tornavis/source/blender/blenkernel/intern/armature.c

2474 lines
75 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Full recode, Ton Roosendaal, Crete 2005
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/armature.c
* \ingroup bke
*/
#include <ctype.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_listbase.h"
#include "BLI_string.h"
#include "BLI_ghash.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "DNA_anim_types.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_mesh_types.h"
#include "DNA_lattice_types.h"
#include "DNA_listBase.h"
#include "DNA_meshdata_types.h"
#include "DNA_scene_types.h"
#include "DNA_object_types.h"
#include "BKE_animsys.h"
#include "BKE_armature.h"
#include "BKE_action.h"
#include "BKE_anim.h"
#include "BKE_constraint.h"
#include "BKE_curve.h"
#include "BKE_depsgraph.h"
#include "BKE_DerivedMesh.h"
#include "BKE_deform.h"
#include "BKE_displist.h"
#include "BKE_idprop.h"
#include "BKE_library.h"
#include "BKE_library_query.h"
#include "BKE_library_remap.h"
#include "BKE_lattice.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BKE_scene.h"
#include "BIK_api.h"
#include "BKE_sketch.h"
/* **************** Generic Functions, data level *************** */
bArmature *BKE_armature_add(Main *bmain, const char *name)
{
bArmature *arm;
arm = BKE_libblock_alloc(bmain, ID_AR, name, 0);
arm->deformflag = ARM_DEF_VGROUP | ARM_DEF_ENVELOPE;
arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
arm->layer = 1;
arm->ghostsize = 1;
return arm;
}
bArmature *BKE_armature_from_object(Object *ob)
{
if (ob->type == OB_ARMATURE)
return (bArmature *)ob->data;
return NULL;
}
int BKE_armature_bonelist_count(ListBase *lb)
{
int i = 0;
for (Bone *bone = lb->first; bone; bone = bone->next) {
i += 1 + BKE_armature_bonelist_count(&bone->childbase);
}
return i;
}
void BKE_armature_bonelist_free(ListBase *lb)
{
Bone *bone;
for (bone = lb->first; bone; bone = bone->next) {
if (bone->prop) {
IDP_FreeProperty(bone->prop);
MEM_freeN(bone->prop);
}
BKE_armature_bonelist_free(&bone->childbase);
}
BLI_freelistN(lb);
}
/** Free (or release) any data used by this armature (does not free the armature itself). */
void BKE_armature_free(bArmature *arm)
{
BKE_animdata_free(&arm->id, false);
BKE_armature_bonelist_free(&arm->bonebase);
/* free editmode data */
if (arm->edbo) {
BLI_freelistN(arm->edbo);
MEM_freeN(arm->edbo);
arm->edbo = NULL;
}
/* free sketch */
if (arm->sketch) {
freeSketch(arm->sketch);
arm->sketch = NULL;
}
}
void BKE_armature_make_local(Main *bmain, bArmature *arm, const bool lib_local)
{
BKE_id_make_local_generic(bmain, &arm->id, true, lib_local);
}
static void copy_bonechildren(
Bone *bone_dst, const Bone *bone_src, const Bone *bone_src_act, Bone **r_bone_dst_act, const int flag)
{
Bone *bone_src_child, *bone_dst_child;
if (bone_src == bone_src_act) {
*r_bone_dst_act = bone_dst;
}
if (bone_src->prop) {
bone_dst->prop = IDP_CopyProperty_ex(bone_src->prop, flag);
}
/* Copy this bone's list */
BLI_duplicatelist(&bone_dst->childbase, &bone_src->childbase);
/* For each child in the list, update it's children */
for (bone_src_child = bone_src->childbase.first, bone_dst_child = bone_dst->childbase.first;
bone_src_child;
bone_src_child = bone_src_child->next, bone_dst_child = bone_dst_child->next)
{
bone_dst_child->parent = bone_dst;
copy_bonechildren(bone_dst_child, bone_src_child, bone_src_act, r_bone_dst_act, flag);
}
}
/**
* Only copy internal data of Armature ID from source to already allocated/initialized destination.
* You probably nerver want to use that directly, use id_copy or BKE_id_copy_ex for typical needs.
*
* WARNING! This function will not handle ID user count!
*
* \param flag Copying options (see BKE_library.h's LIB_ID_COPY_... flags for more).
*/
void BKE_armature_copy_data(Main *UNUSED(bmain), bArmature *arm_dst, const bArmature *arm_src, const int flag)
{
Bone *bone_src, *bone_dst;
Bone *bone_dst_act = NULL;
/* We never handle usercount here for own data. */
const int flag_subdata = flag | LIB_ID_CREATE_NO_USER_REFCOUNT;
BLI_duplicatelist(&arm_dst->bonebase, &arm_src->bonebase);
/* Duplicate the childrens' lists */
bone_dst = arm_dst->bonebase.first;
for (bone_src = arm_src->bonebase.first; bone_src; bone_src = bone_src->next) {
bone_dst->parent = NULL;
copy_bonechildren(bone_dst, bone_src, arm_src->act_bone, &bone_dst_act, flag_subdata);
bone_dst = bone_dst->next;
}
arm_dst->act_bone = bone_dst_act;
arm_dst->edbo = NULL;
arm_dst->act_edbone = NULL;
arm_dst->sketch = NULL;
}
bArmature *BKE_armature_copy(Main *bmain, const bArmature *arm)
{
bArmature *arm_copy;
BKE_id_copy_ex(bmain, &arm->id, (ID **)&arm_copy, 0, false);
return arm_copy;
}
static Bone *get_named_bone_bonechildren(ListBase *lb, const char *name)
{
Bone *curBone, *rbone;
for (curBone = lb->first; curBone; curBone = curBone->next) {
if (STREQ(curBone->name, name))
return curBone;
rbone = get_named_bone_bonechildren(&curBone->childbase, name);
if (rbone)
return rbone;
}
return NULL;
}
/**
* Walk the list until the bone is found (slow!),
* use #BKE_armature_bone_from_name_map for multiple lookups.
*/
Bone *BKE_armature_find_bone_name(bArmature *arm, const char *name)
{
if (!arm)
return NULL;
return get_named_bone_bonechildren(&arm->bonebase, name);
}
static void armature_bone_from_name_insert_recursive(GHash *bone_hash, ListBase *lb)
{
for (Bone *bone = lb->first; bone; bone = bone->next) {
BLI_ghash_insert(bone_hash, bone->name, bone);
armature_bone_from_name_insert_recursive(bone_hash, &bone->childbase);
}
}
/**
* Create a (name -> bone) map.
*
* \note typically #bPose.chanhash us used via #BKE_pose_channel_find_name
* this is for the cases we can't use pose channels.
*/
GHash *BKE_armature_bone_from_name_map(bArmature *arm)
{
const int bones_count = BKE_armature_bonelist_count(&arm->bonebase);
GHash *bone_hash = BLI_ghash_str_new_ex(__func__, bones_count);
armature_bone_from_name_insert_recursive(bone_hash, &arm->bonebase);
return bone_hash;
}
bool BKE_armature_bone_flag_test_recursive(const Bone *bone, int flag)
{
if (bone->flag & flag) {
return true;
}
else if (bone->parent) {
return BKE_armature_bone_flag_test_recursive(bone->parent, flag);
}
else {
return false;
}
}
/* Finds the best possible extension to the name on a particular axis. (For renaming, check for
* unique names afterwards) strip_number: removes number extensions (TODO: not used)
* axis: the axis to name on
* head/tail: the head/tail co-ordinate of the bone on the specified axis */
int bone_autoside_name(char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail)
{
unsigned int len;
char basename[MAXBONENAME] = "";
char extension[5] = "";
len = strlen(name);
if (len == 0)
return 0;
BLI_strncpy(basename, name, sizeof(basename));
/* Figure out extension to append:
* - The extension to append is based upon the axis that we are working on.
