tornavis/source/blender/blenkernel/intern/fmodifier.c

1541 lines
45 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2009 Blender Foundation, Joshua Leung
* All rights reserved.
*
* Contributor(s): Joshua Leung (full recode)
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/fmodifier.c
* \ingroup bke
*/
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "BLT_translation.h"
#include "BLI_blenlib.h"
#include "BLI_ghash.h"
#include "BLI_noise.h"
#include "BLI_math.h" /* windows needs for M_PI */
#include "BLI_utildefines.h"
#include "BKE_fcurve.h"
#include "BKE_idprop.h"
/* ******************************** F-Modifiers ********************************* */
/* Forward declarations. */
void fmodifiers_storage_put(FModifierStackStorage *storage, FModifier *fcm, void *data);
void fmodifiers_storage_remove(FModifierStackStorage *storage, FModifier *fcm);
void *fmodifiers_storage_get(FModifierStackStorage *storage, FModifier *fcm);
/* Info ------------------------------- */
/* F-Modifiers are modifiers which operate on F-Curves. However, they can also be defined
* on NLA-Strips to affect all of the F-Curves referenced by the NLA-Strip.
*/
/* Template --------------------------- */
/* Each modifier defines a set of functions, which will be called at the appropriate
* times. In addition to this, each modifier should have a type-info struct, where
* its functions are attached for use.
*/
/* Template for type-info data:
* - make a copy of this when creating new modifiers, and just change the functions
* pointed to as necessary
* - although the naming of functions doesn't matter, it would help for code
* readability, to follow the same naming convention as is presented here
* - any functions that a constraint doesn't need to define, don't define
* for such cases, just use NULL
* - these should be defined after all the functions have been defined, so that
* forward-definitions/prototypes don't need to be used!
* - keep this copy #if-def'd so that future constraints can get based off this
*/
#if 0
static FModifierTypeInfo FMI_MODNAME = {
FMODIFIER_TYPE_MODNAME, /* type */
sizeof(FMod_ModName), /* size */
FMI_TYPE_SOME_ACTION, /* action type */
FMI_REQUIRES_SOME_REQUIREMENT, /* requirements */
"Modifier Name", /* name */
"FMod_ModName", /* struct name */
fcm_modname_free, /* free data */
fcm_modname_relink, /* relink data */
fcm_modname_copy, /* copy data */
fcm_modname_new_data, /* new data */
fcm_modname_verify, /* verify */
fcm_modname_time, /* evaluate time */
fcm_modname_evaluate, /* evaluate */
fcm_modname_time_storage, /* evaluate time with storage */
fcm_modname_evaluate_storage /* evaluate with storage */
};
#endif
/* Generator F-Curve Modifier --------------------------- */
/* Generators available:
* 1) simple polynomial generator:
* - Expanded form - (y = C[0]*(x^(n)) + C[1]*(x^(n-1)) + ... + C[n])
* - Factorized form - (y = (C[0][0]*x + C[0][1]) * (C[1][0]*x + C[1][1]) * ... * (C[n][0]*x + C[n][1]))
*/
static void fcm_generator_free(FModifier *fcm)
{
FMod_Generator *data = (FMod_Generator *)fcm->data;
/* free polynomial coefficients array */
if (data->coefficients)
MEM_freeN(data->coefficients);
}
static void fcm_generator_copy(FModifier *fcm, const FModifier *src)
{
FMod_Generator *gen = (FMod_Generator *)fcm->data;
FMod_Generator *ogen = (FMod_Generator *)src->data;
/* copy coefficients array? */
if (ogen->coefficients)
gen->coefficients = MEM_dupallocN(ogen->coefficients);
}
static void fcm_generator_new_data(void *mdata)
{
FMod_Generator *data = (FMod_Generator *)mdata;
float *cp;
/* set default generator to be linear 0-1 (gradient = 1, y-offset = 0) */
data->poly_order = 1;
data->arraysize = 2;
cp = data->coefficients = MEM_callocN(sizeof(float) * 2, "FMod_Generator_Coefs");
cp[0] = 0; // y-offset
cp[1] = 1; // gradient
}
static void fcm_generator_verify(FModifier *fcm)
{
FMod_Generator *data = (FMod_Generator *)fcm->data;
/* requirements depend on mode */
switch (data->mode) {
case FCM_GENERATOR_POLYNOMIAL: /* expanded polynomial expression */
{
const int arraysize_new = data->poly_order + 1;
/* arraysize needs to be order+1, so resize if not */
if (data->arraysize != arraysize_new) {
data->coefficients = MEM_recallocN(data->coefficients,
sizeof(float) * arraysize_new);
data->arraysize = arraysize_new;
}
break;
}
case FCM_GENERATOR_POLYNOMIAL_FACTORISED: /* expanded polynomial expression */
{
const int arraysize_new = data->poly_order * 2;
/* arraysize needs to be (2 * order), so resize if not */
if (data->arraysize != arraysize_new) {
data->coefficients = MEM_recallocN(data->coefficients,
sizeof(float) * arraysize_new);
data->arraysize = arraysize_new;
}
break;
}
}
}
static void fcm_generator_evaluate(FCurve *UNUSED(fcu), FModifier *fcm, float *cvalue, float evaltime)
{
FMod_Generator *data = (FMod_Generator *)fcm->data;
/* behavior depends on mode
* NOTE: the data in its default state is fine too
*/
switch (data->mode) {
case FCM_GENERATOR_POLYNOMIAL: /* expanded polynomial expression */
{
/* we overwrite cvalue with the sum of the polynomial */
float *powers = MEM_callocN(sizeof(float) * data->arraysize, "Poly Powers");
float value = 0.0f;
unsigned int i;
/* for each x^n, precalculate value based on previous one first... this should be
* faster that calling pow() for each entry
*/
for (i = 0; i < data->arraysize; i++) {
/* first entry is x^0 = 1, otherwise, calculate based on previous */
if (i)
powers[i] = powers[i - 1] * evaltime;
else
powers[0] = 1;
}
/* for each coefficient, add to value, which we'll write to *cvalue in one go */
for (i = 0; i < data->arraysize; i++)
value += data->coefficients[i] * powers[i];
/* only if something changed, write *cvalue in one go */
if (data->poly_order) {
if (data->flag & FCM_GENERATOR_ADDITIVE)
*cvalue += value;
else
*cvalue = value;
}
/* cleanup */
if (powers)
MEM_freeN(powers);
break;
}
case FCM_GENERATOR_POLYNOMIAL_FACTORISED: /* Factorized polynomial */
{
float value = 1.0f, *cp = NULL;
unsigned int i;
/* for each coefficient pair, solve for that bracket before accumulating in value by multiplying */
for (cp = data->coefficients, i = 0; (cp) && (i < (unsigned int)data->poly_order); cp += 2, i++)
value *= (cp[0] * evaltime + cp[1]);
