tornavis/source/blender/blenkernel/intern/mball_tessellate.c

1308 lines
37 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Jiri Hnidek <jiri.hnidek@vslib.cz>.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/mball_tessellate.c
* \ingroup bke
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <ctype.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "DNA_object_types.h"
#include "DNA_meta_types.h"
#include "DNA_scene_types.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_string_utils.h"
#include "BLI_utildefines.h"
#include "BLI_memarena.h"
#include "BKE_global.h"
#include "BKE_displist.h"
#include "BKE_main.h"
#include "BKE_mball_tessellate.h" /* own include */
#include "BKE_scene.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
#include "BLI_strict_flags.h"
/* experimental (faster) normal calculation */
// #define USE_ACCUM_NORMAL
/* Data types */
typedef struct corner { /* corner of a cube */
int i, j, k; /* (i, j, k) is index within lattice */
float co[3], value; /* location and function value */
struct corner *next;
} CORNER;
typedef struct cube { /* partitioning cell (cube) */
int i, j, k; /* lattice location of cube */
CORNER *corners[8]; /* eight corners */
} CUBE;
typedef struct cubes { /* linked list of cubes acting as stack */
CUBE cube; /* a single cube */
struct cubes *next; /* remaining elements */
} CUBES;
typedef struct centerlist { /* list of cube locations */
int i, j, k; /* cube location */
struct centerlist *next; /* remaining elements */
} CENTERLIST;
typedef struct edgelist { /* list of edges */
int i1, j1, k1, i2, j2, k2; /* edge corner ids */
int vid; /* vertex id */
struct edgelist *next; /* remaining elements */
} EDGELIST;
typedef struct intlist { /* list of integers */
int i; /* an integer */
struct intlist *next; /* remaining elements */
} INTLIST;
typedef struct intlists { /* list of list of integers */
INTLIST *list; /* a list of integers */
struct intlists *next; /* remaining elements */
} INTLISTS;
typedef struct Box { /* an AABB with pointer to metalelem */
float min[3], max[3];
const MetaElem *ml;
} Box;
typedef struct MetaballBVHNode { /* BVH node */
Box bb[2]; /* AABB of children */
struct MetaballBVHNode *child[2];
} MetaballBVHNode;
typedef struct process { /* parameters, storage */
float thresh, size; /* mball threshold, single cube size */
float delta; /* small delta for calculating normals */
unsigned int converge_res; /* converge procedure resolution (more = slower) */
MetaElem **mainb; /* array of all metaelems */
unsigned int totelem, mem; /* number of metaelems */
MetaballBVHNode metaball_bvh; /* The simplest bvh */
Box allbb; /* Bounding box of all metaelems */
MetaballBVHNode **bvh_queue; /* Queue used during bvh traversal */
unsigned int bvh_queue_size;
CUBES *cubes; /* stack of cubes waiting for polygonization */
CENTERLIST **centers; /* cube center hash table */
CORNER **corners; /* corner value hash table */
EDGELIST **edges; /* edge and vertex id hash table */
int (*indices)[4]; /* output indices */
unsigned int totindex; /* size of memory allocated for indices */
unsigned int curindex; /* number of currently added indices */
float (*co)[3], (*no)[3]; /* surface vertices - positions and normals */
unsigned int totvertex; /* memory size */
unsigned int curvertex; /* currently added vertices */
/* memory allocation from common pool */
MemArena *pgn_elements;
} PROCESS;
/* Forward declarations */
static int vertid(PROCESS *process, const CORNER *c1, const CORNER *c2);
static void add_cube(PROCESS *process, int i, int j, int k);
static void make_face(PROCESS *process, int i1, int i2, int i3, int i4);
static void converge(PROCESS *process, const CORNER *c1, const CORNER *c2, float r_p[3]);
/* ******************* SIMPLE BVH ********************* */
static void make_box_union(const BoundBox *a, const Box *b, Box *r_out)
{
r_out->min[0] = min_ff(a->vec[0][0], b->min[0]);
r_out->min[1] = min_ff(a->vec[0][1], b->min[1]);
r_out->min[2] = min_ff(a->vec[0][2], b->min[2]);
r_out->max[0] = max_ff(a->vec[6][0], b->max[0]);
r_out->max[1] = max_ff(a->vec[6][1], b->max[1]);
r_out->max[2] = max_ff(a->vec[6][2], b->max[2]);
}
static void make_box_from_metaelem(Box *r, const MetaElem *ml)
{
copy_v3_v3(r->max, ml->bb->vec[6]);
copy_v3_v3(r->min, ml->bb->vec[0]);
r->ml = ml;
}
/**
* Partitions part of mainb array [start, end) along axis s. Returns i,
* where centroids of elements in the [start, i) segment lie "on the right side" of div,
* and elements in the [i, end) segment lie "on the left"
*/
static unsigned int partition_mainb(MetaElem **mainb, unsigned int start, unsigned int end, unsigned int s, float div)
{
unsigned int i = start, j = end - 1;
div *= 2.0f;
while (1) {
while (i < j && div > (mainb[i]->bb->vec[6][s] + mainb[i]->bb->vec[0][s])) i++;
while (j > i && div < (mainb[j]->bb->vec[6][s] + mainb[j]->bb->vec[0][s])) j--;
if (i >= j)
break;
SWAP(MetaElem *, mainb[i], mainb[j]);
i++;
j--;
}
if (i == start) {
i++;
}
return i;
}
/**
* Recursively builds a BVH, dividing elements along the middle of the longest axis of allbox.