* - If head happens to be on 0, then we must consider the tail position as well to decide
* which side the bone is on
* -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
* -> Otherwise, extension is added from perspective of object based on which side tail goes to
* - If head is non-zero, extension is added from perspective of object based on side head is on
*/
if (axis == 2) {
/* z-axis - vertical (top/bottom) */
if (IS_EQF(head, 0.0f)) {
if (tail < 0)
strcpy(extension, "Bot");
else if (tail > 0)
strcpy(extension, "Top");
}
else {
if (head < 0)
strcpy(extension, "Bot");
else
strcpy(extension, "Top");
}
}
else if (axis == 1) {
/* y-axis - depth (front/back) */
if (IS_EQF(head, 0.0f)) {
if (tail < 0)
strcpy(extension, "Fr");
else if (tail > 0)
strcpy(extension, "Bk");
}
else {
if (head < 0)
strcpy(extension, "Fr");
else
strcpy(extension, "Bk");
}
}
else {
/* x-axis - horizontal (left/right) */
if (IS_EQF(head, 0.0f)) {
if (tail < 0)
strcpy(extension, "R");
else if (tail > 0)
strcpy(extension, "L");
}
else {
if (head < 0)
strcpy(extension, "R");
/* XXX Shouldn't this be simple else, as for z and y axes? */
else if (head > 0)
strcpy(extension, "L");
}
}
/* Simple name truncation
* - truncate if there is an extension and it wouldn't be able to fit
* - otherwise, just append to end
*/
if (extension[0]) {
bool changed = true;
while (changed) { /* remove extensions */
changed = false;
if (len > 2 && basename[len - 2] == '.') {
if (basename[len - 1] == 'L' || basename[len - 1] == 'R') { /* L R */
basename[len - 2] = '\0';
len -= 2;
changed = true;
}
}
else if (len > 3 && basename[len - 3] == '.') {
if ((basename[len - 2] == 'F' && basename[len - 1] == 'r') || /* Fr */
(basename[len - 2] == 'B' && basename[len - 1] == 'k')) /* Bk */
{
basename[len - 3] = '\0';
len -= 3;
changed = true;
}
}
else if (len > 4 && basename[len - 4] == '.') {
if ((basename[len - 3] == 'T' && basename[len - 2] == 'o' && basename[len - 1] == 'p') || /* Top */
(basename[len - 3] == 'B' && basename[len - 2] == 'o' && basename[len - 1] == 't')) /* Bot */
{
basename[len - 4] = '\0';
len -= 4;
changed = true;
}
}
}
if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */
strncpy(name, basename, len - strlen(extension));
}
BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension);
return 1;
}
else
return 0;
}
/* ************* B-Bone support ******************* */
/* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
void equalize_bbone_bezier(float *data, int desired)
{
float *fp, totdist, ddist, dist, fac1, fac2;
float pdist[MAX_BBONE_SUBDIV + 1];
float temp[MAX_BBONE_SUBDIV + 1][4];
int a, nr;
pdist[0] = 0.0f;
for (a = 0, fp = data; a < MAX_BBONE_SUBDIV; a++, fp += 4) {
copy_qt_qt(temp[a], fp);
pdist[a + 1] = pdist[a] + len_v3v3(fp, fp + 4);
}
/* do last point */
copy_qt_qt(temp[a], fp);
totdist = pdist[a];
/* go over distances and calculate new points */
ddist = totdist / ((float)desired);
nr = 1;
for (a = 1, fp = data + 4; a < desired; a++, fp += 4) {
dist = ((float)a) * ddist;
/* we're looking for location (distance) 'dist' in the array */
while ((nr < MAX_BBONE_SUBDIV) && (dist >= pdist[nr]))
nr++;
fac1 = pdist[nr] - pdist[nr - 1];
fac2 = pdist[nr] - dist;
fac1 = fac2 / fac1;
fac2 = 1.0f - fac1;
fp[0] = fac1 * temp[nr - 1][0] + fac2 * temp[nr][0];
fp[1] = fac1 * temp[nr - 1][1] + fac2 * temp[nr][1];
fp[2] = fac1 * temp[nr - 1][2] + fac2 * temp[nr][2];
fp[3] = fac1 * temp[nr - 1][3] + fac2 * temp[nr][3];
}
/* set last point, needed for orientation calculus */
copy_qt_qt(fp, temp[MAX_BBONE_SUBDIV]);
}
/* returns pointer to static array, filled with desired amount of bone->segments elements */
/* this calculation is done within unit bone space */
void b_bone_spline_setup(bPoseChannel *pchan, int rest, Mat4 result_array[MAX_BBONE_SUBDIV])
{
bPoseChannel *next, *prev;
Bone *bone = pchan->bone;
float h1[3], h2[3], scale[3], length, roll1 = 0.0f, roll2;
float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
float data[MAX_BBONE_SUBDIV + 1][4], *fp;
int a;
bool do_scale = false;
length = bone->length;
if (!rest) {
/* check if we need to take non-uniform bone scaling into account */
mat4_to_size(scale, pchan->pose_mat);
if (fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) {
size_to_mat4(scalemat, scale);
invert_m4_m4(iscalemat, scalemat);
length *= scale[1];
do_scale = 1;
}
}
/* get "next" and "prev" bones - these are used for handle calculations */
if (pchan->bboneflag & PCHAN_BBONE_CUSTOM_HANDLES) {
/* use the provided bones as the next/prev - leave blank to eliminate this effect altogether */
prev = pchan->bbone_prev;
next = pchan->bbone_next;
}
else {
/* evaluate next and prev bones */
if (bone->flag & BONE_CONNECTED)
prev = pchan->parent;
else
prev = NULL;
next = pchan->child;
}
/* find the handle points, since this is inside bone space, the
* first point = (0, 0, 0)
* last point = (0, length, 0) */
if (rest) {
invert_m4_m4(imat, pchan->bone->arm_mat);
}
else if (do_scale) {
copy_m4_m4(posemat, pchan->pose_mat);
normalize_m4(posemat);
invert_m4_m4(imat, posemat);
}
else
invert_m4_m4(imat, pchan->pose_mat);
if (prev) {
float difmat[4][4], result[3][3], imat3[3][3];
/* transform previous point inside this bone space */
if ((pchan->bboneflag & PCHAN_BBONE_CUSTOM_HANDLES) &&
(pchan->bboneflag & PCHAN_BBONE_CUSTOM_START_REL))
{
/* Use delta movement (from restpose), and apply this relative to the current bone's head */
if (rest) {
/* in restpose, arm_head == pose_head */
h1[0] = h1[1] = h1[2] = 0.0f;
}
else {
float delta[3];
sub_v3_v3v3(delta, prev->pose_head, prev->bone->arm_head);
sub_v3_v3v3(h1, pchan->pose_head, delta);
}
}
else {
/* Use bone head as absolute position */
if (rest)
copy_v3_v3(h1, prev->bone->arm_head);
else
copy_v3_v3(h1, prev->pose_head);
}
mul_m4_v3(imat, h1);
if (prev->bone->segments > 1) {
/* if previous bone is B-bone too, use average handle direction */
h1[1] -= length;
roll1 = 0.0f;
}
normalize_v3(h1);
negate_v3(h1);
if (prev->bone->segments == 1) {
/* find the previous roll to interpolate */
if (rest)
mul_m4_m4m4(difmat, imat, prev->bone->arm_mat);
else
mul_m4_m4m4(difmat, imat, prev->pose_mat);
copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
vec_roll_to_mat3(h1, 0.0f, mat3); /* the result of vec_roll without roll */
invert_m3_m3(imat3, mat3);
mul_m3_m3m3(mat3, result, imat3); /* the matrix transforming vec_roll to desired roll */
roll1 = atan2f(mat3[2][0], mat3[2][2]);
}
}
else {
h1[0] = 0.0f; h1[1] = 1.0; h1[2] = 0.0f;
roll1 = 0.0f;
}
if (next) {
float difmat[4][4], result[3][3], imat3[3][3];
/* transform next point inside this bone space */
if ((pchan->bboneflag & PCHAN_BBONE_CUSTOM_HANDLES) &&
(pchan->bboneflag & PCHAN_BBONE_CUSTOM_END_REL))
{
/* Use delta movement (from restpose), and apply this relative to the current bone's tail */
if (rest) {
/* in restpose, arm_tail == pose_tail */
h2[0] = h2[1] = h2[2] = 0.0f;
}
else {
float delta[3];
sub_v3_v3v3(delta, next->pose_tail, next->bone->arm_tail);
add_v3_v3v3(h2, pchan->pose_tail, delta);
}
}
else {
/* Use bone tail as absolute position */
if (rest)
copy_v3_v3(h2, next->bone->arm_tail);
else
copy_v3_v3(h2, next->pose_tail);
}
mul_m4_v3(imat, h2);
/* if next bone is B-bone too, use average handle direction */
if (next->bone->segments > 1) {
/* pass */
}
else {
h2[1] -= length;
}
normalize_v3(h2);
/* find the next roll to interpolate as well */
if (rest)
mul_m4_m4m4(difmat, imat, next->bone->arm_mat);
else
mul_m4_m4m4(difmat, imat, next->pose_mat);
copy_m3_m4(result, difmat); /* the desired rotation at beginning of next bone */
vec_roll_to_mat3(h2, 0.0f, mat3); /* the result of vec_roll without roll */
invert_m3_m3(imat3, mat3);
mul_m3_m3m3(mat3, imat3, result); /* the matrix transforming vec_roll to desired roll */
roll2 = atan2f(mat3[2][0], mat3[2][2]);
}
else {
h2[0] = 0.0f; h2[1] = 1.0f; h2[2] = 0.0f;
roll2 = 0.0;
}
{
const float circle_factor = length * (cubic_tangent_factor_circle_v3(h1, h2) / 0.75f);
const float combined_ease1 = bone->ease1 + (!rest ? pchan->ease1 : 0.0f);
const float combined_ease2 = bone->ease2 + (!rest ? pchan->ease2 : 0.0f);
const float hlength1 = combined_ease1 * circle_factor;
const float hlength2 = combined_ease2 * circle_factor;
/* and only now negate h2 */
mul_v3_fl(h1, hlength1);
mul_v3_fl(h2, -hlength2);
}
/* Add effects from bbone properties over the top
* - These properties allow users to hand-animate the
* bone curve/shape, without having to resort to using
* extra bones
* - The "bone" level offsets are for defining the restpose
* shape of the bone (e.g. for curved eyebrows for example).
* -> In the viewport, it's needed to define what the rest pose
* looks like
* -> For "rest == 0", we also still need to have it present
* so that we can "cancel out" this restpose when it comes
* time to deform some geometry, it won't cause double transforms.
* - The "pchan" level offsets are the ones that animators actually
* end up animating
*/
{
/* add extra rolls */
roll1 += bone->roll1 + (!rest ? pchan->roll1 : 0.0f);
roll2 += bone->roll2 + (!rest ? pchan->roll2 : 0.0f);
if (bone->flag & BONE_ADD_PARENT_END_ROLL) {
if (prev) {
if (prev->bone)
roll1 += prev->bone->roll2;
if (!rest)
roll1 += prev->roll2;
}
}
/* extra curve x / y */
/* NOTE: Scale correction factors here are to compensate for some random floating-point glitches
* when scaling up the bone or it's parent by a factor of approximately 8.15/6, which results
* in the bone length getting scaled up too (from 1 to 8), causing the curve to flatten out.