/* only if something changed, write *cvalue in one go */
if (data->poly_order) {
if (data->flag & FCM_GENERATOR_ADDITIVE)
*cvalue += value;
else
*cvalue = value;
}
break;
}
}
}
static FModifierTypeInfo FMI_GENERATOR = {
FMODIFIER_TYPE_GENERATOR, /* type */
sizeof(FMod_Generator), /* size */
FMI_TYPE_GENERATE_CURVE, /* action type */
FMI_REQUIRES_NOTHING, /* requirements */
N_("Generator"), /* name */
"FMod_Generator", /* struct name */
fcm_generator_free, /* free data */
fcm_generator_copy, /* copy data */
fcm_generator_new_data, /* new data */
fcm_generator_verify, /* verify */
NULL, /* evaluate time */
fcm_generator_evaluate, /* evaluate */
NULL, /* evaluate time with storage */
NULL /* evaluate with storage */
};
/* Built-In Function Generator F-Curve Modifier --------------------------- */
/* This uses the general equation for equations:
* y = amplitude * fn(phase_multiplier * x + phase_offset) + y_offset
*
* where amplitude, phase_multiplier/offset, y_offset are user-defined coefficients,
* x is the evaluation 'time', and 'y' is the resultant value
*
* Functions available are
* sin, cos, tan, sinc (normalized sin), natural log, square root
*/
static void fcm_fn_generator_new_data(void *mdata)
{
FMod_FunctionGenerator *data = (FMod_FunctionGenerator *)mdata;
/* set amplitude and phase multiplier to 1.0f so that something is generated */
data->amplitude = 1.0f;
data->phase_multiplier = 1.0f;
}
/* Unary 'normalized sine' function
* y = sin(PI + x) / (PI * x),
* except for x = 0 when y = 1.
*/
static double sinc(double x)
{
if (fabs(x) < 0.0001)
return 1.0;
else
return sin(M_PI * x) / (M_PI * x);
}
static void fcm_fn_generator_evaluate(FCurve *UNUSED(fcu), FModifier *fcm, float *cvalue, float evaltime)
{
FMod_FunctionGenerator *data = (FMod_FunctionGenerator *)fcm->data;
double arg = data->phase_multiplier * evaltime + data->phase_offset;
double (*fn)(double v) = NULL;
/* get function pointer to the func to use:
* WARNING: must perform special argument validation hereto guard against crashes
*/
switch (data->type) {
/* simple ones */
case FCM_GENERATOR_FN_SIN: /* sine wave */
fn = sin;
break;
case FCM_GENERATOR_FN_COS: /* cosine wave */
fn = cos;
break;
case FCM_GENERATOR_FN_SINC: /* normalized sine wave */
fn = sinc;
break;
/* validation required */
case FCM_GENERATOR_FN_TAN: /* tangent wave */
{
/* check that argument is not on one of the discontinuities (i.e. 90deg, 270 deg, etc) */
if (IS_EQ(fmod((arg - M_PI_2), M_PI), 0.0)) {
if ((data->flag & FCM_GENERATOR_ADDITIVE) == 0)
*cvalue = 0.0f; /* no value possible here */
}
else
fn = tan;
break;
}
case FCM_GENERATOR_FN_LN: /* natural log */
{
/* check that value is greater than 1? */
if (arg > 1.0) {
fn = log;
}
else {
if ((data->flag & FCM_GENERATOR_ADDITIVE) == 0)
*cvalue = 0.0f; /* no value possible here */
}
break;
}
case FCM_GENERATOR_FN_SQRT: /* square root */
{
/* no negative numbers */
if (arg > 0.0) {
fn = sqrt;
}
else {
if ((data->flag & FCM_GENERATOR_ADDITIVE) == 0)
*cvalue = 0.0f; /* no value possible here */
}
break;
}
default:
printf("Invalid Function-Generator for F-Modifier - %d\n", data->type);
break;
}
/* execute function callback to set value if appropriate */
if (fn) {
float value = (float)(data->amplitude * (float)fn(arg) + data->value_offset);
if (data->flag & FCM_GENERATOR_ADDITIVE)
*cvalue += value;
else
*cvalue = value;
}
}
static FModifierTypeInfo FMI_FN_GENERATOR = {
FMODIFIER_TYPE_FN_GENERATOR, /* type */
sizeof(FMod_FunctionGenerator), /* size */
FMI_TYPE_GENERATE_CURVE, /* action type */
FMI_REQUIRES_NOTHING, /* requirements */
N_("Built-In Function"), /* name */
"FMod_FunctionGenerator", /* struct name */
NULL, /* free data */
NULL, /* copy data */
fcm_fn_generator_new_data, /* new data */
NULL, /* verify */
NULL, /* evaluate time */
fcm_fn_generator_evaluate, /* evaluate */
NULL, /* evaluate time with storage */
NULL /* evaluate with storage */
};
/* Envelope F-Curve Modifier --------------------------- */
static void fcm_envelope_free(FModifier *fcm)
{
FMod_Envelope *env = (FMod_Envelope *)fcm->data;
/* free envelope data array */
if (env->data)
MEM_freeN(env->data);
}
static void fcm_envelope_copy(FModifier *fcm, const FModifier *src)
{
FMod_Envelope *env = (FMod_Envelope *)fcm->data;
FMod_Envelope *oenv = (FMod_Envelope *)src->data;
/* copy envelope data array */
if (oenv->data)
env->data = MEM_dupallocN(oenv->data);
}
static void fcm_envelope_new_data(void *mdata)
{
FMod_Envelope *env = (FMod_Envelope *)mdata;
/* set default min/max ranges */
env->min = -1.0f;
env->max = 1.0f;
}
static void fcm_envelope_verify(FModifier *fcm)
{
FMod_Envelope *env = (FMod_Envelope *)fcm->data;
/* if the are points, perform bubble-sort on them, as user may have changed the order */
if (env->data) {
/* XXX todo... */
}
}
static void fcm_envelope_evaluate(FCurve *UNUSED(fcu), FModifier *fcm, float *cvalue, float evaltime)
{
FMod_Envelope *env = (FMod_Envelope *)fcm->data;
FCM_EnvelopeData *fed, *prevfed, *lastfed;
float min = 0.0f, max = 0.0f, fac = 0.0f;
int a;
/* get pointers */
if (env->data == NULL) return;
prevfed = env->data;
fed = prevfed + 1;
lastfed = prevfed + (env->totvert - 1);
/* get min/max values for envelope at evaluation time (relative to mid-value) */
if (prevfed->time >= evaltime) {
/* before or on first sample, so just extend value */
min = prevfed->min;
max = prevfed->max;
}
else if (lastfed->time <= evaltime) {
/* after or on last sample, so just extend value */
min = lastfed->min;
max = lastfed->max;
}
else {
/* evaltime occurs somewhere between segments */
/* TODO: implement binary search for this to make it faster? */
for (a = 0; prevfed && fed && (a < env->totvert - 1); a++, prevfed = fed, fed++) {
/* evaltime occurs within the interval defined by these two envelope points */
if ((prevfed->time <= evaltime) && (fed->time >= evaltime)) {
float afac, bfac, diff;
diff = fed->time - prevfed->time;
afac = (evaltime - prevfed->time) / diff;
bfac = (fed->time - evaltime) / diff;
min = bfac * prevfed->min + afac * fed->min;
max = bfac * prevfed->max + afac * fed->max;
break;
}
}
}
/* adjust *cvalue
* - fac is the ratio of how the current y-value corresponds to the reference range
* - thus, the new value is found by mapping the old range to the new!