*/
static void build_bvh_spatial(
PROCESS *process, MetaballBVHNode *node,
unsigned int start, unsigned int end, const Box *allbox)
{
unsigned int part, j, s;
float dim[3], div;
/* Maximum bvh queue size is number of nodes which are made, equals calls to this function. */
process->bvh_queue_size++;
dim[0] = allbox->max[0] - allbox->min[0];
dim[1] = allbox->max[1] - allbox->min[1];
dim[2] = allbox->max[2] - allbox->min[2];
s = 0;
if (dim[1] > dim[0] && dim[1] > dim[2]) s = 1;
else if (dim[2] > dim[1] && dim[2] > dim[0]) s = 2;
div = allbox->min[s] + (dim[s] / 2.0f);
part = partition_mainb(process->mainb, start, end, s, div);
make_box_from_metaelem(&node->bb[0], process->mainb[start]);
node->child[0] = NULL;
if (part > start + 1) {
for (j = start; j < part; j++) {
make_box_union(process->mainb[j]->bb, &node->bb[0], &node->bb[0]);
}
node->child[0] = BLI_memarena_alloc(process->pgn_elements, sizeof(MetaballBVHNode));
build_bvh_spatial(process, node->child[0], start, part, &node->bb[0]);
}
node->child[1] = NULL;
if (part < end) {
make_box_from_metaelem(&node->bb[1], process->mainb[part]);
if (part < end - 1) {
for (j = part; j < end; j++) {
make_box_union(process->mainb[j]->bb, &node->bb[1], &node->bb[1]);
}
node->child[1] = BLI_memarena_alloc(process->pgn_elements, sizeof(MetaballBVHNode));
build_bvh_spatial(process, node->child[1], part, end, &node->bb[1]);
}
}
else {
INIT_MINMAX(node->bb[1].min, node->bb[1].max);
}
}
/* ******************** ARITH ************************* */
/**
* BASED AT CODE (but mostly rewritten) :
* C code from the article
* "An Implicit Surface Polygonizer"
* by Jules Bloomenthal, jbloom@beauty.gmu.edu
* in "Graphics Gems IV", Academic Press, 1994
*
* Authored by Jules Bloomenthal, Xerox PARC.
* Copyright (c) Xerox Corporation, 1991. All rights reserved.
* Permission is granted to reproduce, use and distribute this code for
* any and all purposes, provided that this notice appears in all copies.
*/
#define L 0 /* left direction: -x, -i */
#define R 1 /* right direction: +x, +i */
#define B 2 /* bottom direction: -y, -j */
#define T 3 /* top direction: +y, +j */
#define N 4 /* near direction: -z, -k */
#define F 5 /* far direction: +z, +k */
#define LBN 0 /* left bottom near corner */
#define LBF 1 /* left bottom far corner */
#define LTN 2 /* left top near corner */
#define LTF 3 /* left top far corner */
#define RBN 4 /* right bottom near corner */
#define RBF 5 /* right bottom far corner */
#define RTN 6 /* right top near corner */
#define RTF 7 /* right top far corner */
/**
* the LBN corner of cube (i, j, k), corresponds with location
* (i-0.5)*size, (j-0.5)*size, (k-0.5)*size)
*/
#define HASHBIT (5)
#define HASHSIZE (size_t)(1 << (3 * HASHBIT)) /*! < hash table size (32768) */
#define HASH(i, j, k) ((((( (i) & 31) << 5) | ( (j) & 31)) << 5) | ( (k) & 31) )
#define MB_BIT(i, bit) (((i) >> (bit)) & 1)
// #define FLIP(i, bit) ((i) ^ 1 << (bit)) /* flip the given bit of i */
/* ******************** DENSITY COPMPUTATION ********************* */
/**
* Computes density from given metaball at given position.
* Metaball equation is: ``(1 - r^2 / R^2)^3 * s``
*
* r = distance from center
* R = metaball radius
* s - metaball stiffness
*/
static float densfunc(const MetaElem *ball, float x, float y, float z)
{
float dist2;
float dvec[3] = {x, y, z};
mul_m4_v3((float (*)[4])ball->imat, dvec);
switch (ball->type) {
case MB_BALL:
/* do nothing */
break;
case MB_CUBE:
if (dvec[2] > ball->expz) dvec[2] -= ball->expz;
else if (dvec[2] < -ball->expz) dvec[2] += ball->expz;
else dvec[2] = 0.0;
ATTR_FALLTHROUGH;
case MB_PLANE:
if (dvec[1] > ball->expy) dvec[1] -= ball->expy;
else if (dvec[1] < -ball->expy) dvec[1] += ball->expy;
else dvec[1] = 0.0;
ATTR_FALLTHROUGH;
case MB_TUBE:
if (dvec[0] > ball->expx) dvec[0] -= ball->expx;
else if (dvec[0] < -ball->expx) dvec[0] += ball->expx;
else dvec[0] = 0.0;
break;
case MB_ELIPSOID:
dvec[0] /= ball->expx;
dvec[1] /= ball->expy;
dvec[2] /= ball->expz;
break;
/* *** deprecated, could be removed?, do-versioned at least *** */
case MB_TUBEX:
if (dvec[0] > ball->len) dvec[0] -= ball->len;
else if (dvec[0] < -ball->len) dvec[0] += ball->len;
else dvec[0] = 0.0;
break;
case MB_TUBEY:
if (dvec[1] > ball->len) dvec[1] -= ball->len;
else if (dvec[1] < -ball->len) dvec[1] += ball->len;
else dvec[1] = 0.0;
break;
case MB_TUBEZ:
if (dvec[2] > ball->len) dvec[2] -= ball->len;
else if (dvec[2] < -ball->len) dvec[2] += ball->len;
else dvec[2] = 0.0;
break;
/* *** end deprecated *** */
}
/* ball->rad2 is inverse of squared rad */
dist2 = 1.0f - (len_squared_v3(dvec) * ball->rad2);
/* ball->s is negative if metaball is negative */
return (dist2 < 0.0f) ? 0.0f : (ball->s * dist2 * dist2 * dist2);
}
/**
* Computes density at given position form all metaballs which contain this point in their box.
