tornavis/source/blender/blenkernel/intern/collision.c

1453 lines
43 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/collision.c
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "DNA_cloth_types.h"
#include "DNA_effect_types.h"
#include "DNA_group_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force_types.h"
#include "DNA_scene_types.h"
#include "DNA_meshdata_types.h"
#include "BLI_utildefines.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BKE_cloth.h"
#include "BKE_effect.h"
#include "BKE_modifier.h"
#include "BKE_scene.h"
#ifdef WITH_BULLET
#include "Bullet-C-Api.h"
#endif
#include "BLI_kdopbvh.h"
#include "BKE_collision.h"
#ifdef WITH_ELTOPO
#include "eltopo-capi.h"
#endif
/***********************************
Collision modifier code start
***********************************/
/* step is limited from 0 (frame start position) to 1 (frame end position) */
void collision_move_object(CollisionModifierData *collmd, float step, float prevstep)
{
float tv[3] = {0, 0, 0};
unsigned int i = 0;
/* the collider doesn't move this frame */
if (collmd->is_static) {
for (i = 0; i < collmd->mvert_num; i++) {
zero_v3(collmd->current_v[i].co);
}
return;
}
for (i = 0; i < collmd->mvert_num; i++) {
sub_v3_v3v3(tv, collmd->xnew[i].co, collmd->x[i].co);
VECADDS(collmd->current_x[i].co, collmd->x[i].co, tv, prevstep);
VECADDS(collmd->current_xnew[i].co, collmd->x[i].co, tv, step);
sub_v3_v3v3(collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co);
}
bvhtree_update_from_mvert(
collmd->bvhtree, collmd->current_x, collmd->current_xnew,
collmd->tri, collmd->tri_num, true);
}
BVHTree *bvhtree_build_from_mvert(
const MVert *mvert,
const struct MVertTri *tri, int tri_num,
float epsilon)
{
BVHTree *tree;
const MVertTri *vt;
int i;
tree = BLI_bvhtree_new(tri_num, epsilon, 4, 26);
/* fill tree */
for (i = 0, vt = tri; i < tri_num; i++, vt++) {
float co[3][3];
copy_v3_v3(co[0], mvert[vt->tri[0]].co);
copy_v3_v3(co[1], mvert[vt->tri[1]].co);
copy_v3_v3(co[2], mvert[vt->tri[2]].co);
BLI_bvhtree_insert(tree, i, co[0], 3);
}
/* balance tree */
BLI_bvhtree_balance(tree);
return tree;
}
void bvhtree_update_from_mvert(
BVHTree *bvhtree,
const MVert *mvert, const MVert *mvert_moving,
const MVertTri *tri, int tri_num,
bool moving)
{
const MVertTri *vt;
int i;
if ((bvhtree == NULL) || (mvert == NULL)) {
return;
}
if (mvert_moving == NULL) {
moving = false;
}
for (i = 0, vt = tri; i < tri_num; i++, vt++) {
float co[3][3];
bool ret;
copy_v3_v3(co[0], mvert[vt->tri[0]].co);
copy_v3_v3(co[1], mvert[vt->tri[1]].co);
copy_v3_v3(co[2], mvert[vt->tri[2]].co);
/* copy new locations into array */
if (moving) {
float co_moving[3][3];
/* update moving positions */
copy_v3_v3(co_moving[0], mvert_moving[vt->tri[0]].co);
copy_v3_v3(co_moving[1], mvert_moving[vt->tri[1]].co);
copy_v3_v3(co_moving[2], mvert_moving[vt->tri[2]].co);
ret = BLI_bvhtree_update_node(bvhtree, i, &co[0][0], &co_moving[0][0], 3);
}
else {
ret = BLI_bvhtree_update_node(bvhtree, i, &co[0][0], NULL, 3);
}
/* check if tree is already full */
if (ret == false) {
break;
}
}
BLI_bvhtree_update_tree(bvhtree);
}
/***********************************
Collision modifier code end
***********************************/
// w3 is not perfect
static void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
{
/* dot_v3v3 */
#define INPR(v1, v2) ( (v1)[0] * (v2)[0] + (v1)[1] * (v2)[1] + (v1)[2] * (v2)[2])
double tempV1[3], tempV2[3], tempV4[3];
double a, b, c, d, e, f;
VECSUB ( tempV1, p1, p3 );
VECSUB ( tempV2, p2, p3 );
VECSUB ( tempV4, pv, p3 );
a = INPR ( tempV1, tempV1 );
b = INPR ( tempV1, tempV2 );
c = INPR ( tempV2, tempV2 );
e = INPR ( tempV1, tempV4 );
f = INPR ( tempV2, tempV4 );
d = ( a * c - b * b );
if ( ABS ( d ) < (double)ALMOST_ZERO ) {
*w1 = *w2 = *w3 = 1.0 / 3.0;
return;
}
w1[0] = ( float ) ( ( e * c - b * f ) / d );
if ( w1[0] < 0 )
w1[0] = 0;
w2[0] = ( float ) ( ( f - b * ( double ) w1[0] ) / c );
if ( w2[0] < 0 )
w2[0] = 0;
w3[0] = 1.0f - w1[0] - w2[0];
#undef INPR
}
#ifdef __GNUC__
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif
DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 )
{
zero_v3(to);
VECADDMUL(to, v1, w1);
VECADDMUL(to, v2, w2);
VECADDMUL(to, v3, w3);
}
static int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_get_epsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ ) {
float i1[3], i2[3], i3[3];
zero_v3(i1);
zero_v3(i2);
zero_v3(i3);
/* only handle static collisions here */
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
/* compute barycentric coordinates for both collision points */
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
/* was: txold */
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
/* Calculate relative "velocity". */
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
sub_v3_v3v3(relativeVelocity, v2, v1);
/* Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal'). */
magrelVel = dot_v3v3(relativeVelocity, collpair->normal);
/* printf("magrelVel: %f\n", magrelVel); */
/* Calculate masses of points.
