reset() noexcept
{
Allocator allocator = slots_.allocator();
this->~Set();
new (this) Set(NoExceptConstructor(), allocator);
}
template<typename ForwardKey>
bool contains__impl(const ForwardKey &key, const uint64_t hash) const
{
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.is_empty()) {
return false;
}
if (slot.contains(key, is_equal_, hash)) {
return true;
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey>
const Key &lookup_key__impl(const ForwardKey &key, const uint64_t hash) const
{
BLI_assert(this->contains_as(key));
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash)) {
return *slot.key();
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey>
const Key *lookup_key_ptr__impl(const ForwardKey &key, const uint64_t hash) const
{
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash)) {
return slot.key();
}
if (slot.is_empty()) {
return nullptr;
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey> void add_new__impl(ForwardKey &&key, const uint64_t hash)
{
BLI_assert(!this->contains_as(key));
this->ensure_can_add();
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.is_empty()) {
slot.occupy(std::forward<ForwardKey>(key), hash);
occupied_and_removed_slots_++;
return;
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey> bool add__impl(ForwardKey &&key, const uint64_t hash)
{
this->ensure_can_add();
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.is_empty()) {
slot.occupy(std::forward<ForwardKey>(key), hash);
occupied_and_removed_slots_++;
return true;
}
if (slot.contains(key, is_equal_, hash)) {
return false;
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey> bool remove__impl(const ForwardKey &key, const uint64_t hash)
{
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash)) {
slot.remove();
removed_slots_++;
return true;
}
if (slot.is_empty()) {
return false;
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey>
void remove_contained__impl(const ForwardKey &key, const uint64_t hash)
{
BLI_assert(this->contains_as(key));
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash)) {
slot.remove();
removed_slots_++;
return;
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey>
const Key &lookup_key_or_add__impl(ForwardKey &&key, const uint64_t hash)
{
this->ensure_can_add();
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash)) {
return *slot.key();
}
if (slot.is_empty()) {
slot.occupy(std::forward<ForwardKey>(key), hash);
occupied_and_removed_slots_++;
return *slot.key();
}
}
SET_SLOT_PROBING_END();
}
template<typename ForwardKey>
int64_t count_collisions__impl(const ForwardKey &key, const uint64_t hash) const
{
int64_t collisions = 0;
SET_SLOT_PROBING_BEGIN (hash, slot) {
if (slot.contains(key, is_equal_, hash)) {
return collisions;
}
if (slot.is_empty()) {
return collisions;
}
collisions++;
}
SET_SLOT_PROBING_END();
}
void ensure_can_add()
{
if (occupied_and_removed_slots_ >= usable_slots_) {
this->realloc_and_reinsert(this->size() + 1);
BLI_assert(occupied_and_removed_slots_ < usable_slots_);
}
}
};
/**
* Same as a normal Set, but does not use Blender's guarded allocator. This is useful when
* allocating memory with static storage duration.
*/
template<typename Key,
int64_t InlineBufferCapacity = default_inline_buffer_capacity(sizeof(Key)),
typename ProbingStrategy = DefaultProbingStrategy,
typename Hash = DefaultHash<Key>,
typename IsEqual = DefaultEquality<Key>,
typename Slot = typename DefaultSetSlot<Key>::type>
using RawSet = Set<Key, InlineBufferCapacity, ProbingStrategy, Hash, IsEqual, Slot, RawAllocator>;
} // namespace blender