* Traverses BVH using a queue.
*/
static float metaball(PROCESS *process, float x, float y, float z)
{
int i;
float dens = 0.0f;
unsigned int front = 0, back = 0;
MetaballBVHNode *node;
process->bvh_queue[front++] = &process->metaball_bvh;
while (front != back) {
node = process->bvh_queue[back++];
for (i = 0; i < 2; i++) {
if ((node->bb[i].min[0] <= x) && (node->bb[i].max[0] >= x) &&
(node->bb[i].min[1] <= y) && (node->bb[i].max[1] >= y) &&
(node->bb[i].min[2] <= z) && (node->bb[i].max[2] >= z))
{
if (node->child[i]) process->bvh_queue[front++] = node->child[i];
else dens += densfunc(node->bb[i].ml, x, y, z);
}
}
}
return process->thresh - dens;
}
/**
* Adds face to indices, expands memory if needed.
*/
static void make_face(PROCESS *process, int i1, int i2, int i3, int i4)
{
int *cur;
#ifdef USE_ACCUM_NORMAL
float n[3];
#endif
if (UNLIKELY(process->totindex == process->curindex)) {
process->totindex += 4096;
process->indices = MEM_reallocN(process->indices, sizeof(int[4]) * process->totindex);
}
cur = process->indices[process->curindex++];
/* displists now support array drawing, we treat tri's as fake quad */
cur[0] = i1;
cur[1] = i2;
cur[2] = i3;
cur[3] = i4;
#ifdef USE_ACCUM_NORMAL
if (i4 == i3) {
normal_tri_v3(n, process->co[i1], process->co[i2], process->co[i3]);
accumulate_vertex_normals_v3(
process->no[i1], process->no[i2], process->no[i3], NULL, n,
process->co[i1], process->co[i2], process->co[i3], NULL);
}
else {
normal_quad_v3(n, process->co[i1], process->co[i2], process->co[i3], process->co[i4]);
accumulate_vertex_normals_v3(
process->no[i1], process->no[i2], process->no[i3], process->no[i4], n,
process->co[i1], process->co[i2], process->co[i3], process->co[i4]);
}
#endif
}
/* Frees allocated memory */
static void freepolygonize(PROCESS *process)
{
if (process->corners) MEM_freeN(process->corners);
if (process->edges) MEM_freeN(process->edges);
if (process->centers) MEM_freeN(process->centers);
if (process->mainb) MEM_freeN(process->mainb);
if (process->bvh_queue) MEM_freeN(process->bvh_queue);
if (process->pgn_elements) BLI_memarena_free(process->pgn_elements);
}
/* **************** POLYGONIZATION ************************ */
/**** Cubical Polygonization (optional) ****/
#define LB 0 /* left bottom edge */
#define LT 1 /* left top edge */
#define LN 2 /* left near edge */
#define LF 3 /* left far edge */
#define RB 4 /* right bottom edge */
#define RT 5 /* right top edge */
#define RN 6 /* right near edge */
#define RF 7 /* right far edge */
#define BN 8 /* bottom near edge */
#define BF 9 /* bottom far edge */
#define TN 10 /* top near edge */
#define TF 11 /* top far edge */
static INTLISTS *cubetable[256];
static char faces[256];
/* edge: LB, LT, LN, LF, RB, RT, RN, RF, BN, BF, TN, TF */
static int corner1[12] = {
LBN, LTN, LBN, LBF, RBN, RTN, RBN, RBF, LBN, LBF, LTN, LTF
};
static int corner2[12] = {
LBF, LTF, LTN, LTF, RBF, RTF, RTN, RTF, RBN, RBF, RTN, RTF
};
static int leftface[12] = {
B, L, L, F, R, T, N, R, N, B, T, F
};
/* face on left when going corner1 to corner2 */
static int rightface[12] = {
L, T, N, L, B, R, R, F, B, F, N, T
};
/* face on right when going corner1 to corner2 */
/**
* triangulate the cube directly, without decomposition
*/
static void docube(PROCESS *process, CUBE *cube)
{
INTLISTS *polys;
CORNER *c1, *c2;
int i, index = 0, count, indexar[8];
/* Determine which case cube falls into. */
for (i = 0; i < 8; i++) {
if (cube->corners[i]->value > 0.0f) {
index += (1 << i);
}
}
/* Using faces[] table, adds neighbouring cube if surface intersects face in this direction. */
if (MB_BIT(faces[index], 0)) add_cube(process, cube->i - 1, cube->j, cube->k);
if (MB_BIT(faces[index], 1)) add_cube(process, cube->i + 1, cube->j, cube->k);
if (MB_BIT(faces[index], 2)) add_cube(process, cube->i, cube->j - 1, cube->k);
if (MB_BIT(faces[index], 3)) add_cube(process, cube->i, cube->j + 1, cube->k);
if (MB_BIT(faces[index], 4)) add_cube(process, cube->i, cube->j, cube->k - 1);
if (MB_BIT(faces[index], 5)) add_cube(process, cube->i, cube->j, cube->k + 1);