* TODO */
/* If v_n_mag < 0 the edges are approaching each other. */
if ( magrelVel > ALMOST_ZERO ) {
/* Calculate Impulse magnitude to stop all motion in normal direction. */
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3], spf;
/* calculate tangential velocity */
copy_v3_v3 ( temp, collpair->normal );
mul_v3_fl(temp, magrelVel);
sub_v3_v3v3(vrel_t_pre, relativeVelocity, temp);
/* Decrease in magnitude of relative tangential velocity due to coulomb friction
* in original formula "magrelVel" should be the "change of relative velocity in normal direction" */
magtangent = min_ff(clmd->coll_parms->friction * 0.01f * magrelVel, len_v3(vrel_t_pre));
/* Apply friction impulse. */
if ( magtangent > ALMOST_ZERO ) {
normalize_v3(vrel_t_pre);
impulse = magtangent / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); /* 2.0 * */
VECADDMUL ( i1, vrel_t_pre, w1 * impulse );
VECADDMUL ( i2, vrel_t_pre, w2 * impulse );
VECADDMUL ( i3, vrel_t_pre, w3 * impulse );
}
/* Apply velocity stopping impulse
* I_c = m * v_N / 2.0
* no 2.0 * magrelVel normally, but looks nicer DG */
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( i1, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( i2, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( i3, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
/* Apply repulse impulse if distance too short
* I_r = -min(dt*kd, m(0, 1d/dt - v_n))
* DG: this formula ineeds to be changed for this code since we apply impulses/repulses like this:
* v += impulse; x_new = x + v;
* We don't use dt!!
* DG TODO: Fix usage of dt here! */
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
d = clmd->coll_parms->epsilon*8.0f/9.0f + epsilon2*8.0f/9.0f - collpair->distance;
if ( ( magrelVel < 0.1f*d*spf ) && ( d > ALMOST_ZERO ) ) {
repulse = MIN2 ( d*1.0f/spf, 0.1f*d*spf - magrelVel );
/* stay on the safe side and clamp repulse */
if ( impulse > ALMOST_ZERO )
repulse = min_ff( repulse, 5.0*impulse );
repulse = max_ff(impulse, repulse);
impulse = repulse / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); /* original 2.0 / 0.25 */
VECADDMUL ( i1, collpair->normal, impulse );
VECADDMUL ( i2, collpair->normal, impulse );
VECADDMUL ( i3, collpair->normal, impulse );
}
result = 1;
}
else {
/* Apply repulse impulse if distance too short
* I_r = -min(dt*kd, max(0, 1d/dt - v_n))
* DG: this formula ineeds to be changed for this code since we apply impulses/repulses like this:
* v += impulse; x_new = x + v;
* We don't use dt!! */
float spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
float d = clmd->coll_parms->epsilon*8.0f/9.0f + epsilon2*8.0f/9.0f - (float)collpair->distance;
if ( d > ALMOST_ZERO) {
/* stay on the safe side and clamp repulse */
float repulse = d*1.0f/spf;
float impulse = repulse / ( 3.0f * ( 1.0f + w1*w1 + w2*w2 + w3*w3 )); /* original 2.0 / 0.25 */
VECADDMUL ( i1, collpair->normal, impulse );
VECADDMUL ( i2, collpair->normal, impulse );
VECADDMUL ( i3, collpair->normal, impulse );
cloth1->verts[collpair->ap1].impulse_count++;
cloth1->verts[collpair->ap2].impulse_count++;
cloth1->verts[collpair->ap3].impulse_count++;
result = 1;
}
}
if (result) {
int i = 0;
for (i = 0; i < 3; i++) {
if (cloth1->verts[collpair->ap1].impulse_count > 0 && ABS(cloth1->verts[collpair->ap1].impulse[i]) < ABS(i1[i]))
cloth1->verts[collpair->ap1].impulse[i] = i1[i];
if (cloth1->verts[collpair->ap2].impulse_count > 0 && ABS(cloth1->verts[collpair->ap2].impulse[i]) < ABS(i2[i]))
cloth1->verts[collpair->ap2].impulse[i] = i2[i];