*/
const float xscale_correction = (do_scale) ? scale[0] : 1.0f;
const float yscale_correction = (do_scale) ? scale[2] : 1.0f;
h1[0] += (bone->curveInX + (!rest ? pchan->curveInX : 0.0f)) * xscale_correction;
h1[2] += (bone->curveInY + (!rest ? pchan->curveInY : 0.0f)) * yscale_correction;
h2[0] += (bone->curveOutX + (!rest ? pchan->curveOutX : 0.0f)) * xscale_correction;
h2[2] += (bone->curveOutY + (!rest ? pchan->curveOutY : 0.0f)) * yscale_correction;
}
/* make curve */
if (bone->segments > MAX_BBONE_SUBDIV)
bone->segments = MAX_BBONE_SUBDIV;
BKE_curve_forward_diff_bezier(0.0f, h1[0], h2[0], 0.0f, data[0], MAX_BBONE_SUBDIV, 4 * sizeof(float));
BKE_curve_forward_diff_bezier(0.0f, h1[1], length + h2[1], length, data[0] + 1, MAX_BBONE_SUBDIV, 4 * sizeof(float));
BKE_curve_forward_diff_bezier(0.0f, h1[2], h2[2], 0.0f, data[0] + 2, MAX_BBONE_SUBDIV, 4 * sizeof(float));
BKE_curve_forward_diff_bezier(roll1, roll1 + 0.390464f * (roll2 - roll1), roll2 - 0.390464f * (roll2 - roll1), roll2, data[0] + 3, MAX_BBONE_SUBDIV, 4 * sizeof(float));
equalize_bbone_bezier(data[0], bone->segments); /* note: does stride 4! */
/* make transformation matrices for the segments for drawing */
for (a = 0, fp = data[0]; a < bone->segments; a++, fp += 4) {
sub_v3_v3v3(h1, fp + 4, fp);
vec_roll_to_mat3(h1, fp[3], mat3); /* fp[3] is roll */
copy_m4_m3(result_array[a].mat, mat3);
copy_v3_v3(result_array[a].mat[3], fp);
if (do_scale) {
/* correct for scaling when this matrix is used in scaled space */
mul_m4_series(result_array[a].mat, iscalemat, result_array[a].mat, scalemat);
}
/* BBone scale... */
{
const int num_segments = bone->segments;
const float scaleIn = bone->scaleIn * (!rest ? pchan->scaleIn : 1.0f);
const float scaleFactorIn = 1.0f + (scaleIn - 1.0f) * ((float)(num_segments - a) / (float)num_segments);
const float scaleOut = bone->scaleOut * (!rest ? pchan->scaleOut : 1.0f);
const float scaleFactorOut = 1.0f + (scaleOut - 1.0f) * ((float)(a + 1) / (float)num_segments);
const float scalefac = scaleFactorIn * scaleFactorOut;
float bscalemat[4][4], bscale[3];
bscale[0] = scalefac;
bscale[1] = 1.0f;
bscale[2] = scalefac;
size_to_mat4(bscalemat, bscale);
/* Note: don't multiply by inverse scale mat here, as it causes problems with scaling shearing and breaking segment chains */
/*mul_m4_series(result_array[a].mat, ibscalemat, result_array[a].mat, bscalemat);*/
mul_m4_series(result_array[a].mat, result_array[a].mat, bscalemat);
}
}
}
/* ************ Armature Deform ******************* */
typedef struct bPoseChanDeform {
Mat4 *b_bone_mats;
DualQuat *dual_quat;
DualQuat *b_bone_dual_quats;
} bPoseChanDeform;
static void pchan_b_bone_defmats(bPoseChannel *pchan, bPoseChanDeform *pdef_info, const bool use_quaternion)
{
Bone *bone = pchan->bone;
Mat4 b_bone[MAX_BBONE_SUBDIV], b_bone_rest[MAX_BBONE_SUBDIV];
Mat4 *b_bone_mats;
DualQuat *b_bone_dual_quats = NULL;
int a;
b_bone_spline_setup(pchan, 0, b_bone);
b_bone_spline_setup(pchan, 1, b_bone_rest);
/* allocate b_bone matrices and dual quats */
b_bone_mats = MEM_mallocN((1 + bone->segments) * sizeof(Mat4), "BBone defmats");
pdef_info->b_bone_mats = b_bone_mats;
if (use_quaternion) {
b_bone_dual_quats = MEM_mallocN((bone->segments) * sizeof(DualQuat), "BBone dqs");
pdef_info->b_bone_dual_quats = b_bone_dual_quats;
}
/* first matrix is the inverse arm_mat, to bring points in local bone space
* for finding out which segment it belongs to */
invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);
/* then we make the b_bone_mats:
* - first transform to local bone space
* - translate over the curve to the bbone mat space
* - transform with b_bone matrix
* - transform back into global space */
for (a = 0; a < bone->segments; a++) {
float tmat[4][4];
invert_m4_m4(tmat, b_bone_rest[a].mat);
mul_m4_series(b_bone_mats[a + 1].mat, pchan->chan_mat, bone->arm_mat, b_bone[a].mat, tmat, b_bone_mats[0].mat);
if (use_quaternion)
mat4_to_dquat(&b_bone_dual_quats[a], bone->arm_mat, b_bone_mats[a + 1].mat);
}
}
static void b_bone_deform(bPoseChanDeform *pdef_info, Bone *bone, float co[3], DualQuat *dq, float defmat[3][3])
{
Mat4 *b_bone = pdef_info->b_bone_mats;
float (*mat)[4] = b_bone[0].mat;
float segment, y;
int a;
/* need to transform co back to bonespace, only need y */
y = mat[0][1] * co[0] + mat[1][1] * co[1] + mat[2][1] * co[2] + mat[3][1];
/* now calculate which of the b_bones are deforming this */
segment = bone->length / ((float)bone->segments);
a = (int)(y / segment);
/* note; by clamping it extends deform at endpoints, goes best with
* straight joints in restpos. */
CLAMP(a, 0, bone->segments - 1);
if (dq) {
copy_dq_dq(dq, &(pdef_info->b_bone_dual_quats)[a]);
}
else {
mul_m4_v3(b_bone[a + 1].mat, co);
if (defmat) {
copy_m3_m4(defmat, b_bone[a + 1].mat);
}
}
}
/* using vec with dist to bone b1 - b2 */
float distfactor_to_bone(const float vec[3], const float b1[3], const float b2[3], float rad1, float rad2, float rdist)
{
float dist_sq;
float bdelta[3];
float pdelta[3];
float hsqr, a, l, rad;
sub_v3_v3v3(bdelta, b2, b1);
l = normalize_v3(bdelta);
sub_v3_v3v3(pdelta, vec, b1);
a = dot_v3v3(bdelta, pdelta);
hsqr = len_squared_v3(pdelta);
if (a < 0.0f) {
/* If we're past the end of the bone, do a spherical field attenuation thing */
dist_sq = len_squared_v3v3(b1, vec);
rad = rad1;
}
else if (a > l) {
/* If we're past the end of the bone, do a spherical field attenuation thing */
dist_sq = len_squared_v3v3(b2, vec);
rad = rad2;
}
else {
dist_sq = (hsqr - (a * a));
if (l != 0.0f) {
rad = a / l;
rad = rad * rad2 + (1.0f - rad) * rad1;
}
else
rad = rad1;
}
a = rad * rad;
if (dist_sq < a)
return 1.0f;
else {
l = rad + rdist;
l *= l;
if (rdist == 0.0f || dist_sq >= l)
return 0.0f;
else {
a = sqrtf(dist_sq) - rad;
return 1.0f - (a * a) / (rdist * rdist);
}
}
}
static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[3][3], float mat[3][3])
{
float wmat[3][3];
if (pchan->bone->segments > 1)
copy_m3_m3(wmat, bbonemat);
else
copy_m3_m4(wmat, pchan->chan_mat);
mul_m3_fl(wmat, weight);
add_m3_m3m3(mat, mat, wmat);
}
static float dist_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float vec[3], DualQuat *dq,
float mat[3][3], const float co[3])
{
Bone *bone = pchan->bone;
float fac, contrib = 0.0;
float cop[3], bbonemat[3][3];
DualQuat bbonedq;
if (bone == NULL)
return 0.0f;
copy_v3_v3(cop, co);
fac = distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
if (fac > 0.0f) {
fac *= bone->weight;
contrib = fac;
if (contrib > 0.0f) {
if (vec) {
if (bone->segments > 1)
/* applies on cop and bbonemat */
b_bone_deform(pdef_info, bone, cop, NULL, (mat) ? bbonemat : NULL);
else
mul_m4_v3(pchan->chan_mat, cop);
/* Make this a delta from the base position */
sub_v3_v3(cop, co);
madd_v3_v3fl(vec, cop, fac);
if (mat)
pchan_deform_mat_add(pchan, fac, bbonemat, mat);
}
else {
if (bone->segments > 1) {
b_bone_deform(pdef_info, bone, cop, &bbonedq, NULL);
add_weighted_dq_dq(dq, &bbonedq, fac);
}
else
add_weighted_dq_dq(dq, pdef_info->dual_quat, fac);
}
}
}
return contrib;
}
static void pchan_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float weight, float vec[3], DualQuat *dq,
float mat[3][3], const float co[3], float *contrib)
{
float cop[3], bbonemat[3][3];
DualQuat bbonedq;
if (!weight)
return;
copy_v3_v3(cop, co);
if (vec) {
if (pchan->bone->segments > 1)
/* applies on cop and bbonemat */
b_bone_deform(pdef_info, pchan->bone, cop, NULL, (mat) ? bbonemat : NULL);
else
mul_m4_v3(pchan->chan_mat, cop);
vec[0] += (cop[0] - co[0]) * weight;
vec[1] += (cop[1] - co[1]) * weight;
vec[2] += (cop[2] - co[2]) * weight;
if (mat)
pchan_deform_mat_add(pchan, weight, bbonemat, mat);
}
else {
if (pchan->bone->segments > 1) {
b_bone_deform(pdef_info, pchan->bone, cop, &bbonedq, NULL);
add_weighted_dq_dq(dq, &bbonedq, weight);
}
else
add_weighted_dq_dq(dq, pdef_info->dual_quat, weight);
}
(*contrib) += weight;
}
typedef struct ArmatureBBoneDefmatsData {
bPoseChanDeform *pdef_info_array;
DualQuat *dualquats;
bool use_quaternion;
} ArmatureBBoneDefmatsData;
static void armature_bbone_defmats_cb(void *userdata, Link *iter, int index)
{
ArmatureBBoneDefmatsData *data = userdata;
bPoseChannel *pchan = (bPoseChannel *)iter;
if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
bPoseChanDeform *pdef_info = &data->pdef_info_array[index];
const bool use_quaternion = data->use_quaternion;
if (pchan->bone->segments > 1) {
pchan_b_bone_defmats(pchan, pdef_info, use_quaternion);
}
if (use_quaternion) {
pdef_info->dual_quat = &data->dualquats[index];
mat4_to_dquat(pdef_info->dual_quat, pchan->bone->arm_mat, pchan->chan_mat);
}
}
}
void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm, float (*vertexCos)[3],
float (*defMats)[3][3], int numVerts, int deformflag,
float (*prevCos)[3], const char *defgrp_name)
{
bPoseChanDeform *pdef_info_array;