/* Using cubetable[], determines polygons for output. */
for (polys = cubetable[index]; polys; polys = polys->next) {
INTLIST *edges;
count = 0;
/* Sets needed vertex id's lying on the edges. */
for (edges = polys->list; edges; edges = edges->next) {
c1 = cube->corners[corner1[edges->i]];
c2 = cube->corners[corner2[edges->i]];
indexar[count] = vertid(process, c1, c2);
count++;
}
/* Adds faces to output. */
if (count > 2) {
switch (count) {
case 3:
make_face(process, indexar[2], indexar[1], indexar[0], indexar[0]); /* triangle */
break;
case 4:
make_face(process, indexar[3], indexar[2], indexar[1], indexar[0]);
break;
case 5:
make_face(process, indexar[3], indexar[2], indexar[1], indexar[0]);
make_face(process, indexar[4], indexar[3], indexar[0], indexar[0]); /* triangle */
break;
case 6:
make_face(process, indexar[3], indexar[2], indexar[1], indexar[0]);
make_face(process, indexar[5], indexar[4], indexar[3], indexar[0]);
break;
case 7:
make_face(process, indexar[3], indexar[2], indexar[1], indexar[0]);
make_face(process, indexar[5], indexar[4], indexar[3], indexar[0]);
make_face(process, indexar[6], indexar[5], indexar[0], indexar[0]); /* triangle */
break;
}
}
}
}
/**
* return corner with the given lattice location
* set (and cache) its function value
*/
static CORNER *setcorner(PROCESS *process, int i, int j, int k)
{
/* for speed, do corner value caching here */
CORNER *c;
int index;
/* does corner exist? */
index = HASH(i, j, k);
c = process->corners[index];
for (; c != NULL; c = c->next) {
if (c->i == i && c->j == j && c->k == k) {
return c;
}
}
c = BLI_memarena_alloc(process->pgn_elements, sizeof(CORNER));
c->i = i;
c->co[0] = ((float)i - 0.5f) * process->size;
c->j = j;
c->co[1] = ((float)j - 0.5f) * process->size;
c->k = k;
c->co[2] = ((float)k - 0.5f) * process->size;
c->value = metaball(process, c->co[0], c->co[1], c->co[2]);
c->next = process->corners[index];
process->corners[index] = c;
return c;
}
/**
* return next clockwise edge from given edge around given face
*/
static int nextcwedge(int edge, int face)
{
switch (edge) {
case LB:
return (face == L) ? LF : BN;
case LT:
return (face == L) ? LN : TF;
case LN:
return (face == L) ? LB : TN;
case LF:
return (face == L) ? LT : BF;
case RB:
return (face == R) ? RN : BF;
case RT:
return (face == R) ? RF : TN;
case RN:
return (face == R) ? RT : BN;
case RF:
return (face == R) ? RB : TF;
case BN:
return (face == B) ? RB : LN;
case BF:
return (face == B) ? LB : RF;
case TN:
return (face == T) ? LT : RN;
case TF:
return (face == T) ? RT : LF;
}
return 0;
}
/**
* \return the face adjoining edge that is not the given face
*/
static int otherface(int edge, int face)
{
int other = leftface[edge];
return face == other ? rightface[edge] : other;
}
/**
* create the 256 entry table for cubical polygonization
*/
static void makecubetable(void)
{
static bool is_done = false;
int i, e, c, done[12], pos[8];
if (is_done) return;
is_done = true;
for (i = 0; i < 256; i++) {
for (e = 0; e < 12; e++) done[e] = 0;
for (c = 0; c < 8; c++) pos[c] = MB_BIT(i, c);
for (e = 0; e < 12; e++) {
if (!done[e] && (pos[corner1[e]] != pos[corner2[e]])) {
INTLIST *ints = NULL;
INTLISTS *lists = MEM_callocN(sizeof(INTLISTS), "mball_intlist");
int start = e, edge = e;
/* get face that is to right of edge from pos to neg corner: */
int face = pos[corner1[e]] ? rightface[e] : leftface[e];
while (1) {
edge = nextcwedge(edge, face);
done[edge] = 1;
if (pos[corner1[edge]] != pos[corner2[edge]]) {
INTLIST *tmp = ints;
ints = MEM_callocN(sizeof(INTLIST), "mball_intlist");
ints->i = edge;
ints->next = tmp; /* add edge to head of list */
if (edge == start) break;
face = otherface(edge, face);
}
}
lists->list = ints; /* add ints to head of table entry */
lists->next = cubetable[i];
cubetable[i] = lists;
}
}
}
for (i = 0; i < 256; i++) {
INTLISTS *polys;
faces[i] = 0;
for (polys = cubetable[i]; polys; polys = polys->next) {
INTLIST *edges;
for (edges = polys->list; edges; edges = edges->next) {
if (edges->i == LB || edges->i == LT || edges->i == LN || edges->i == LF) faces[i] |= 1 << L;