*/
fac = (*cvalue - (env->midval + env->min)) / (env->max - env->min);
*cvalue = min + fac * (max - min);
}
static FModifierTypeInfo FMI_ENVELOPE = {
FMODIFIER_TYPE_ENVELOPE, /* type */
sizeof(FMod_Envelope), /* size */
FMI_TYPE_REPLACE_VALUES, /* action type */
0, /* requirements */
N_("Envelope"), /* name */
"FMod_Envelope", /* struct name */
fcm_envelope_free, /* free data */
fcm_envelope_copy, /* copy data */
fcm_envelope_new_data, /* new data */
fcm_envelope_verify, /* verify */
NULL, /* evaluate time */
fcm_envelope_evaluate, /* evaluate */
NULL, /* evaluate time with storage */
NULL /* evaluate with storage */
};
/* exported function for finding points */
/* Binary search algorithm for finding where to insert Envelope Data Point.
* Returns the index to insert at (data already at that index will be offset if replace is 0)
*/
#define BINARYSEARCH_FRAMEEQ_THRESH 0.0001f
int BKE_fcm_envelope_find_index(FCM_EnvelopeData array[], float frame, int arraylen, bool *r_exists)
{
int start = 0, end = arraylen;
int loopbreaker = 0, maxloop = arraylen * 2;
/* initialize exists-flag first */
*r_exists = false;
/* sneaky optimizations (don't go through searching process if...):
* - keyframe to be added is to be added out of current bounds
* - keyframe to be added would replace one of the existing ones on bounds
*/
if ((arraylen <= 0) || (array == NULL)) {
printf("Warning: binarysearch_fcm_envelopedata_index() encountered invalid array\n");
return 0;
}
else {
/* check whether to add before/after/on */
float framenum;
/* 'First' Point (when only one point, this case is used) */
framenum = array[0].time;
if (IS_EQT(frame, framenum, BINARYSEARCH_FRAMEEQ_THRESH)) {
*r_exists = true;
return 0;
}
else if (frame < framenum) {
return 0;
}
/* 'Last' Point */
framenum = array[(arraylen - 1)].time;
if (IS_EQT(frame, framenum, BINARYSEARCH_FRAMEEQ_THRESH)) {
*r_exists = true;
return (arraylen - 1);
}
else if (frame > framenum) {
return arraylen;
}
}
/* most of the time, this loop is just to find where to put it
* - 'loopbreaker' is just here to prevent infinite loops
*/
for (loopbreaker = 0; (start <= end) && (loopbreaker < maxloop); loopbreaker++) {
/* compute and get midpoint */
int mid = start + ((end - start) / 2); /* we calculate the midpoint this way to avoid int overflows... */
float midfra = array[mid].time;
/* check if exactly equal to midpoint */
if (IS_EQT(frame, midfra, BINARYSEARCH_FRAMEEQ_THRESH)) {
*r_exists = true;
return mid;
}
/* repeat in upper/lower half */
if (frame > midfra) {
start = mid + 1;
}
else if (frame < midfra) {
end = mid - 1;
}
}
/* print error if loop-limit exceeded */
if (loopbreaker == (maxloop - 1)) {
printf("Error: binarysearch_fcm_envelopedata_index() was taking too long\n");
// include debug info
printf("\tround = %d: start = %d, end = %d, arraylen = %d\n", loopbreaker, start, end, arraylen);
}
/* not found, so return where to place it */
return start;
}
#undef BINARYSEARCH_FRAMEEQ_THRESH
/* Cycles F-Curve Modifier --------------------------- */
/* This modifier changes evaltime to something that exists within the curve's frame-range,
* then re-evaluates modifier stack up to this point using the new time. This re-entrant behavior
* is very likely to be more time-consuming than the original approach... (which was tightly integrated into
* the calculation code...).
*
* NOTE: this needs to be at the start of the stack to be of use, as it needs to know the extents of the
* keyframes/sample-data.
*
* Possible TODO - store length of cycle information that can be initialized from the extents of the
* keyframes/sample-data, and adjusted as appropriate.