bPoseChanDeform *pdef_info = NULL;
bArmature *arm = armOb->data;
bPoseChannel *pchan, **defnrToPC = NULL;
int *defnrToPCIndex = NULL;
MDeformVert *dverts = NULL;
bDeformGroup *dg;
DualQuat *dualquats = NULL;
float obinv[4][4], premat[4][4], postmat[4][4];
const bool use_envelope = (deformflag & ARM_DEF_ENVELOPE) != 0;
const bool use_quaternion = (deformflag & ARM_DEF_QUATERNION) != 0;
const bool invert_vgroup = (deformflag & ARM_DEF_INVERT_VGROUP) != 0;
int defbase_tot = 0; /* safety for vertexgroup index overflow */
int i, target_totvert = 0; /* safety for vertexgroup overflow */
bool use_dverts = false;
int armature_def_nr;
int totchan;
/* in editmode, or not an armature */
if (arm->edbo || (armOb->pose == NULL)) {
return;
}
if ((armOb->pose->flag & POSE_RECALC) != 0) {
printf("ERROR! Trying to evaluate influence of armature '%s' which needs Pose recalc!", armOb->id.name);
BLI_assert(0);
}
invert_m4_m4(obinv, target->obmat);
copy_m4_m4(premat, target->obmat);
mul_m4_m4m4(postmat, obinv, armOb->obmat);
invert_m4_m4(premat, postmat);
/* bone defmats are already in the channels, chan_mat */
/* initialize B_bone matrices and dual quaternions */
totchan = BLI_listbase_count(&armOb->pose->chanbase);
if (use_quaternion) {
dualquats = MEM_callocN(sizeof(DualQuat) * totchan, "dualquats");
}
pdef_info_array = MEM_callocN(sizeof(bPoseChanDeform) * totchan, "bPoseChanDeform");
ArmatureBBoneDefmatsData data = {
.pdef_info_array = pdef_info_array, .dualquats = dualquats, .use_quaternion = use_quaternion
};
BLI_task_parallel_listbase(&armOb->pose->chanbase, &data, armature_bbone_defmats_cb, totchan > 512);
/* get the def_nr for the overall armature vertex group if present */
armature_def_nr = defgroup_name_index(target, defgrp_name);
if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
defbase_tot = BLI_listbase_count(&target->defbase);
if (target->type == OB_MESH) {
Mesh *me = target->data;
dverts = me->dvert;
if (dverts)
target_totvert = me->totvert;
}
else {
Lattice *lt = target->data;
dverts = lt->dvert;
if (dverts)
target_totvert = lt->pntsu * lt->pntsv * lt->pntsw;
}
}
/* get a vertex-deform-index to posechannel array */
if (deformflag & ARM_DEF_VGROUP) {
if (ELEM(target->type, OB_MESH, OB_LATTICE)) {
/* if we have a DerivedMesh, only use dverts if it has them */
if (dm) {
use_dverts = (dm->getVertDataArray(dm, CD_MDEFORMVERT) != NULL);
}
else if (dverts) {
use_dverts = true;
}
if (use_dverts) {
defnrToPC = MEM_callocN(sizeof(*defnrToPC) * defbase_tot, "defnrToBone");
defnrToPCIndex = MEM_callocN(sizeof(*defnrToPCIndex) * defbase_tot, "defnrToIndex");
/* TODO(sergey): Some considerations here:
*
* - Make it more generic function, maybe even keep together with chanhash.
* - Check whether keeping this consistent across frames gives speedup.
* - Don't use hash for small armatures.
*/
GHash *idx_hash = BLI_ghash_ptr_new("pose channel index by name");
int pchan_index = 0;
for (pchan = armOb->pose->chanbase.first; pchan != NULL; pchan = pchan->next, ++pchan_index) {
BLI_ghash_insert(idx_hash, pchan, SET_INT_IN_POINTER(pchan_index));
}
for (i = 0, dg = target->defbase.first; dg; i++, dg = dg->next) {
defnrToPC[i] = BKE_pose_channel_find_name(armOb->pose, dg->name);
/* exclude non-deforming bones */
if (defnrToPC[i]) {
if (defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
defnrToPC[i] = NULL;
}
else {
defnrToPCIndex[i] = GET_INT_FROM_POINTER(BLI_ghash_lookup(idx_hash, defnrToPC[i]));
}
}
}
BLI_ghash_free(idx_hash, NULL, NULL);
}
}
}
for (i = 0; i < numVerts; i++) {
MDeformVert *dvert;
DualQuat sumdq, *dq = NULL;
float *co, dco[3];
float sumvec[3], summat[3][3];
float *vec = NULL, (*smat)[3] = NULL;
float contrib = 0.0f;
float armature_weight = 1.0f; /* default to 1 if no overall def group */
float prevco_weight = 1.0f; /* weight for optional cached vertexcos */
if (use_quaternion) {
memset(&sumdq, 0, sizeof(DualQuat));
dq = &sumdq;
}
else {
sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
vec = sumvec;
if (defMats) {
zero_m3(summat);
smat = summat;
}
}
if (use_dverts || armature_def_nr != -1) {
if (dm)
dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
else if (dverts && i < target_totvert)
dvert = dverts + i;
else
dvert = NULL;
}
else
dvert = NULL;
if (armature_def_nr != -1 && dvert) {
armature_weight = defvert_find_weight(dvert, armature_def_nr);
if (invert_vgroup)
armature_weight = 1.0f - armature_weight;
/* hackish: the blending factor can be used for blending with prevCos too */
if (prevCos) {
prevco_weight = armature_weight;
armature_weight = 1.0f;
}
}
/* check if there's any point in calculating for this vert */
if (armature_weight == 0.0f)
continue;
/* get the coord we work on */
co = prevCos ? prevCos[i] : vertexCos[i];
/* Apply the object's matrix */
mul_m4_v3(premat, co);
if (use_dverts && dvert && dvert->totweight) { /* use weight groups ? */
MDeformWeight *dw = dvert->dw;
int deformed = 0;
unsigned int j;
for (j = dvert->totweight; j != 0; j--, dw++) {
const int index = dw->def_nr;
if (index >= 0 && index < defbase_tot && (pchan = defnrToPC[index])) {
float weight = dw->weight;
Bone *bone = pchan->bone;
pdef_info = pdef_info_array + defnrToPCIndex[index];
deformed = 1;
if (bone && bone->flag & BONE_MULT_VG_ENV) {
weight *= distfactor_to_bone(co, bone->arm_head, bone->arm_tail,
bone->rad_head, bone->rad_tail, bone->dist);
}
pchan_bone_deform(pchan, pdef_info, weight, vec, dq, smat, co, &contrib);
}
}
/* if there are vertexgroups but not groups with bones
* (like for softbody groups) */
if (deformed == 0 && use_envelope) {
pdef_info = pdef_info_array;
for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
if (!(pchan->bone->flag & BONE_NO_DEFORM))
contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
}
}
}
else if (use_envelope) {
pdef_info = pdef_info_array;
for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
if (!(pchan->bone->flag & BONE_NO_DEFORM))
contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
}
}
/* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
if (contrib > 0.0001f) {
if (use_quaternion) {
normalize_dq(dq, contrib);
if (armature_weight != 1.0f) {
copy_v3_v3(dco, co);
mul_v3m3_dq(dco, (defMats) ? summat : NULL, dq);
sub_v3_v3(dco, co);
mul_v3_fl(dco, armature_weight);
add_v3_v3(co, dco);
}
else
mul_v3m3_dq(co, (defMats) ? summat : NULL, dq);
smat = summat;
}
else {
mul_v3_fl(vec, armature_weight / contrib);
add_v3_v3v3(co, vec, co);
}
if (defMats) {
float pre[3][3], post[3][3], tmpmat[3][3];
copy_m3_m4(pre, premat);
copy_m3_m4(post, postmat);
copy_m3_m3(tmpmat, defMats[i]);
if (!use_quaternion) /* quaternion already is scale corrected */
mul_m3_fl(smat, armature_weight / contrib);
mul_m3_series(defMats[i], post, smat, pre, tmpmat);
}
}
/* always, check above code */
mul_m4_v3(postmat, co);
/* interpolate with previous modifier position using weight group */
if (prevCos) {
float mw = 1.0f - prevco_weight;
vertexCos[i][0] = prevco_weight * vertexCos[i][0] + mw * co[0];
vertexCos[i][1] = prevco_weight * vertexCos[i][1] + mw * co[1];
vertexCos[i][2] = prevco_weight * vertexCos[i][2] + mw * co[2];
}
}
if (dualquats)
MEM_freeN(dualquats);
if (defnrToPC)
MEM_freeN(defnrToPC);
if (defnrToPCIndex)
MEM_freeN(defnrToPCIndex);
/* free B_bone matrices */
pdef_info = pdef_info_array;
for (pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
if (pdef_info->b_bone_mats)
MEM_freeN(pdef_info->b_bone_mats);
if (pdef_info->b_bone_dual_quats)
MEM_freeN(pdef_info->b_bone_dual_quats);
}
MEM_freeN(pdef_info_array);
}
/* ************ END Armature Deform ******************* */
void get_objectspace_bone_matrix(struct Bone *bone, float M_accumulatedMatrix[4][4], int UNUSED(root),
int UNUSED(posed))
{
copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
}
/* **************** Space to Space API ****************** */
/* Convert World-Space Matrix to Pose-Space Matrix */
void BKE_armature_mat_world_to_pose(Object *ob, float inmat[4][4], float outmat[4][4])
{
float obmat[4][4];
/* prevent crashes */
if (ob == NULL)
return;
/* get inverse of (armature) object's matrix */
invert_m4_m4(obmat, ob->obmat);
/* multiply given matrix by object's-inverse to find pose-space matrix */
mul_m4_m4m4(outmat, inmat, obmat);
}
/* Convert World-Space Location to Pose-Space Location
* NOTE: this cannot be used to convert to pose-space location of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing) */
void BKE_armature_loc_world_to_pose(Object *ob, const float inloc[3], float outloc[3])
{
float xLocMat[4][4];
float nLocMat[4][4];
/* build matrix for location */
unit_m4(xLocMat);
copy_v3_v3(xLocMat[3], inloc);
/* get bone-space cursor matrix and extract location */
BKE_armature_mat_world_to_pose(ob, xLocMat, nLocMat);
copy_v3_v3(outloc, nLocMat[3]);
}
/* Simple helper, computes the offset bone matrix.