if (edges->i == RB || edges->i == RT || edges->i == RN || edges->i == RF) faces[i] |= 1 << R;
if (edges->i == LB || edges->i == RB || edges->i == BN || edges->i == BF) faces[i] |= 1 << B;
if (edges->i == LT || edges->i == RT || edges->i == TN || edges->i == TF) faces[i] |= 1 << T;
if (edges->i == LN || edges->i == RN || edges->i == BN || edges->i == TN) faces[i] |= 1 << N;
if (edges->i == LF || edges->i == RF || edges->i == BF || edges->i == TF) faces[i] |= 1 << F;
}
}
}
}
void BKE_mball_cubeTable_free(void)
{
int i;
INTLISTS *lists, *nlists;
INTLIST *ints, *nints;
for (i = 0; i < 256; i++) {
lists = cubetable[i];
while (lists) {
nlists = lists->next;
ints = lists->list;
while (ints) {
nints = ints->next;
MEM_freeN(ints);
ints = nints;
}
MEM_freeN(lists);
lists = nlists;
}
cubetable[i] = NULL;
}
}
/**** Storage ****/
/**
* Inserts cube at lattice i, j, k into hash table, marking it as "done"
*/
static int setcenter(PROCESS *process, CENTERLIST *table[], const int i, const int j, const int k)
{
int index;
CENTERLIST *newc, *l, *q;
index = HASH(i, j, k);
q = table[index];
for (l = q; l != NULL; l = l->next) {
if (l->i == i && l->j == j && l->k == k) return 1;
}
newc = BLI_memarena_alloc(process->pgn_elements, sizeof(CENTERLIST));
newc->i = i;
newc->j = j;
newc->k = k;
newc->next = q;
table[index] = newc;
return 0;
}
/**
* Sets vid of vertex lying on given edge.
*/
static void setedge(
PROCESS *process,
int i1, int j1, int k1,
int i2, int j2, int k2,
int vid)
{
int index;
EDGELIST *newe;
if (i1 > i2 || (i1 == i2 && (j1 > j2 || (j1 == j2 && k1 > k2)))) {
int t = i1;
i1 = i2;
i2 = t;
t = j1;
j1 = j2;
j2 = t;
t = k1;
k1 = k2;
k2 = t;
}
index = HASH(i1, j1, k1) + HASH(i2, j2, k2);
newe = BLI_memarena_alloc(process->pgn_elements, sizeof(EDGELIST));
newe->i1 = i1;
newe->j1 = j1;
newe->k1 = k1;
newe->i2 = i2;
newe->j2 = j2;
newe->k2 = k2;
newe->vid = vid;
newe->next = process->edges[index];
process->edges[index] = newe;
}
/**
* \return vertex id for edge; return -1 if not set
*/
static int getedge(EDGELIST *table[],
int i1, int j1, int k1,
int i2, int j2, int k2)
{
EDGELIST *q;
if (i1 > i2 || (i1 == i2 && (j1 > j2 || (j1 == j2 && k1 > k2)))) {
int t = i1;
i1 = i2;
i2 = t;
t = j1;
j1 = j2;
j2 = t;
t = k1;
k1 = k2;
k2 = t;
}
q = table[HASH(i1, j1, k1) + HASH(i2, j2, k2)];
for (; q != NULL; q = q->next) {
if (q->i1 == i1 && q->j1 == j1 && q->k1 == k1 &&
q->i2 == i2 && q->j2 == j2 && q->k2 == k2)
{
return q->vid;
}
}
return -1;
}
/**
* Adds a vertex, expands memory if needed.
*/
static void addtovertices(PROCESS *process, const float v[3], const float no[3])
{
if (process->curvertex == process->totvertex) {
process->totvertex += 4096;
process->co = MEM_reallocN(process->co, process->totvertex * sizeof(float[3]));
process->no = MEM_reallocN(process->no, process->totvertex * sizeof(float[3]));
}
copy_v3_v3(process->co[process->curvertex], v);
copy_v3_v3(process->no[process->curvertex], no);
process->curvertex++;
}
#ifndef USE_ACCUM_NORMAL
/**
* Computes normal from density field at given point.
*
* \note Doesn't do normalization!
*/
static void vnormal(PROCESS *process, const float point[3], float r_no[3])
{
const float delta = process->delta;
const float f = metaball(process, point[0], point[1], point[2]);
r_no[0] = metaball(process, point[0] + delta, point[1], point[2]) - f;
r_no[1] = metaball(process, point[0], point[1] + delta, point[2]) - f;
r_no[2] = metaball(process, point[0], point[1], point[2] + delta) - f;
#if 0
f = normalize_v3(r_no);
if (0) {
float tvec[3];
delta *= 2.0f;
f = process->function(process, point[0], point[1], point[2]);
tvec[0] = process->function(process, point[0] + delta, point[1], point[2]) - f;
tvec[1] = process->function(process, point[0], point[1] + delta, point[2]) - f;
tvec[2] = process->function(process, point[0], point[1], point[2] + delta) - f;
if (normalize_v3(tvec) != 0.0f) {
add_v3_v3(r_no, tvec);
normalize_v3(r_no);
}
}
#endif
}
#endif /* USE_ACCUM_NORMAL */
/**
* \return the id of vertex between two corners.