*/
/* temp data used during evaluation */
typedef struct tFCMED_Cycles {
float cycyofs; /* y-offset to apply */
} tFCMED_Cycles;
static void fcm_cycles_new_data(void *mdata)
{
FMod_Cycles *data = (FMod_Cycles *)mdata;
/* turn on cycles by default */
data->before_mode = data->after_mode = FCM_EXTRAPOLATE_CYCLIC;
}
static float fcm_cycles_time(FModifierStackStorage *storage, FCurve *fcu, FModifier *fcm,
float UNUSED(cvalue), float evaltime)
{
FMod_Cycles *data = (FMod_Cycles *)fcm->data;
float prevkey[2], lastkey[2], cycyofs = 0.0f;
short side = 0, mode = 0;
int cycles = 0;
float ofs = 0;
/* check if modifier is first in stack, otherwise disable ourself... */
/* FIXME... */
if (fcm->prev) {
fcm->flag |= FMODIFIER_FLAG_DISABLED;
return evaltime;
}
/* calculate new evaltime due to cyclic interpolation */
if (fcu && fcu->bezt) {
BezTriple *prevbezt = fcu->bezt;
BezTriple *lastbezt = prevbezt + fcu->totvert - 1;
prevkey[0] = prevbezt->vec[1][0];
prevkey[1] = prevbezt->vec[1][1];
lastkey[0] = lastbezt->vec[1][0];
lastkey[1] = lastbezt->vec[1][1];
}
else if (fcu && fcu->fpt) {
FPoint *prevfpt = fcu->fpt;
FPoint *lastfpt = prevfpt + fcu->totvert - 1;
prevkey[0] = prevfpt->vec[0];
prevkey[1] = prevfpt->vec[1];
lastkey[0] = lastfpt->vec[0];
lastkey[1] = lastfpt->vec[1];
}
else
return evaltime;
/* check if modifier will do anything
* 1) if in data range, definitely don't do anything
* 2) if before first frame or after last frame, make sure some cycling is in use
*/
if (evaltime < prevkey[0]) {
if (data->before_mode) {
side = -1;
mode = data->before_mode;
cycles = data->before_cycles;
ofs = prevkey[0];
}
}
else if (evaltime > lastkey[0]) {
if (data->after_mode) {
side = 1;
mode = data->after_mode;
cycles = data->after_cycles;
ofs = lastkey[0];
}
}
if ((ELEM(0, side, mode)))
return evaltime;
/* find relative place within a cycle */
{
float cycdx = 0, cycdy = 0;
float cycle = 0, cyct = 0;
/* calculate period and amplitude (total height) of a cycle */
cycdx = lastkey[0] - prevkey[0];
cycdy = lastkey[1] - prevkey[1];
/* check if cycle is infinitely small, to be point of being impossible to use */
if (cycdx == 0)
return evaltime;
/* calculate the 'number' of the cycle */
cycle = ((float)side * (evaltime - ofs) / cycdx);
/* calculate the time inside the cycle */
cyct = fmod(evaltime - ofs, cycdx);
/* check that cyclic is still enabled for the specified time */
if (cycles == 0) {
/* catch this case so that we don't exit when we have (cycles = 0)
* as this indicates infinite cycles...
*/
}
else if (cycle > cycles) {
/* we are too far away from range to evaluate
* TODO: but we should still hold last value...
*/
return evaltime;
}
/* check if 'cyclic extrapolation', and thus calculate y-offset for this cycle */
if (mode == FCM_EXTRAPOLATE_CYCLIC_OFFSET) {
if (side < 0)
cycyofs = (float)floor((evaltime - ofs) / cycdx);
else
cycyofs = (float)ceil((evaltime - ofs) / cycdx);
cycyofs *= cycdy;
}
/* special case for cycle start/end */
if (cyct == 0.0f) {
evaltime = (side == 1 ? lastkey[0] : prevkey[0]);
if ((mode == FCM_EXTRAPOLATE_MIRROR) && ((int)cycle % 2))
evaltime = (side == 1 ? prevkey[0] : lastkey[0]);
}
/* calculate where in the cycle we are (overwrite evaltime to reflect this) */
else if ((mode == FCM_EXTRAPOLATE_MIRROR) && ((int)(cycle + 1) % 2)) {
/* when 'mirror' option is used and cycle number is odd, this cycle is played in reverse
* - for 'before' extrapolation, we need to flip in a different way, otherwise values past
* then end of the curve get referenced (result of fmod will be negative, and with different phase)
*/
if (side < 0)
evaltime = prevkey[0] - cyct;
else
evaltime = lastkey[0] - cyct;
}
else {
/* the cycle is played normally... */
evaltime = prevkey[0] + cyct;
}
if (evaltime < prevkey[0]) evaltime += cycdx;
}
/* store temp data if needed */
if (mode == FCM_EXTRAPOLATE_CYCLIC_OFFSET) {
tFCMED_Cycles *edata;
/* for now, this is just a float, but we could get more stuff... */
edata = MEM_callocN(sizeof(tFCMED_Cycles), "tFCMED_Cycles");
edata->cycyofs = cycyofs;
fmodifiers_storage_put(storage, fcm, edata);
}
/* return the new frame to evaluate */
return evaltime;
}
static void fcm_cycles_evaluate(FModifierStackStorage *storage, FCurve *UNUSED(fcu),
FModifier *fcm, float *cvalue, float UNUSED(evaltime))
{
tFCMED_Cycles *edata = fmodifiers_storage_get(storage, fcm);
/* use temp data */
if (edata) {
/* add cyclic offset - no need to check for now, otherwise the data wouldn't exist! */
*cvalue += edata->cycyofs;
/* free temp data */
MEM_freeN(edata);
fmodifiers_storage_remove(storage, fcm);
}
}
static FModifierTypeInfo FMI_CYCLES = {
FMODIFIER_TYPE_CYCLES, /* type */
sizeof(FMod_Cycles), /* size */
FMI_TYPE_EXTRAPOLATION, /* action type */
FMI_REQUIRES_ORIGINAL_DATA | FMI_REQUIRES_STORAGE, /* requirements */
N_("Cycles"), /* name */
"FMod_Cycles", /* struct name */
NULL, /* free data */
NULL, /* copy data */
fcm_cycles_new_data, /* new data */
NULL /*fcm_cycles_verify*/, /* verify */
NULL, /* evaluate time */
NULL, /* evaluate */
fcm_cycles_time, /* evaluate time with storage */
fcm_cycles_evaluate /* evaluate with storage */
};
/* Noise F-Curve Modifier --------------------------- */
static void fcm_noise_new_data(void *mdata)
{
FMod_Noise *data = (FMod_Noise *)mdata;
/* defaults */
data->size = 1.0f;
data->strength = 1.0f;
data->phase = 1.0f;
data->offset = 0.0f;
data->depth = 0;
data->modification = FCM_NOISE_MODIF_REPLACE;
}
static void fcm_noise_evaluate(FCurve *UNUSED(fcu), FModifier *fcm, float *cvalue, float evaltime)
{
FMod_Noise *data = (FMod_Noise *)fcm->data;
float noise;
/* generate noise using good ol' Blender Noise
* - 0.1 is passed as the 'z' value, otherwise evaluation fails for size = phase = 1
* with evaltime being an integer (which happens when evaluating on frame by frame basis)
*/
noise = BLI_turbulence(data->size, evaltime - data->offset, data->phase, 0.1f, data->depth);
/* combine the noise with existing motion data */
switch (data->modification) {
case FCM_NOISE_MODIF_ADD:
*cvalue = *cvalue + noise * data->strength;
break;
case FCM_NOISE_MODIF_SUBTRACT:
*cvalue = *cvalue - noise * data->strength;
break;
case FCM_NOISE_MODIF_MULTIPLY:
*cvalue = *cvalue * noise * data->strength;
break;
case FCM_NOISE_MODIF_REPLACE:
default:
*cvalue = *cvalue + (noise - 0.5f) * data->strength;
break;
}
}
static FModifierTypeInfo FMI_NOISE = {
FMODIFIER_TYPE_NOISE, /* type */
sizeof(FMod_Noise), /* size */
FMI_TYPE_REPLACE_VALUES, /* action type */
0, /* requirements */
N_("Noise"), /* name */
"FMod_Noise", /* struct name */
NULL, /* free data */
NULL, /* copy data */
fcm_noise_new_data, /* new data */
NULL /*fcm_noise_verify*/, /* verify */
NULL, /* evaluate time */
fcm_noise_evaluate, /* evaluate */
NULL, /* evaluate time with storage */
NULL /* evaluate with storage */
};
/* Filter F-Curve Modifier --------------------------- */
#if 0 // XXX not yet implemented
static FModifierTypeInfo FMI_FILTER = {
FMODIFIER_TYPE_FILTER, /* type */
sizeof(FMod_Filter), /* size */
FMI_TYPE_REPLACE_VALUES, /* action type */
0, /* requirements */
N_("Filter"), /* name */
"FMod_Filter", /* struct name */
NULL, /* free data */
NULL, /* copy data */
NULL, /* new data */
NULL /*fcm_filter_verify*/, /* verify */
NULL, /* evaluate time */
fcm_filter_evaluate, /* evaluate */
NULL, /* evaluate time with storage */
NULL /* evaluate with storage */
};
#endif // XXX not yet implemented
/* Python F-Curve Modifier --------------------------- */
static void fcm_python_free(FModifier *fcm)
{
FMod_Python *data = (FMod_Python *)fcm->data;
/* id-properties */
IDP_FreeProperty(data->prop);
MEM_freeN(data->prop);
}
static void fcm_python_new_data(void *mdata)
{
FMod_Python *data = (FMod_Python *)mdata;
/* everything should be set correctly by calloc, except for the prop->type constant.*/
data->prop = MEM_callocN(sizeof(IDProperty), "PyFModifierProps");
data->prop->type = IDP_GROUP;
}
static void fcm_python_copy(FModifier *fcm, const FModifier *src)
{
FMod_Python *pymod = (FMod_Python *)fcm->data;
FMod_Python *opymod = (FMod_Python *)src->data;
pymod->prop = IDP_CopyProperty(opymod->prop);
}
static void fcm_python_evaluate(FCurve *UNUSED(fcu), FModifier *UNUSED(fcm), float *UNUSED(cvalue), float UNUSED(evaltime))
{
#ifdef WITH_PYTHON
//FMod_Python *data = (FMod_Python *)fcm->data;
/* FIXME... need to implement this modifier...
* It will need it execute a script using the custom properties
*/
#endif /* WITH_PYTHON */
}
static FModifierTypeInfo FMI_PYTHON = {
FMODIFIER_TYPE_PYTHON, /* type */
sizeof(FMod_Python), /* size */
FMI_TYPE_GENERATE_CURVE, /* action type */
FMI_REQUIRES_RUNTIME_CHECK, /* requirements */
N_("Python"), /* name */
"FMod_Python", /* struct name */
fcm_python_free, /* free data */
fcm_python_copy, /* copy data */
fcm_python_new_data, /* new data */
NULL /*fcm_python_verify*/, /* verify */
NULL /*fcm_python_time*/, /* evaluate time */
fcm_python_evaluate, /* evaluate */
NULL, /* evaluate time with storage */
NULL /* evaluate with storage */
};
/* Limits F-Curve Modifier --------------------------- */
static float fcm_limits_time(FCurve *UNUSED(fcu), FModifier *fcm, float UNUSED(cvalue), float evaltime)
{
FMod_Limits *data = (FMod_Limits *)fcm->data;
/* check for the time limits */
if ((data->flag & FCM_LIMIT_XMIN) && (evaltime < data->rect.xmin))
return data->rect.xmin;
if ((data->flag & FCM_LIMIT_XMAX) && (evaltime > data->rect.xmax))
return data->rect.xmax;
/* modifier doesn't change time */
return evaltime;
}
static void fcm_limits_evaluate(FCurve *UNUSED(fcu), FModifier *fcm, float *cvalue, float UNUSED(evaltime))
{
FMod_Limits *data = (FMod_Limits *)fcm->data;
/* value limits now */
if ((data->flag & FCM_LIMIT_YMIN) && (*cvalue < data->rect.ymin))
*cvalue = data->rect.ymin;
if ((data->flag & FCM_LIMIT_YMAX) && (*cvalue > data->rect.ymax))
*cvalue = data->rect.ymax;
}
static FModifierTypeInfo FMI_LIMITS = {
FMODIFIER_TYPE_LIMITS, /* type */
sizeof(FMod_Limits), /* size */
FMI_TYPE_GENERATE_CURVE, /* action type */ /* XXX... err... */
FMI_REQUIRES_RUNTIME_CHECK, /* requirements */
N_("Limits"), /* name */
"FMod_Limits", /* struct name */
NULL, /* free data */
NULL, /* copy data */
NULL, /* new data */
NULL, /* verify */
fcm_limits_time, /* evaluate time */
fcm_limits_evaluate, /* evaluate */
NULL, /* evaluate time with storage */
NULL /* evaluate with storage */
};
/* Stepped F-Curve Modifier --------------------------- */
static void fcm_stepped_new_data(void *mdata)
{
FMod_Stepped *data = (FMod_Stepped *)mdata;
/* just need to set the step-size to 2-frames by default */
/* XXX: or would 5 be more normal? */
data->step_size = 2.0f;
}
static float fcm_stepped_time(FCurve *UNUSED(fcu), FModifier *fcm, float UNUSED(cvalue), float evaltime)
{
FMod_Stepped *data = (FMod_Stepped *)fcm->data;
int snapblock;
/* check range clamping to see if we should alter the timing to achieve the desired results */
if (data->flag & FCM_STEPPED_NO_BEFORE) {
if (evaltime < data->start_frame)
return evaltime;
}
if (data->flag & FCM_STEPPED_NO_AFTER) {
if (evaltime > data->end_frame)
return evaltime;
}
/* we snap to the start of the previous closest block of 'step_size' frames
* after the start offset has been discarded
* - i.e. round down
*/
snapblock = (int)((evaltime - data->offset) / data->step_size);
/* reapply the offset, and multiple the snapblock by the size of the steps to get
* the new time to evaluate at
*/
return ((float)snapblock * data->step_size) + data->offset;
}
static FModifierTypeInfo FMI_STEPPED = {
FMODIFIER_TYPE_STEPPED, /* type */
sizeof(FMod_Limits), /* size */
FMI_TYPE_GENERATE_CURVE, /* action type */ /* XXX... err... */
FMI_REQUIRES_RUNTIME_CHECK, /* requirements */
N_("Stepped"), /* name */
"FMod_Stepped", /* struct name */
NULL, /* free data */
NULL, /* copy data */
fcm_stepped_new_data, /* new data */
NULL, /* verify */
fcm_stepped_time, /* evaluate time */
NULL, /* evaluate */
NULL, /* evaluate time with storage */
NULL /* evaluate with storage */
};
/* F-Curve Modifier API --------------------------- */
/* All of the F-Curve Modifier api functions use FModifierTypeInfo structs to carry out
* and operations that involve F-Curve modifier specific code.