* offs_bone = yoffs(b-1) + root(b) + bonemat(b).
* Not exported, as it is only used in this file currently... */
static void get_offset_bone_mat(Bone *bone, float offs_bone[4][4])
{
BLI_assert(bone->parent != NULL);
/* Bone transform itself. */
copy_m4_m3(offs_bone, bone->bone_mat);
/* The bone's root offset (is in the parent's coordinate system). */
copy_v3_v3(offs_bone[3], bone->head);
/* Get the length translation of parent (length along y axis). */
offs_bone[3][1] += bone->parent->length;
}
/* Construct the matrices (rot/scale and loc) to apply the PoseChannels into the armature (object) space.
* I.e. (roughly) the "pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)" in the
* pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
* ...function.
*
* This allows to get the transformations of a bone in its object space, *before* constraints (and IK)
* get applied (used by pose evaluation code).
* And reverse: to find pchan transformations needed to place a bone at a given loc/rot/scale
* in object space (used by interactive transform, and snapping code).
*
* Note that, with the HINGE/NO_SCALE/NO_LOCAL_LOCATION options, the location matrix
* will differ from the rotation/scale matrix...
*
* NOTE: This cannot be used to convert to pose-space transforms of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing).
* (note: I don't understand that, so I keep it :p --mont29).
*/
void BKE_pchan_to_pose_mat(bPoseChannel *pchan, float rotscale_mat[4][4], float loc_mat[4][4])
{
Bone *bone, *parbone;
bPoseChannel *parchan;
/* set up variables for quicker access below */
bone = pchan->bone;
parbone = bone->parent;
parchan = pchan->parent;
if (parchan) {
float offs_bone[4][4];
/* yoffs(b-1) + root(b) + bonemat(b). */
get_offset_bone_mat(bone, offs_bone);
/* Compose the rotscale matrix for this bone. */
if ((bone->flag & BONE_HINGE) && (bone->flag & BONE_NO_SCALE)) {
/* Parent rest rotation and scale. */
mul_m4_m4m4(rotscale_mat, parbone->arm_mat, offs_bone);
}
else if (bone->flag & BONE_HINGE) {
/* Parent rest rotation and pose scale. */
float tmat[4][4], tscale[3];
/* Extract the scale of the parent pose matrix. */
mat4_to_size(tscale, parchan->pose_mat);
size_to_mat4(tmat, tscale);
/* Applies the parent pose scale to the rest matrix. */
mul_m4_m4m4(tmat, tmat, parbone->arm_mat);
mul_m4_m4m4(rotscale_mat, tmat, offs_bone);
}
else if (bone->flag & BONE_NO_SCALE) {
/* Parent pose rotation and rest scale (i.e. no scaling). */
float tmat[4][4];
copy_m4_m4(tmat, parchan->pose_mat);
normalize_m4(tmat);
mul_m4_m4m4(rotscale_mat, tmat, offs_bone);
}
else
mul_m4_m4m4(rotscale_mat, parchan->pose_mat, offs_bone);
/* Compose the loc matrix for this bone. */
/* NOTE: That version does not modify bone's loc when HINGE/NO_SCALE options are set. */
/* In this case, use the object's space *orientation*. */
if (bone->flag & BONE_NO_LOCAL_LOCATION) {
/* XXX I'm sure that code can be simplified! */
float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3];
unit_m4(bone_loc);
unit_m4(loc_mat);
unit_m4(tmat4);
mul_v3_m4v3(bone_loc[3], parchan->pose_mat, offs_bone[3]);
unit_m3(bone_rotscale);
copy_m3_m4(tmat3, parchan->pose_mat);
mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale);
copy_m4_m3(tmat4, bone_rotscale);
mul_m4_m4m4(loc_mat, bone_loc, tmat4);
}
/* Those flags do not affect position, use plain parent transform space! */
else if (bone->flag & (BONE_HINGE | BONE_NO_SCALE)) {
mul_m4_m4m4(loc_mat, parchan->pose_mat, offs_bone);
}
/* Else (i.e. default, usual case), just use the same matrix for rotation/scaling, and location. */
else
copy_m4_m4(loc_mat, rotscale_mat);
}
/* Root bones. */
else {
/* Rotation/scaling. */
copy_m4_m4(rotscale_mat, pchan->bone->arm_mat);
/* Translation. */
if (pchan->bone->flag & BONE_NO_LOCAL_LOCATION) {
/* Translation of arm_mat, without the rotation. */
unit_m4(loc_mat);
copy_v3_v3(loc_mat[3], pchan->bone->arm_mat[3]);
}
else
copy_m4_m4(loc_mat, rotscale_mat);
}
}
/* Convert Pose-Space Matrix to Bone-Space Matrix.
* NOTE: this cannot be used to convert to pose-space transforms of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing) */
void BKE_armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
{
float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
/* Security, this allows to call with inmat == outmat! */
copy_m4_m4(inmat_, inmat);
BKE_pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
invert_m4(rotscale_mat);
invert_m4(loc_mat);
mul_m4_m4m4(outmat, rotscale_mat, inmat_);
mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
}
/* Convert Bone-Space Matrix to Pose-Space Matrix. */
void BKE_armature_mat_bone_to_pose(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
{
float rotscale_mat[4][4], loc_mat[4][4], inmat_[4][4];
/* Security, this allows to call with inmat == outmat! */
copy_m4_m4(inmat_, inmat);
BKE_pchan_to_pose_mat(pchan, rotscale_mat, loc_mat);
mul_m4_m4m4(outmat, rotscale_mat, inmat_);
mul_v3_m4v3(outmat[3], loc_mat, inmat_[3]);
}
/* Convert Pose-Space Location to Bone-Space Location
* NOTE: this cannot be used to convert to pose-space location of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing) */
void BKE_armature_loc_pose_to_bone(bPoseChannel *pchan, const float inloc[3], float outloc[3])
{
float xLocMat[4][4];
float nLocMat[4][4];
/* build matrix for location */
unit_m4(xLocMat);
copy_v3_v3(xLocMat[3], inloc);
/* get bone-space cursor matrix and extract location */
BKE_armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
copy_v3_v3(outloc, nLocMat[3]);
}
void BKE_armature_mat_pose_to_bone_ex(Object *ob, bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
{
bPoseChannel work_pchan = *pchan;
/* recalculate pose matrix with only parent transformations,
* bone loc/sca/rot is ignored, scene and frame are not used. */
BKE_pose_where_is_bone(NULL, ob, &work_pchan, 0.0f, false);
/* find the matrix, need to remove the bone transforms first so this is
* calculated as a matrix to set rather then a difference ontop of whats
* already there. */
unit_m4(outmat);
BKE_pchan_apply_mat4(&work_pchan, outmat, false);
BKE_armature_mat_pose_to_bone(&work_pchan, inmat, outmat);
}
/* same as BKE_object_mat3_to_rot() */
void BKE_pchan_mat3_to_rot(bPoseChannel *pchan, float mat[3][3], bool use_compat)
{
BLI_ASSERT_UNIT_M3(mat);
switch (pchan->rotmode) {
case ROT_MODE_QUAT:
mat3_normalized_to_quat(pchan->quat, mat);
break;
case ROT_MODE_AXISANGLE:
mat3_normalized_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
break;
default: /* euler */
if (use_compat)
mat3_normalized_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
else
mat3_normalized_to_eulO(pchan->eul, pchan->rotmode, mat);
break;
}
}
/* Apply a 4x4 matrix to the pose bone,
* similar to BKE_object_apply_mat4() */
void BKE_pchan_apply_mat4(bPoseChannel *pchan, float mat[4][4], bool use_compat)
{
float rot[3][3];
mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
BKE_pchan_mat3_to_rot(pchan, rot, use_compat);
}
/* Remove rest-position effects from pose-transform for obtaining
* 'visual' transformation of pose-channel.
* (used by the Visual-Keyframing stuff) */
void BKE_armature_mat_pose_to_delta(float delta_mat[4][4], float pose_mat[4][4], float arm_mat[4][4])
{
float imat[4][4];
invert_m4_m4(imat, arm_mat);
mul_m4_m4m4(delta_mat, imat, pose_mat);
}
/* **************** Rotation Mode Conversions ****************************** */
/* Used for Objects and Pose Channels, since both can have multiple rotation representations */
/* Called from RNA when rotation mode changes
* - the result should be that the rotations given in the provided pointers have had conversions
* applied (as appropriate), such that the rotation of the element hasn't 'visually' changed */
void BKE_rotMode_change_values(float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
{
/* check if any change - if so, need to convert data */
if (newMode > 0) { /* to euler */
if (oldMode == ROT_MODE_AXISANGLE) {
/* axis-angle to euler */
axis_angle_to_eulO(eul, newMode, axis, *angle);
}
else if (oldMode == ROT_MODE_QUAT) {
/* quat to euler */
normalize_qt(quat);
quat_to_eulO(eul, newMode, quat);
}
/* else { no conversion needed } */
}
else if (newMode == ROT_MODE_QUAT) { /* to quat */
if (oldMode == ROT_MODE_AXISANGLE) {
/* axis angle to quat */
axis_angle_to_quat(quat, axis, *angle);
}
else if (oldMode > 0) {
/* euler to quat */
eulO_to_quat(quat, eul, oldMode);
}
/* else { no conversion needed } */
}
else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
if (oldMode > 0) {
/* euler to axis angle */
eulO_to_axis_angle(axis, angle, eul, oldMode);
}
else if (oldMode == ROT_MODE_QUAT) {
/* quat to axis angle */
normalize_qt(quat);
quat_to_axis_angle(axis, angle, quat);
}
/* when converting to axis-angle, we need a special exception for the case when there is no axis */
if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
/* for now, rotate around y-axis then (so that it simply becomes the roll) */
axis[1] = 1.0f;
}
}
}
/* **************** The new & simple (but OK!) armature evaluation ********* */
/* ****************** And how it works! ****************************************
*
* This is the bone transformation trick; they're hierarchical so each bone(b)
* is in the coord system of bone(b-1):
*
* arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
*
* -> yoffs is just the y axis translation in parent's coord system
* -> d_root is the translation of the bone root, also in parent's coord system
*
* pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
*
* we then - in init deform - store the deform in chan_mat, such that:
*
* pose_mat(b)= arm_mat(b) * chan_mat(b)
*
* *************************************************************************** */
/* Computes vector and roll based on a rotation.