*
* If it wasn't previously computed, does #converge() and adds vertex to process.
*/
static int vertid(PROCESS *process, const CORNER *c1, const CORNER *c2)
{
float v[3], no[3];
int vid = getedge(process->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k);
if (vid != -1) return vid; /* previously computed */
converge(process, c1, c2, v); /* position */
#ifdef USE_ACCUM_NORMAL
zero_v3(no);
#else
vnormal(process, v, no);
#endif
addtovertices(process, v, no); /* save vertex */
vid = (int)process->curvertex - 1;
setedge(process, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k, vid);
return vid;
}
/**
* Given two corners, computes approximation of surface intersection point between them.
* In case of small threshold, do bisection.
*/
static void converge(PROCESS *process, const CORNER *c1, const CORNER *c2, float r_p[3])
{
float tmp, dens;
unsigned int i;
float c1_value, c1_co[3];
float c2_value, c2_co[3];
if (c1->value < c2->value) {
c1_value = c2->value;
copy_v3_v3(c1_co, c2->co);
c2_value = c1->value;
copy_v3_v3(c2_co, c1->co);
}
else {
c1_value = c1->value;
copy_v3_v3(c1_co, c1->co);
c2_value = c2->value;
copy_v3_v3(c2_co, c2->co);
}
for (i = 0; i < process->converge_res; i++) {
interp_v3_v3v3(r_p, c1_co, c2_co, 0.5f);
dens = metaball(process, r_p[0], r_p[1], r_p[2]);
if (dens > 0.0f) {
c1_value = dens;
copy_v3_v3(c1_co, r_p);
}
else {
c2_value = dens;
copy_v3_v3(c2_co, r_p);
}
}
tmp = -c1_value / (c2_value - c1_value);
interp_v3_v3v3(r_p, c1_co, c2_co, tmp);
}
/**
* Adds cube at given lattice position to cube stack of process.
*/
static void add_cube(PROCESS *process, int i, int j, int k)
{
CUBES *ncube;
int n;
/* test if cube has been found before */
if (setcenter(process, process->centers, i, j, k) == 0) {
/* push cube on stack: */
ncube = BLI_memarena_alloc(process->pgn_elements, sizeof(CUBES));
ncube->next = process->cubes;
process->cubes = ncube;
ncube->cube.i = i;
ncube->cube.j = j;
ncube->cube.k = k;
/* set corners of initial cube: */
for (n = 0; n < 8; n++)
ncube->cube.corners[n] = setcorner(process, i + MB_BIT(n, 2), j + MB_BIT(n, 1), k + MB_BIT(n, 0));
}
}
static void next_lattice(int r[3], const float pos[3], const float size)
{
r[0] = (int)ceil((pos[0] / size) + 0.5f);
r[1] = (int)ceil((pos[1] / size) + 0.5f);
r[2] = (int)ceil((pos[2] / size) + 0.5f);
}
static void prev_lattice(int r[3], const float pos[3], const float size)
{
next_lattice(r, pos, size);
r[0]--; r[1]--; r[2]--;
}
static void closest_latice(int r[3], const float pos[3], const float size)
{
r[0] = (int)floorf(pos[0] / size + 1.0f);
r[1] = (int)floorf(pos[1] / size + 1.0f);
r[2] = (int)floorf(pos[2] / size + 1.0f);
}
/**
* Find at most 26 cubes to start polygonization from.
*/
static void find_first_points(PROCESS *process, const unsigned int em)
{
const MetaElem *ml;
int center[3], lbn[3], rtf[3], it[3], dir[3], add[3];
float tmp[3], a, b;
ml = process->mainb[em];
mid_v3_v3v3(tmp, ml->bb->vec[0], ml->bb->vec[6]);
closest_latice(center, tmp, process->size);
prev_lattice(lbn, ml->bb->vec[0], process->size);
next_lattice(rtf, ml->bb->vec[6], process->size);
for (dir[0] = -1; dir[0] <= 1; dir[0]++) {
for (dir[1] = -1; dir[1] <= 1; dir[1]++) {
for (dir[2] = -1; dir[2] <= 1; dir[2]++) {
if (dir[0] == 0 && dir[1] == 0 && dir[2] == 0) {
continue;
}
copy_v3_v3_int(it, center);
b = setcorner(process, it[0], it[1], it[2])->value;
do {
it[0] += dir[0];
it[1] += dir[1];
it[2] += dir[2];
a = b;
b = setcorner(process, it[0], it[1], it[2])->value;
if (a * b < 0.0f) {
add[0] = it[0] - dir[0];
add[1] = it[1] - dir[1];
add[2] = it[2] - dir[2];
DO_MIN(it, add);
add_cube(process, add[0], add[1], add[2]);
break;
}
} while ((it[0] > lbn[0]) && (it[1] > lbn[1]) && (it[2] > lbn[2]) &&
(it[0] < rtf[0]) && (it[1] < rtf[1]) && (it[2] < rtf[2]));
}
}
}
}
/**
* The main polygonization proc.