*/
/* These globals only ever get directly accessed in this file */
static FModifierTypeInfo *fmodifiersTypeInfo[FMODIFIER_NUM_TYPES];
static short FMI_INIT = 1; /* when non-zero, the list needs to be updated */
/* This function only gets called when FMI_INIT is non-zero */
static void fmods_init_typeinfo(void)
{
fmodifiersTypeInfo[0] = NULL; /* 'Null' F-Curve Modifier */
fmodifiersTypeInfo[1] = &FMI_GENERATOR; /* Generator F-Curve Modifier */
fmodifiersTypeInfo[2] = &FMI_FN_GENERATOR; /* Built-In Function Generator F-Curve Modifier */
fmodifiersTypeInfo[3] = &FMI_ENVELOPE; /* Envelope F-Curve Modifier */
fmodifiersTypeInfo[4] = &FMI_CYCLES; /* Cycles F-Curve Modifier */
fmodifiersTypeInfo[5] = &FMI_NOISE; /* Apply-Noise F-Curve Modifier */
fmodifiersTypeInfo[6] = NULL /*&FMI_FILTER*/; /* Filter F-Curve Modifier */ // XXX unimplemented
fmodifiersTypeInfo[7] = &FMI_PYTHON; /* Custom Python F-Curve Modifier */
fmodifiersTypeInfo[8] = &FMI_LIMITS; /* Limits F-Curve Modifier */
fmodifiersTypeInfo[9] = &FMI_STEPPED; /* Stepped F-Curve Modifier */
}
/* This function should be used for getting the appropriate type-info when only
* a F-Curve modifier type is known
*/
const FModifierTypeInfo *get_fmodifier_typeinfo(const int type)
{
/* initialize the type-info list? */
if (FMI_INIT) {
fmods_init_typeinfo();
FMI_INIT = 0;
}
/* only return for valid types */
if ((type >= FMODIFIER_TYPE_NULL) &&
(type < FMODIFIER_NUM_TYPES))
{
/* there shouldn't be any segfaults here... */
return fmodifiersTypeInfo[type];
}
else {
printf("No valid F-Curve Modifier type-info data available. Type = %i\n", type);
}
return NULL;
}
/* This function should always be used to get the appropriate type-info, as it
* has checks which prevent segfaults in some weird cases.
*/
const FModifierTypeInfo *fmodifier_get_typeinfo(const FModifier *fcm)
{
/* only return typeinfo for valid modifiers */
if (fcm)
return get_fmodifier_typeinfo(fcm->type);
else
return NULL;
}
/* API --------------------------- */
/* Add a new F-Curve Modifier to the given F-Curve of a certain type */
FModifier *add_fmodifier(ListBase *modifiers, int type, FCurve *owner_fcu)
{
const FModifierTypeInfo *fmi = get_fmodifier_typeinfo(type);
FModifier *fcm;
/* sanity checks */
if (ELEM(NULL, modifiers, fmi))
return NULL;
/* special checks for whether modifier can be added */
if ((modifiers->first) && (type == FMODIFIER_TYPE_CYCLES)) {
/* cycles modifier must be first in stack, so for now, don't add if it can't be */
/* TODO: perhaps there is some better way, but for now, */
printf("Error: Cannot add 'Cycles' modifier to F-Curve, as 'Cycles' modifier can only be first in stack.\n");
return NULL;
}
/* add modifier itself */
fcm = MEM_callocN(sizeof(FModifier), "F-Curve Modifier");
fcm->type = type;
fcm->flag = FMODIFIER_FLAG_EXPANDED;
fcm->curve = owner_fcu;
fcm->influence = 1.0f;
BLI_addtail(modifiers, fcm);
/* tag modifier as "active" if no other modifiers exist in the stack yet */
if (BLI_listbase_is_single(modifiers))
fcm->flag |= FMODIFIER_FLAG_ACTIVE;
/* add modifier's data */
fcm->data = MEM_callocN(fmi->size, fmi->structName);
/* init custom settings if necessary */
if (fmi->new_data)
fmi->new_data(fcm->data);
/* update the fcurve if the Cycles modifier is added */
if ((owner_fcu) && (type == FMODIFIER_TYPE_CYCLES))
calchandles_fcurve(owner_fcu);
/* return modifier for further editing */
return fcm;
}
/* Make a copy of the specified F-Modifier */
FModifier *copy_fmodifier(const FModifier *src)
{
const FModifierTypeInfo *fmi = fmodifier_get_typeinfo(src);
FModifier *dst;
/* sanity check */
if (src == NULL)
return NULL;
/* copy the base data, clearing the links */
dst = MEM_dupallocN(src);
dst->next = dst->prev = NULL;
dst->curve = NULL;
/* make a new copy of the F-Modifier's data */
dst->data = MEM_dupallocN(src->data);
/* only do specific constraints if required */
if (fmi && fmi->copy_data)
fmi->copy_data(dst, src);
/* return the new modifier */
return dst;
}
/* Duplicate all of the F-Modifiers in the Modifier stacks */
void copy_fmodifiers(ListBase *dst, const ListBase *src)
{
FModifier *fcm, *srcfcm;
if (ELEM(NULL, dst, src))
return;
BLI_listbase_clear(dst);
BLI_duplicatelist(dst, src);
for (fcm = dst->first, srcfcm = src->first; fcm && srcfcm; srcfcm = srcfcm->next, fcm = fcm->next) {
const FModifierTypeInfo *fmi = fmodifier_get_typeinfo(fcm);
/* make a new copy of the F-Modifier's data */
fcm->data = MEM_dupallocN(fcm->data);
fcm->curve = NULL;
/* only do specific constraints if required */
if (fmi && fmi->copy_data)
fmi->copy_data(fcm, srcfcm);
}
}
/* Remove and free the given F-Modifier from the given stack */
bool remove_fmodifier(ListBase *modifiers, FModifier *fcm)
{
const FModifierTypeInfo *fmi = fmodifier_get_typeinfo(fcm);
/* sanity check */
if (fcm == NULL)
return false;
/* removing the cycles modifier requires a handle update */
FCurve *update_fcu = (fcm->type == FMODIFIER_TYPE_CYCLES) ? fcm->curve : NULL;
/* free modifier's special data (stored inside fcm->data) */
if (fcm->data) {
if (fmi && fmi->free_data)
fmi->free_data(fcm);
/* free modifier's data (fcm->data) */
MEM_freeN(fcm->data);
}
/* remove modifier from stack */
if (modifiers) {
BLI_freelinkN(modifiers, fcm);