* "mat" must contain only a rotation, and no scaling. */
void mat3_to_vec_roll(float mat[3][3], float r_vec[3], float *r_roll)
{
if (r_vec) {
copy_v3_v3(r_vec, mat[1]);
}
if (r_roll) {
float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
vec_roll_to_mat3(mat[1], 0.0f, vecmat);
invert_m3_m3(vecmatinv, vecmat);
mul_m3_m3m3(rollmat, vecmatinv, mat);
*r_roll = atan2f(rollmat[2][0], rollmat[2][2]);
}
}
/* Calculates the rest matrix of a bone based on its vector and a roll around that vector. */
/* Given v = (v.x, v.y, v.z) our (normalized) bone vector, we want the rotation matrix M
* from the Y axis (so that M * (0, 1, 0) = v).
* -> The rotation axis a lays on XZ plane, and it is orthonormal to v, hence to the projection of v onto XZ plane.
* -> a = (v.z, 0, -v.x)
* We know a is eigenvector of M (so M * a = a).
* Finally, we have w, such that M * w = (0, 1, 0) (i.e. the vector that will be aligned with Y axis once transformed).
* We know w is symmetric to v by the Y axis.
* -> w = (-v.x, v.y, -v.z)
*
* Solving this, we get (x, y and z being the components of v):
* ┌ (x^2 * y + z^2) / (x^2 + z^2), x, x * z * (y - 1) / (x^2 + z^2) ┐
* M = │ x * (y^2 - 1) / (x^2 + z^2), y, z * (y^2 - 1) / (x^2 + z^2) │
* └ x * z * (y - 1) / (x^2 + z^2), z, (x^2 + z^2 * y) / (x^2 + z^2) ┘
*
* This is stable as long as v (the bone) is not too much aligned with +/-Y (i.e. x and z components
* are not too close to 0).
*
* Since v is normalized, we have x^2 + y^2 + z^2 = 1, hence x^2 + z^2 = 1 - y^2 = (1 - y)(1 + y).
* This allows to simplifies M like this:
* ┌ 1 - x^2 / (1 + y), x, -x * z / (1 + y) ┐
* M = │ -x, y, -z │
* └ -x * z / (1 + y), z, 1 - z^2 / (1 + y) ┘
*
* Written this way, we see the case v = +Y is no more a singularity. The only one remaining is the bone being
* aligned with -Y.
*
* Let's handle the asymptotic behavior when bone vector is reaching the limit of y = -1. Each of the four corner
* elements can vary from -1 to 1, depending on the axis a chosen for doing the rotation. And the "rotation" here
* is in fact established by mirroring XZ plane by that given axis, then inversing the Y-axis.
* For sufficiently small x and z, and with y approaching -1, all elements but the four corner ones of M
* will degenerate. So let's now focus on these corner elements.
*
* We rewrite M so that it only contains its four corner elements, and combine the 1 / (1 + y) factor:
* ┌ 1 + y - x^2, -x * z ┐
* M* = 1 / (1 + y) * │ │
* └ -x * z, 1 + y - z^2 ┘
*
* When y is close to -1, computing 1 / (1 + y) will cause severe numerical instability, so we ignore it and
* normalize M instead. We know y^2 = 1 - (x^2 + z^2), and y < 0, hence y = -sqrt(1 - (x^2 + z^2)).
* Since x and z are both close to 0, we apply the binomial expansion to the first order:
* y = -sqrt(1 - (x^2 + z^2)) = -1 + (x^2 + z^2) / 2. Which gives:
* ┌ z^2 - x^2, -2 * x * z ┐
* M* = 1 / (x^2 + z^2) * │ │
* └ -2 * x * z, x^2 - z^2 ┘
*/
void vec_roll_to_mat3_normalized(const float nor[3], const float roll, float mat[3][3])
{
#define THETA_THRESHOLD_NEGY 1.0e-9f
#define THETA_THRESHOLD_NEGY_CLOSE 1.0e-5f
float theta;
float rMatrix[3][3], bMatrix[3][3];
BLI_ASSERT_UNIT_V3(nor);
theta = 1.0f + nor[1];
/* With old algo, 1.0e-13f caused T23954 and T31333, 1.0e-6f caused T27675 and T30438,
* so using 1.0e-9f as best compromise.
*
* New algo is supposed much more precise, since less complex computations are performed,
* but it uses two different threshold values...
*
* Note: When theta is close to zero, we have to check we do have non-null X/Z components as well
* (due to float precision errors, we can have nor = (0.0, 0.99999994, 0.0)...).
*/
if (theta > THETA_THRESHOLD_NEGY_CLOSE || ((nor[0] || nor[2]) && theta > THETA_THRESHOLD_NEGY)) {
/* nor is *not* -Y.
* We got these values for free... so be happy with it... ;)
*/
bMatrix[0][1] = -nor[0];
bMatrix[1][0] = nor[0];
bMatrix[1][1] = nor[1];
bMatrix[1][2] = nor[2];
bMatrix[2][1] = -nor[2];
if (theta > THETA_THRESHOLD_NEGY_CLOSE) {
/* If nor is far enough from -Y, apply the general case. */
bMatrix[0][0] = 1 - nor[0] * nor[0] / theta;
bMatrix[2][2] = 1 - nor[2] * nor[2] / theta;
bMatrix[2][0] = bMatrix[0][2] = -nor[0] * nor[2] / theta;
}
else {
/* If nor is too close to -Y, apply the special case. */
theta = nor[0] * nor[0] + nor[2] * nor[2];
bMatrix[0][0] = (nor[0] + nor[2]) * (nor[0] - nor[2]) / -theta;
bMatrix[2][2] = -bMatrix[0][0];
bMatrix[2][0] = bMatrix[0][2] = 2.0f * nor[0] * nor[2] / theta;
}
}
else {
/* If nor is -Y, simple symmetry by Z axis. */
unit_m3(bMatrix);
bMatrix[0][0] = bMatrix[1][1] = -1.0;
}
/* Make Roll matrix */
axis_angle_normalized_to_mat3(rMatrix, nor, roll);
/* Combine and output result */
mul_m3_m3m3(mat, rMatrix, bMatrix);
#undef THETA_THRESHOLD_NEGY
#undef THETA_THRESHOLD_NEGY_CLOSE
}
void vec_roll_to_mat3(const float vec[3], const float roll, float mat[3][3])
{
float nor[3];
normalize_v3_v3(nor, vec);
vec_roll_to_mat3_normalized(nor, roll, mat);
}
/* recursive part, calculates restposition of entire tree of children */
/* used by exiting editmode too */
void BKE_armature_where_is_bone(Bone *bone, Bone *prevbone, const bool use_recursion)
{
float vec[3];
/* Bone Space */
sub_v3_v3v3(vec, bone->tail, bone->head);
bone->length = len_v3(vec);
vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
/* this is called on old file reading too... */
if (bone->xwidth == 0.0f) {
bone->xwidth = 0.1f;
bone->zwidth = 0.1f;
bone->segments = 1;
}
if (prevbone) {
float offs_bone[4][4];
/* yoffs(b-1) + root(b) + bonemat(b) */
get_offset_bone_mat(bone, offs_bone);
/* Compose the matrix for this bone */
mul_m4_m4m4(bone->arm_mat, prevbone->arm_mat, offs_bone);
}
else {
copy_m4_m3(bone->arm_mat, bone->bone_mat);
copy_v3_v3(bone->arm_mat[3], bone->head);
}
/* and the kiddies */
if (use_recursion) {
prevbone = bone;
for (bone = bone->childbase.first; bone; bone = bone->next) {
BKE_armature_where_is_bone(bone, prevbone, use_recursion);
}
}
}
/* updates vectors and matrices on rest-position level, only needed
* after editing armature itself, now only on reading file */
void BKE_armature_where_is(bArmature *arm)
{
Bone *bone;
/* hierarchical from root to children */
for (bone = arm->bonebase.first; bone; bone = bone->next) {
BKE_armature_where_is_bone(bone, NULL, true);
}
}
/* if bone layer is protected, copy the data from from->pose
* when used with linked libraries this copies from the linked pose into the local pose */
static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
{
bPose *pose = ob->pose, *frompose = from->pose;
bPoseChannel *pchan, *pchanp;
bConstraint *con;
int error = 0;
if (frompose == NULL)
return;
/* in some cases when rigs change, we cant synchronize
* to avoid crashing check for possible errors here */
for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
if (pchan->bone->layer & layer_protected) {
if (BKE_pose_channel_find_name(frompose, pchan->name) == NULL) {
printf("failed to sync proxy armature because '%s' is missing pose channel '%s'\n",
from->id.name, pchan->name);
error = 1;
}
}
}
if (error)
return;
/* clear all transformation values from library */
BKE_pose_rest(frompose);
/* copy over all of the proxy's bone groups */
/* TODO for later
* - implement 'local' bone groups as for constraints
* Note: this isn't trivial, as bones reference groups by index not by pointer,
* so syncing things correctly needs careful attention */
BLI_freelistN(&pose->agroups);
BLI_duplicatelist(&pose->agroups, &frompose->agroups);
pose->active_group = frompose->active_group;
for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
pchanp = BKE_pose_channel_find_name(frompose, pchan->name);
if (UNLIKELY(pchanp == NULL)) {
/* happens for proxies that become invalid because of a missing link
* for regular cases it shouldn't happen at all */
}
else if (pchan->bone->layer & layer_protected) {
ListBase proxylocal_constraints = {NULL, NULL};
bPoseChannel pchanw;
/* copy posechannel to temp, but restore important pointers */
pchanw = *pchanp;
pchanw.bone = pchan->bone;
pchanw.prev = pchan->prev;
pchanw.next = pchan->next;
pchanw.parent = pchan->parent;
pchanw.child = pchan->child;
pchanw.custom_tx = pchan->custom_tx;
pchanw.mpath = pchan->mpath;
pchan->mpath = NULL;
/* this is freed so copy a copy, else undo crashes */
if (pchanw.prop) {
pchanw.prop = IDP_CopyProperty(pchanw.prop);
/* use the values from the existing props */
if (pchan->prop) {
IDP_SyncGroupValues(pchanw.prop, pchan->prop);
}
}
/* constraints - proxy constraints are flushed... local ones are added after
* 1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
* 2. copy proxy-pchan's constraints on-to new
* 3. add extracted local constraints back on top
*
* Note for BKE_constraints_copy: when copying constraints, disable 'do_extern' otherwise
* we get the libs direct linked in this blend.