* Allocates memory, makes cubetable,
* finds starting surface points
* and processes cubes on the stack until none left.
*/
static void polygonize(PROCESS *process)
{
CUBE c;
unsigned int i;
process->centers = MEM_callocN(HASHSIZE * sizeof(CENTERLIST *), "mbproc->centers");
process->corners = MEM_callocN(HASHSIZE * sizeof(CORNER *), "mbproc->corners");
process->edges = MEM_callocN(2 * HASHSIZE * sizeof(EDGELIST *), "mbproc->edges");
process->bvh_queue = MEM_callocN(sizeof(MetaballBVHNode *) * process->bvh_queue_size, "Metaball BVH Queue");
makecubetable();
for (i = 0; i < process->totelem; i++) {
find_first_points(process, i);
}
while (process->cubes != NULL) {
c = process->cubes->cube;
process->cubes = process->cubes->next;
docube(process, &c);
}
}
/**
* Iterates over ALL objects in the scene and all of its sets, including
* making all duplis(not only metas). Copies metas to mainb array.
* Computes bounding boxes for building BVH. */
static void init_meta(Depsgraph *depsgraph, PROCESS *process, Scene *scene, Object *ob)
{
Scene *sce_iter = scene;
Base *base;
Object *bob;
MetaBall *mb;
const MetaElem *ml;
float obinv[4][4], obmat[4][4];
unsigned int i;
int obnr, zero_size = 0;
char obname[MAX_ID_NAME];
SceneBaseIter iter;
copy_m4_m4(obmat, ob->obmat); /* to cope with duplicators from BKE_scene_base_iter_next */
invert_m4_m4(obinv, ob->obmat);
BLI_split_name_num(obname, &obnr, ob->id.name + 2, '.');
/* make main array */
BKE_scene_base_iter_next(depsgraph, &iter, &sce_iter, 0, NULL, NULL);
while (BKE_scene_base_iter_next(depsgraph, &iter, &sce_iter, 1, &base, &bob)) {
if (bob->type == OB_MBALL) {
zero_size = 0;
ml = NULL;
if (bob == ob && (base->flag_legacy & OB_FROMDUPLI) == 0) {
mb = ob->data;
if (mb->editelems) ml = mb->editelems->first;
else ml = mb->elems.first;
}
else {
char name[MAX_ID_NAME];
int nr;
BLI_split_name_num(name, &nr, bob->id.name + 2, '.');
if (STREQ(obname, name)) {
mb = bob->data;
if (mb->editelems) ml = mb->editelems->first;
else ml = mb->elems.first;
}
}
/* when metaball object has zero scale, then MetaElem to this MetaBall
* will not be put to mainb array */
if (has_zero_axis_m4(bob->obmat)) {
zero_size = 1;
}
else if (bob->parent) {
struct Object *pob = bob->parent;
while (pob) {
if (has_zero_axis_m4(pob->obmat)) {
zero_size = 1;
break;
}
pob = pob->parent;
}
}
if (zero_size) {
while (ml) {
ml = ml->next;
}
}
else {
while (ml) {
if (!(ml->flag & MB_HIDE)) {
float pos[4][4], rot[4][4];
float expx, expy, expz;
float tempmin[3], tempmax[3];
MetaElem *new_ml;
/* make a copy because of duplicates */
new_ml = BLI_memarena_alloc(process->pgn_elements, sizeof(MetaElem));
*(new_ml) = *ml;
new_ml->bb = BLI_memarena_alloc(process->pgn_elements, sizeof(BoundBox));
new_ml->mat = BLI_memarena_alloc(process->pgn_elements, 4 * 4 * sizeof(float));
new_ml->imat = BLI_memarena_alloc(process->pgn_elements, 4 * 4 * sizeof(float));
/* too big stiffness seems only ugly due to linear interpolation
* no need to have possibility for too big stiffness */
if (ml->s > 10.0f) new_ml->s = 10.0f;
else new_ml->s = ml->s;
/* if metaball is negative, set stiffness negative */
if (new_ml->flag & MB_NEGATIVE) new_ml->s = -new_ml->s;
/* Translation of MetaElem */
unit_m4(pos);
pos[3][0] = ml->x;
pos[3][1] = ml->y;
pos[3][2] = ml->z;
/* Rotation of MetaElem is stored in quat */
quat_to_mat4(rot, ml->quat);
/* basis object space -> world -> ml object space -> position -> rotation -> ml local space */
mul_m4_series((float(*)[4])new_ml->mat, obinv, bob->obmat, pos, rot);
/* ml local space -> basis object space */
invert_m4_m4((float(*)[4])new_ml->imat, (float(*)[4])new_ml->mat);
/* rad2 is inverse of squared radius */
new_ml->rad2 = 1 / (ml->rad * ml->rad);
/* initial dimensions = radius */
expx = ml->rad;
expy = ml->rad;
expz = ml->rad;
switch (ml->type) {
case MB_BALL:
break;
case MB_CUBE: /* cube is "expanded" by expz, expy and expx */
expz += ml->expz;
ATTR_FALLTHROUGH;