/* update the fcurve if the Cycles modifier is removed */
if (update_fcu)
calchandles_fcurve(update_fcu);
return true;
}
else {
/* XXX this case can probably be removed some day, as it shouldn't happen... */
printf("remove_fmodifier() - no modifier stack given\n");
MEM_freeN(fcm);
return false;
}
}
/* Remove all of a given F-Curve's modifiers */
void free_fmodifiers(ListBase *modifiers)
{
FModifier *fcm, *fmn;
/* sanity check */
if (modifiers == NULL)
return;
/* free each modifier in order - modifier is unlinked from list and freed */
for (fcm = modifiers->first; fcm; fcm = fmn) {
fmn = fcm->next;
remove_fmodifier(modifiers, fcm);
}
}
/* Find the active F-Modifier */
FModifier *find_active_fmodifier(ListBase *modifiers)
{
FModifier *fcm;
/* sanity checks */
if (ELEM(NULL, modifiers, modifiers->first))
return NULL;
/* loop over modifiers until 'active' one is found */
for (fcm = modifiers->first; fcm; fcm = fcm->next) {
if (fcm->flag & FMODIFIER_FLAG_ACTIVE)
return fcm;
}
/* no modifier is active */
return NULL;
}
/* Set the active F-Modifier */
void set_active_fmodifier(ListBase *modifiers, FModifier *fcm)
{
FModifier *fm;
/* sanity checks */
if (ELEM(NULL, modifiers, modifiers->first))
return;
/* deactivate all, and set current one active */
for (fm = modifiers->first; fm; fm = fm->next)
fm->flag &= ~FMODIFIER_FLAG_ACTIVE;
/* make given modifier active */
if (fcm)
fcm->flag |= FMODIFIER_FLAG_ACTIVE;
}
/* Do we have any modifiers which match certain criteria
* - mtype - type of modifier (if 0, doesn't matter)
* - acttype - type of action to perform (if -1, doesn't matter)
*/
bool list_has_suitable_fmodifier(ListBase *modifiers, int mtype, short acttype)
{
FModifier *fcm;
/* if there are no specific filtering criteria, just skip */
if ((mtype == 0) && (acttype == 0))
return (modifiers && modifiers->first);
/* sanity checks */
if (ELEM(NULL, modifiers, modifiers->first))
return false;
/* find the first mdifier fitting these criteria */
for (fcm = modifiers->first; fcm; fcm = fcm->next) {
const FModifierTypeInfo *fmi = fmodifier_get_typeinfo(fcm);
short mOk = 1, aOk = 1; /* by default 1, so that when only one test, won't fail */
/* check if applicable ones are fullfilled */
if (mtype)
mOk = (fcm->type == mtype);
if (acttype > -1)
aOk = (fmi->acttype == acttype);
/* if both are ok, we've found a hit */
if (mOk && aOk)
return true;
}
/* no matches */
return false;
}
/* Evaluation API --------------------------- */
FModifierStackStorage *evaluate_fmodifiers_storage_new(ListBase *modifiers)
{
FModifier *fcm;
/* Sanity checks. */
if (ELEM(NULL, modifiers, modifiers->last)) {
return NULL;
}
for (fcm = modifiers->last; fcm; fcm = fcm->prev) {
const FModifierTypeInfo *fmi = fmodifier_get_typeinfo(fcm);
if (fmi == NULL) {
continue;
}
if (fmi->requires & FMI_REQUIRES_STORAGE) {
return (FModifierStackStorage *) BLI_ghash_new(BLI_ghashutil_ptrhash,
BLI_ghashutil_ptrcmp,
"fmodifier stack temp storage");
}
}
return NULL;
}
void evaluate_fmodifiers_storage_free(FModifierStackStorage *storage)
{
if (storage != NULL) {
BLI_ghash_free((GHash *) storage, NULL, NULL);
}
}
void fmodifiers_storage_put(FModifierStackStorage *storage, FModifier *fcm, void *data)
{
BLI_assert(storage != NULL);
BLI_ghash_insert((GHash *) storage, fcm, data);
}
void fmodifiers_storage_remove(FModifierStackStorage *storage, FModifier *fcm)
{
BLI_assert(storage != NULL);
BLI_ghash_remove((GHash *) storage, fcm, NULL, NULL);
}
void *fmodifiers_storage_get(FModifierStackStorage *storage, FModifier *fcm)
{
BLI_assert(storage != NULL);
return BLI_ghash_lookup((GHash *) storage, fcm);
}
/* helper function - calculate influence of FModifier */
static float eval_fmodifier_influence(FModifier *fcm, float evaltime)
{
float influence;
/* sanity check */
if (fcm == NULL)
return 0.0f;
/* should we use influence stored in modifier or not
* NOTE: this is really just a hack so that we don't need to version patch old files ;)
*/
if (fcm->flag & FMODIFIER_FLAG_USEINFLUENCE)
influence = fcm->influence;
else
influence = 1.0f;
/* restricted range or full range? */
if (fcm->flag & FMODIFIER_FLAG_RANGERESTRICT) {
if ((evaltime <= fcm->sfra) || (evaltime >= fcm->efra)) {
/* out of range */
return 0.0f;
}
else if ((evaltime > fcm->sfra) && (evaltime < fcm->sfra + fcm->blendin)) {
/* blend in range */
float a = fcm->sfra;
float b = fcm->sfra + fcm->blendin;
return influence * (evaltime - a) / (b - a);
}
else if ((evaltime < fcm->efra) && (evaltime > fcm->efra - fcm->blendout)) {
/* blend out range */
float a = fcm->efra;
float b = fcm->efra - fcm->blendout;
return influence * (evaltime - a) / (b - a);
}
}
/* just return the influence of the modifier */
return influence;
}
/* evaluate time modifications imposed by some F-Curve Modifiers
* - this step acts as an optimization to prevent the F-Curve stack being evaluated
* several times by modifiers requesting the time be modified, as the final result
* would have required using the modified time
* - modifiers only ever receive the unmodified time, as subsequent modifiers should be
* working on the 'global' result of the modified curve, not some localised segment,
* so nevaltime gets set to whatever the last time-modifying modifier likes...