*/
BKE_constraints_proxylocal_extract(&proxylocal_constraints, &pchan->constraints);
BKE_constraints_copy(&pchanw.constraints, &pchanp->constraints, false);
BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints);
/* constraints - set target ob pointer to own object */
for (con = pchanw.constraints.first; con; con = con->next) {
const bConstraintTypeInfo *cti = BKE_constraint_typeinfo_get(con);
ListBase targets = {NULL, NULL};
bConstraintTarget *ct;
if (cti && cti->get_constraint_targets) {
cti->get_constraint_targets(con, &targets);
for (ct = targets.first; ct; ct = ct->next) {
if (ct->tar == from)
ct->tar = ob;
}
if (cti->flush_constraint_targets)
cti->flush_constraint_targets(con, &targets, 0);
}
}
/* free stuff from current channel */
BKE_pose_channel_free(pchan);
/* copy data in temp back over to the cleaned-out (but still allocated) original channel */
*pchan = pchanw;
if (pchan->custom) {
id_us_plus(&pchan->custom->id);
}
}
else {
/* always copy custom shape */
pchan->custom = pchanp->custom;
if (pchan->custom) {
id_us_plus(&pchan->custom->id);
}
if (pchanp->custom_tx)
pchan->custom_tx = BKE_pose_channel_find_name(pose, pchanp->custom_tx->name);
/* ID-Property Syncing */
{
IDProperty *prop_orig = pchan->prop;
if (pchanp->prop) {
pchan->prop = IDP_CopyProperty(pchanp->prop);
if (prop_orig) {
/* copy existing values across when types match */
IDP_SyncGroupValues(pchan->prop, prop_orig);
}
}
else {
pchan->prop = NULL;
}
if (prop_orig) {
IDP_FreeProperty(prop_orig);
MEM_freeN(prop_orig);
}
}
}
}
}
static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
{
bPoseChannel *pchan = BKE_pose_channel_verify(pose, bone->name); /* verify checks and/or adds */
pchan->bone = bone;
pchan->parent = parchan;
counter++;
for (bone = bone->childbase.first; bone; bone = bone->next) {
counter = rebuild_pose_bone(pose, bone, pchan, counter);
/* for quick detecting of next bone in chain, only b-bone uses it now */
if (bone->flag & BONE_CONNECTED)
pchan->child = BKE_pose_channel_find_name(pose, bone->name);
}
return counter;
}
/**
* Clear pointers of object's pose (needed in remap case, since we cannot always wait for a complete pose rebuild).
*/
void BKE_pose_clear_pointers(bPose *pose)
{
for (bPoseChannel *pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
pchan->bone = NULL;
pchan->child = NULL;
}
}
/* only after leave editmode, duplicating, validating older files, library syncing */
/* NOTE: pose->flag is set for it */
void BKE_pose_rebuild_ex(Object *ob, bArmature *arm, const bool sort_bones)
{
Bone *bone;
bPose *pose;
bPoseChannel *pchan, *next;
int counter = 0;
/* only done here */
if (ob->pose == NULL) {
/* create new pose */
ob->pose = MEM_callocN(sizeof(bPose), "new pose");
/* set default settings for animviz */
animviz_settings_init(&ob->pose->avs);
}
pose = ob->pose;
/* clear */
BKE_pose_clear_pointers(pose);
/* first step, check if all channels are there */
for (bone = arm->bonebase.first; bone; bone = bone->next) {
counter = rebuild_pose_bone(pose, bone, NULL, counter);
}
/* and a check for garbage */
for (pchan = pose->chanbase.first; pchan; pchan = next) {
next = pchan->next;
if (pchan->bone == NULL) {
BKE_pose_channel_free(pchan);
BKE_pose_channels_hash_free(pose);
BLI_freelinkN(&pose->chanbase, pchan);
}
}
/* printf("rebuild pose %s, %d bones\n", ob->id.name, counter); */
/* synchronize protected layers with proxy */
if (ob->proxy) {
BKE_object_copy_proxy_drivers(ob, ob->proxy);
pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
}
BKE_pose_update_constraint_flags(ob->pose); /* for IK detection for example */
#ifdef WITH_LEGACY_DEPSGRAPH
/* the sorting */
/* Sorting for new dependnecy graph is done on the scene graph level. */
if (counter > 1 && sort_bones) {
DAG_pose_sort(ob);
}
#else
UNUSED_VARS(sort_bones);
#endif
ob->pose->flag &= ~POSE_RECALC;
ob->pose->flag |= POSE_WAS_REBUILT;
BKE_pose_channels_hash_make(ob->pose);
}
void BKE_pose_rebuild(Object *ob, bArmature *arm)
{
BKE_pose_rebuild_ex(ob, arm, true);
}
/* ********************** THE POSE SOLVER ******************* */
/* loc/rot/size to given mat4 */
void BKE_pchan_to_mat4(bPoseChannel *pchan, float chan_mat[4][4])
{
float smat[3][3];
float rmat[3][3];
float tmat[3][3];
/* get scaling matrix */
size_to_mat3(smat, pchan->size);
/* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
if (pchan->rotmode > 0) {
/* euler rotations (will cause gimble lock, but this can be alleviated a bit with rotation orders) */
eulO_to_mat3(rmat, pchan->eul, pchan->rotmode);
}
else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
/* axis-angle - not really that great for 3D-changing orientations */
axis_angle_to_mat3(rmat, pchan->rotAxis, pchan->rotAngle);
}
else {
/* quats are normalized before use to eliminate scaling issues */
float quat[4];
/* NOTE: we now don't normalize the stored values anymore, since this was kindof evil in some cases
* but if this proves to be too problematic, switch back to the old system of operating directly on
* the stored copy
*/
normalize_qt_qt(quat, pchan->quat);
quat_to_mat3(rmat, quat);
}
/* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
mul_m3_m3m3(tmat, rmat, smat);
copy_m4_m3(chan_mat, tmat);
/* prevent action channels breaking chains */
/* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
if ((pchan->bone == NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
copy_v3_v3(chan_mat[3], pchan->loc);
}
}
/* loc/rot/size to mat4 */
/* used in constraint.c too */
void BKE_pchan_calc_mat(bPoseChannel *pchan)
{
/* this is just a wrapper around the copy of this function which calculates the matrix
* and stores the result in any given channel
*/
BKE_pchan_to_mat4(pchan, pchan->chan_mat);
}
#if 0 /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
/* NLA strip modifiers */
static void do_strip_modifiers(Scene *scene, Object *armob, Bone *bone, bPoseChannel *pchan)
{
bActionModifier *amod;
bActionStrip *strip, *strip2;
float scene_cfra = BKE_scene_frame_get(scene);
int do_modif;
for (strip = armob->nlastrips.first; strip; strip = strip->next) {
do_modif = false;
if (scene_cfra >= strip->start && scene_cfra <= strip->end)
do_modif = true;
if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
do_modif = true;
/* if there are any other strips active, ignore modifiers for this strip -
* 'hold' option should only hold action modifiers if there are
* no other active strips */
for (strip2 = strip->next; strip2; strip2 = strip2->next) {
if (strip2 == strip) continue;
if (scene_cfra >= strip2->start && scene_cfra <= strip2->end) {
if (!(strip2->flag & ACTSTRIP_MUTE))
do_modif = false;
}
}
/* if there are any later, activated, strips with 'hold' set, they take precedence,
* so ignore modifiers for this strip */
for (strip2 = strip->next; strip2; strip2 = strip2->next) {
if (scene_cfra < strip2->start) continue;
if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
do_modif = false;
}
}
}
if (do_modif) {
/* temporal solution to prevent 2 strips accumulating */
if (scene_cfra == strip->end && strip->next && strip->next->start == scene_cfra)
continue;
for (amod = strip->modifiers.first; amod; amod = amod->next) {
switch (amod->type) {
case ACTSTRIP_MOD_DEFORM:
{
/* validate first */
if (amod->ob && amod->ob->type == OB_CURVE && amod->channel[0]) {
if (STREQ(pchan->name, amod->channel)) {
float mat4[4][4], mat3[3][3];
curve_deform_vector(scene, amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
copy_m4_m4(mat4, pchan->pose_mat);
mul_m4_m3m4(pchan->pose_mat, mat3, mat4);
}
}
}
break;
case ACTSTRIP_MOD_NOISE:
{
if (STREQ(pchan->name, amod->channel)) {
float nor[3], loc[3], ofs;
float eul[3], size[3], eulo[3], sizeo[3];
/* calculate turbulance */
ofs = amod->turbul / 200.0f;
/* make a copy of starting conditions */
copy_v3_v3(loc, pchan->pose_mat[3]);
mat4_to_eul(eul, pchan->pose_mat);
mat4_to_size(size, pchan->pose_mat);
copy_v3_v3(eulo, eul);
copy_v3_v3(sizeo, size);
/* apply noise to each set of channels */
if (amod->channels & 4) {
/* for scaling */
nor[0] = BLI_gNoise(amod->noisesize, size[0] + ofs, size[1], size[2], 0, 0) - ofs;
nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1] + ofs, size[2], 0, 0) - ofs;
nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2] + ofs, 0, 0) - ofs;
add_v3_v3(size, nor);
if (sizeo[0] != 0)
mul_v3_fl(pchan->pose_mat[0], size[0] / sizeo[0]);