case MB_PLANE: /* plane is "expanded" by expy and expx */
expy += ml->expy;
ATTR_FALLTHROUGH;
case MB_TUBE: /* tube is "expanded" by expx */
expx += ml->expx;
break;
case MB_ELIPSOID: /* ellipsoid is "stretched" by exp* */
expx *= ml->expx;
expy *= ml->expy;
expz *= ml->expz;
break;
}
/* untransformed Bounding Box of MetaElem */
/* TODO, its possible the elem type has been changed and the exp* values can use a fallback */
copy_v3_fl3(new_ml->bb->vec[0], -expx, -expy, -expz); /* 0 */
copy_v3_fl3(new_ml->bb->vec[1], +expx, -expy, -expz); /* 1 */
copy_v3_fl3(new_ml->bb->vec[2], +expx, +expy, -expz); /* 2 */
copy_v3_fl3(new_ml->bb->vec[3], -expx, +expy, -expz); /* 3 */
copy_v3_fl3(new_ml->bb->vec[4], -expx, -expy, +expz); /* 4 */
copy_v3_fl3(new_ml->bb->vec[5], +expx, -expy, +expz); /* 5 */
copy_v3_fl3(new_ml->bb->vec[6], +expx, +expy, +expz); /* 6 */
copy_v3_fl3(new_ml->bb->vec[7], -expx, +expy, +expz); /* 7 */
/* transformation of Metalem bb */
for (i = 0; i < 8; i++)
mul_m4_v3((float(*)[4])new_ml->mat, new_ml->bb->vec[i]);
/* find max and min of transformed bb */
INIT_MINMAX(tempmin, tempmax);
for (i = 0; i < 8; i++) {
DO_MINMAX(new_ml->bb->vec[i], tempmin, tempmax);
}
/* set only point 0 and 6 - AABB of Metaelem */
copy_v3_v3(new_ml->bb->vec[0], tempmin);
copy_v3_v3(new_ml->bb->vec[6], tempmax);
/* add new_ml to mainb[] */
if (UNLIKELY(process->totelem == process->mem)) {
process->mem = process->mem * 2 + 10;
process->mainb = MEM_reallocN(process->mainb, sizeof(MetaElem *) * process->mem);
}
process->mainb[process->totelem++] = new_ml;
}
ml = ml->next;
}
}
}
}
/* compute AABB of all Metaelems */
if (process->totelem > 0) {
copy_v3_v3(process->allbb.min, process->mainb[0]->bb->vec[0]);
copy_v3_v3(process->allbb.max, process->mainb[0]->bb->vec[6]);
for (i = 1; i < process->totelem; i++)
make_box_union(process->mainb[i]->bb, &process->allbb, &process->allbb);
}
}
void BKE_mball_polygonize(Depsgraph *depsgraph, Scene *scene, Object *ob, ListBase *dispbase)
{
MetaBall *mb;
DispList *dl;
unsigned int a;
PROCESS process = {0};
bool is_render = DEG_get_mode(depsgraph) == DAG_EVAL_RENDER;
mb = ob->data;
process.thresh = mb->thresh;
if (process.thresh < 0.001f) process.converge_res = 16;
else if (process.thresh < 0.01f) process.converge_res = 8;
else if (process.thresh < 0.1f) process.converge_res = 4;
else process.converge_res = 2;
if (is_render && (mb->flag == MB_UPDATE_NEVER)) return;
if ((G.moving & (G_TRANSFORM_OBJ | G_TRANSFORM_EDIT)) && mb->flag == MB_UPDATE_FAST) return;
if (is_render) {
process.size = mb->rendersize;
}
else {
process.size = mb->wiresize;
if ((G.moving & (G_TRANSFORM_OBJ | G_TRANSFORM_EDIT)) && mb->flag == MB_UPDATE_HALFRES) {
process.size *= 2.0f;
}
}
process.delta = process.size * 0.001f;
process.pgn_elements = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "Metaball memarena");
/* initialize all mainb (MetaElems) */
init_meta(depsgraph, &process, scene, ob);
if (process.totelem > 0) {
build_bvh_spatial(&process, &process.metaball_bvh, 0, process.totelem, &process.allbb);
/* don't polygonize metaballs with too high resolution (base mball to small)
* note: Eps was 0.0001f but this was giving problems for blood animation for durian, using 0.00001f */
if (ob->size[0] > 0.00001f * (process.allbb.max[0] - process.allbb.min[0]) ||
ob->size[1] > 0.00001f * (process.allbb.max[1] - process.allbb.min[1]) ||
ob->size[2] > 0.00001f * (process.allbb.max[2] - process.allbb.min[2]))
{
polygonize(&process);
/* add resulting surface to displist */
if (process.curindex) {
dl = MEM_callocN(sizeof(DispList), "mballdisp");
BLI_addtail(dispbase, dl);
dl->type = DL_INDEX4;
dl->nr = (int)process.curvertex;
dl->parts = (int)process.curindex;
dl->index = (int *)process.indices;
for (a = 0; a < process.curvertex; a++) {
normalize_v3(process.no[a]);
}
dl->verts = (float *)process.co;
dl->nors = (float *)process.no;
}
}
}
freepolygonize(&process);
}