* - we start from the end of the stack, as only the last one matters for now
*
* Note: *fcu might be NULL
*/
float evaluate_time_fmodifiers(FModifierStackStorage *storage, ListBase *modifiers,
FCurve *fcu, float cvalue, float evaltime)
{
FModifier *fcm;
/* sanity checks */
if (ELEM(NULL, modifiers, modifiers->last))
return evaltime;
if (fcu && fcu->flag & FCURVE_MOD_OFF)
return evaltime;
/* Starting from the end of the stack, calculate the time effects of various stacked modifiers
* on the time the F-Curve should be evaluated at.
*
* This is done in reverse order to standard evaluation, as when this is done in standard
* order, each modifier would cause jumps to other points in the curve, forcing all
* previous ones to be evaluated again for them to be correct. However, if we did in the
* reverse order as we have here, we can consider them a macro to micro type of waterfall
* effect, which should get us the desired effects when using layered time manipulations
* (such as multiple 'stepped' modifiers in sequence, causing different stepping rates)
*/
for (fcm = modifiers->last; fcm; fcm = fcm->prev) {
const FModifierTypeInfo *fmi = fmodifier_get_typeinfo(fcm);
if (fmi == NULL)
continue;
/* if modifier cannot be applied on this frame (whatever scale it is on, it won't affect the results)
* hence we shouldn't bother seeing what it would do given the chance
*/
if ((fcm->flag & FMODIFIER_FLAG_RANGERESTRICT) == 0 ||
((fcm->sfra <= evaltime) && (fcm->efra >= evaltime)) )
{
/* only evaluate if there's a callback for this */
if (fmi->evaluate_modifier_time || fmi->evaluate_modifier_time_storage) {
if ((fcm->flag & (FMODIFIER_FLAG_DISABLED | FMODIFIER_FLAG_MUTED)) == 0) {
float influence = eval_fmodifier_influence(fcm, evaltime);
float nval;
if ((fmi->requires & FMI_REQUIRES_STORAGE) == 0) {
nval = fmi->evaluate_modifier_time(fcu, fcm, cvalue, evaltime);
}
else {
nval = fmi->evaluate_modifier_time_storage(storage, fcu, fcm, cvalue, evaltime);
}
evaltime = interpf(nval, evaltime, influence);
}
}
}
}
/* return the modified evaltime */
return evaltime;
}
/* Evaluates the given set of F-Curve Modifiers using the given data
* Should only be called after evaluate_time_fmodifiers() has been called...
*/
void evaluate_value_fmodifiers(FModifierStackStorage *storage, ListBase *modifiers,
FCurve *fcu, float *cvalue, float evaltime)
{
FModifier *fcm;
/* sanity checks */
if (ELEM(NULL, modifiers, modifiers->first))
return;
if (fcu->flag & FCURVE_MOD_OFF)
return;
/* evaluate modifiers */
for (fcm = modifiers->first; fcm; fcm = fcm->next) {
const FModifierTypeInfo *fmi = fmodifier_get_typeinfo(fcm);
if (fmi == NULL)
continue;
/* only evaluate if there's a callback for this, and if F-Modifier can be evaluated on this frame */
if ((fcm->flag & FMODIFIER_FLAG_RANGERESTRICT) == 0 ||
((fcm->sfra <= evaltime) && (fcm->efra >= evaltime)) )
{
if (fmi->evaluate_modifier || fmi->evaluate_modifier_storage) {
if ((fcm->flag & (FMODIFIER_FLAG_DISABLED | FMODIFIER_FLAG_MUTED)) == 0) {
float influence = eval_fmodifier_influence(fcm, evaltime);
float nval = *cvalue;
if ((fmi->requires & FMI_REQUIRES_STORAGE) == 0) {
fmi->evaluate_modifier(fcu, fcm, &nval, evaltime);
}
else {
fmi->evaluate_modifier_storage(storage, fcu, fcm, &nval, evaltime);
}
*cvalue = interpf(nval, *cvalue, influence);
}
}
}
}
}
/* ---------- */
/* Bake modifiers for given F-Curve to curve sample data, in the frame range defined
* by start and end (inclusive).
*/
void fcurve_bake_modifiers(FCurve *fcu, int start, int end)
{
ChannelDriver *driver;
/* sanity checks */
/* TODO: make these tests report errors using reports not printf's */
if (ELEM(NULL, fcu, fcu->modifiers.first)) {
printf("Error: No F-Curve with F-Curve Modifiers to Bake\n");
return;
}
/* temporarily, disable driver while we sample, so that they don't influence the outcome */
driver = fcu->driver;
fcu->driver = NULL;
/* bake the modifiers, by sampling the curve at each frame */
fcurve_store_samples(fcu, NULL, start, end, fcurve_samplingcb_evalcurve);
/* free the modifiers now */
free_fmodifiers(&fcu->modifiers);
/* restore driver */
fcu->driver = driver;
}