if (sizeo[1] != 0)
mul_v3_fl(pchan->pose_mat[1], size[1] / sizeo[1]);
if (sizeo[2] != 0)
mul_v3_fl(pchan->pose_mat[2], size[2] / sizeo[2]);
}
if (amod->channels & 2) {
/* for rotation */
nor[0] = BLI_gNoise(amod->noisesize, eul[0] + ofs, eul[1], eul[2], 0, 0) - ofs;
nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1] + ofs, eul[2], 0, 0) - ofs;
nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2] + ofs, 0, 0) - ofs;
compatible_eul(nor, eulo);
add_v3_v3(eul, nor);
compatible_eul(eul, eulo);
loc_eul_size_to_mat4(pchan->pose_mat, loc, eul, size);
}
if (amod->channels & 1) {
/* for location */
nor[0] = BLI_gNoise(amod->noisesize, loc[0] + ofs, loc[1], loc[2], 0, 0) - ofs;
nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1] + ofs, loc[2], 0, 0) - ofs;
nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2] + ofs, 0, 0) - ofs;
add_v3_v3v3(pchan->pose_mat[3], loc, nor);
}
}
}
break;
}
}
}
}
}
#endif
/* calculate tail of posechannel */
void BKE_pose_where_is_bone_tail(bPoseChannel *pchan)
{
float vec[3];
copy_v3_v3(vec, pchan->pose_mat[1]);
mul_v3_fl(vec, pchan->bone->length);
add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
}
/* The main armature solver, does all constraints excluding IK */
/* pchan is validated, as having bone and parent pointer
* 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
*/
void BKE_pose_where_is_bone(Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, bool do_extra)
{
/* This gives a chan_mat with actions (ipos) results. */
if (do_extra)
BKE_pchan_calc_mat(pchan);
else
unit_m4(pchan->chan_mat);
/* Construct the posemat based on PoseChannels, that we do before applying constraints. */
/* pose_mat(b) = pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
BKE_armature_mat_bone_to_pose(pchan, pchan->chan_mat, pchan->pose_mat);
/* Only rootbones get the cyclic offset (unless user doesn't want that). */
/* XXX That could be a problem for snapping and other "reverse transform" features... */
if (!pchan->parent) {
if ((pchan->bone->flag & BONE_NO_CYCLICOFFSET) == 0)
add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
}
if (do_extra) {
#if 0 /* XXX OLD ANIMSYS, NLASTRIPS ARE NO LONGER USED */
/* do NLA strip modifiers - i.e. curve follow */
do_strip_modifiers(scene, ob, bone, pchan);
#endif
/* Do constraints */
if (pchan->constraints.first) {
bConstraintOb *cob;
float vec[3];
/* make a copy of location of PoseChannel for later */
copy_v3_v3(vec, pchan->pose_mat[3]);
/* prepare PoseChannel for Constraint solving
* - makes a copy of matrix, and creates temporary struct to use
*/
cob = BKE_constraints_make_evalob(scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);
/* Solve PoseChannel's Constraints */
BKE_constraints_solve(&pchan->constraints, cob, ctime); /* ctime doesnt alter objects */
/* cleanup after Constraint Solving
* - applies matrix back to pchan, and frees temporary struct used
*/
BKE_constraints_clear_evalob(cob);
/* prevent constraints breaking a chain */
if (pchan->bone->flag & BONE_CONNECTED) {
copy_v3_v3(pchan->pose_mat[3], vec);
}
}
}
/* calculate head */
copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]);
/* calculate tail */
BKE_pose_where_is_bone_tail(pchan);
}
/* This only reads anim data from channels, and writes to channels */
/* This is the only function adding poses */
void BKE_pose_where_is(Scene *scene, Object *ob)
{
bArmature *arm;
Bone *bone;
bPoseChannel *pchan;
float imat[4][4];
float ctime;
if (ob->type != OB_ARMATURE)
return;
arm = ob->data;
if (ELEM(NULL, arm, scene))
return;
if ((ob->pose == NULL) || (ob->pose->flag & POSE_RECALC))
BKE_pose_rebuild(ob, arm);
ctime = BKE_scene_frame_get(scene); /* not accurate... */
/* In editmode or restposition we read the data from the bones */
if (arm->edbo || (arm->flag & ARM_RESTPOS)) {
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
bone = pchan->bone;
if (bone) {
copy_m4_m4(pchan->pose_mat, bone->arm_mat);
copy_v3_v3(pchan->pose_head, bone->arm_head);
copy_v3_v3(pchan->pose_tail, bone->arm_tail);
}
}
}
else {
invert_m4_m4(ob->imat, ob->obmat); /* imat is needed */
/* 1. clear flags */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);
}
/* 2a. construct the IK tree (standard IK) */
BIK_initialize_tree(scene, ob, ctime);
/* 2b. construct the Spline IK trees
* - this is not integrated as an IK plugin, since it should be able
* to function in conjunction with standard IK
*/
BKE_pose_splineik_init_tree(scene, ob, ctime);
/* 3. the main loop, channels are already hierarchical sorted from root to children */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
/* 4a. if we find an IK root, we handle it separated */
if (pchan->flag & POSE_IKTREE) {
BIK_execute_tree(scene, ob, pchan, ctime);
}
/* 4b. if we find a Spline IK root, we handle it separated too */
else if (pchan->flag & POSE_IKSPLINE) {
BKE_splineik_execute_tree(scene, ob, pchan, ctime);
}
/* 5. otherwise just call the normal solver */
else if (!(pchan->flag & POSE_DONE)) {
BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
}
}
/* 6. release the IK tree */
BIK_release_tree(scene, ob, ctime);
}
/* calculating deform matrices */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
if (pchan->bone) {
invert_m4_m4(imat, pchan->bone->arm_mat);
mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
}
}
}
/************** Bounding box ********************/
static int minmax_armature(Object *ob, float r_min[3], float r_max[3])
{
bPoseChannel *pchan;
/* For now, we assume BKE_pose_where_is has already been called (hence we have valid data in pachan). */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
minmax_v3v3_v3(r_min, r_max, pchan->pose_head);
minmax_v3v3_v3(r_min, r_max, pchan->pose_tail);
}
return (BLI_listbase_is_empty(&ob->pose->chanbase) == false);
}
static void boundbox_armature(Object *ob)
{
BoundBox *bb;
float min[3], max[3];
if (ob->bb == NULL) {
ob->bb = MEM_callocN(sizeof(BoundBox), "Armature boundbox");
}
bb = ob->bb;
INIT_MINMAX(min, max);
if (!minmax_armature(ob, min, max)) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
BKE_boundbox_init_from_minmax(bb, min, max);
bb->flag &= ~BOUNDBOX_DIRTY;
}
BoundBox *BKE_armature_boundbox_get(Object *ob)
{
boundbox_armature(ob);
return ob->bb;
}
bool BKE_pose_minmax(Object *ob, float r_min[3], float r_max[3], bool use_hidden, bool use_select)
{
bool changed = false;
if (ob->pose) {
bArmature *arm = ob->data;
bPoseChannel *pchan;
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
/* XXX pchan->bone may be NULL for duplicated bones, see duplicateEditBoneObjects() comment
* (editarmature.c:2592)... Skip in this case too! */
if (pchan->bone &&
(!((use_hidden == false) && (PBONE_VISIBLE(arm, pchan->bone) == false)) &&
!((use_select == true) && ((pchan->bone->flag & BONE_SELECTED) == 0))))
{
bPoseChannel *pchan_tx = (pchan->custom && pchan->custom_tx) ? pchan->custom_tx : pchan;
BoundBox *bb_custom = ((pchan->custom) && !(arm->flag & ARM_NO_CUSTOM)) ?
BKE_object_boundbox_get(pchan->custom) : NULL;
if (bb_custom) {
float mat[4][4], smat[4][4];
scale_m4_fl(smat, PCHAN_CUSTOM_DRAW_SIZE(pchan));
mul_m4_series(mat, ob->obmat, pchan_tx->pose_mat, smat);
BKE_boundbox_minmax(bb_custom, mat, r_min, r_max);
}
else {
float vec[3];
mul_v3_m4v3(vec, ob->obmat, pchan_tx->pose_head);
minmax_v3v3_v3(r_min, r_max, vec);
mul_v3_m4v3(vec, ob->obmat, pchan_tx->pose_tail);
minmax_v3v3_v3(r_min, r_max, vec);
}
changed = true;
}
}
}
return changed;
}
/************** Graph evaluation ********************/
bPoseChannel *BKE_armature_ik_solver_find_root(
bPoseChannel *pchan,
bKinematicConstraint *data)
{
bPoseChannel *rootchan = pchan;
if (!(data->flag & CONSTRAINT_IK_TIP)) {
/* Exclude tip from chain. */
rootchan = rootchan->parent;
}
if (rootchan != NULL) {
int segcount = 0;
while (rootchan->parent) {
/* Continue up chain, until we reach target number of items. */
segcount++;
if (segcount == data->rootbone) {
break;
}
rootchan = rootchan->parent;
}
}
return rootchan;
}
bPoseChannel *BKE_armature_splineik_solver_find_root(
bPoseChannel *pchan,
bSplineIKConstraint *data)
{
bPoseChannel *rootchan = pchan;
int segcount = 0;
BLI_assert(rootchan != NULL);
while (rootchan->parent) {
/* Continue up chain, until we reach target number of items. */
segcount++;
if (segcount == data->chainlen) {
break;
}
rootchan = rootchan->parent;
}
return rootchan;
}