if (cloth1->verts[collpair->ap3].impulse_count > 0 && ABS(cloth1->verts[collpair->ap3].impulse[i]) < ABS(i3[i]))
cloth1->verts[collpair->ap3].impulse[i] = i3[i];
}
}
}
return result;
}
#ifdef __GNUC__
# pragma GCC diagnostic pop
#endif
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
static CollPair* cloth_collision(ModifierData *md1, ModifierData *md2,
BVHTreeOverlap *overlap, CollPair *collpair, float UNUSED(dt))
{
ClothModifierData *clmd = (ClothModifierData *)md1;
CollisionModifierData *collmd = (CollisionModifierData *) md2;
/* Cloth *cloth = clmd->clothObject; */ /* UNUSED */
const MVertTri *tri_a, *tri_b;
#ifdef WITH_BULLET
ClothVertex *verts1 = clmd->clothObject->verts;
#endif
double distance = 0;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_get_epsilon ( collmd->bvhtree );
tri_a = &clmd->clothObject->tri[overlap->indexA];
tri_b = &collmd->tri[overlap->indexB];
/* fill face_a */
collpair->ap1 = tri_a->tri[0];
collpair->ap2 = tri_a->tri[1];
collpair->ap3 = tri_a->tri[2];
/* fill face_b */
collpair->bp1 = tri_b->tri[0];
collpair->bp2 = tri_b->tri[1];
collpair->bp3 = tri_b->tri[2];
{
#ifdef WITH_BULLET
// calc distance + normal
distance = plNearestPoints (
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa, collpair->pb, collpair->vector );
#else
// just be sure that we don't add anything
distance = 2.0 * (double)( epsilon1 + epsilon2 + ALMOST_ZERO );
#endif
// distance -1 means no collision result
if (distance != -1.0 && (distance <= (double)(epsilon1 + epsilon2 + ALMOST_ZERO))) {
normalize_v3_v3(collpair->normal, collpair->vector);
collpair->distance = distance;
collpair->flag = 0;
collpair++;
}/*
else {
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
// calc relative velocity
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
verts1[collpair->ap1].txold,
verts1[collpair->ap2].txold,
verts1[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, verts1[collpair->ap1].tv, verts1[collpair->ap2].tv, verts1[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
sub_v3_v3v3(relativeVelocity, v2, v1);
if (sqrt(dot_v3v3(relativeVelocity, relativeVelocity)) >= distance)
{
// check for collision in the future
collpair->flag |= COLLISION_IN_FUTURE;
collpair++;
}
}*/
}
return collpair;
}
static void add_collision_object(Object ***objs, unsigned int *numobj, unsigned int *maxobj, Object *ob, Object *self, int level, unsigned int modifier_type)
{
CollisionModifierData *cmd= NULL;
if (ob == self)
return;
/* only get objects with collision modifier */
if (((modifier_type == eModifierType_Collision) && ob->pd && ob->pd->deflect) || (modifier_type != eModifierType_Collision))
cmd= (CollisionModifierData *)modifiers_findByType(ob, modifier_type);
if (cmd) {
/* extend array */
if (*numobj >= *maxobj) {
*maxobj *= 2;
*objs= MEM_reallocN(*objs, sizeof(Object *)*(*maxobj));
}
(*objs)[*numobj] = ob;
(*numobj)++;
}
/* objects in dupli groups, one level only for now */
if (ob->dup_group && level == 0) {
GroupObject *go;
Group *group= ob->dup_group;
/* add objects */
for (go= group->gobject.first; go; go= go->next)
add_collision_object(objs, numobj, maxobj, go->ob, self, level+1, modifier_type);
}
}
// return all collision objects in scene
// collision object will exclude self
Object **get_collisionobjects_ext(Scene *scene, Object *self, Group *group, int layer, unsigned int *numcollobj, unsigned int modifier_type, bool dupli)
{
Base *base;
Object **objs;
GroupObject *go;
unsigned int numobj= 0, maxobj= 100;
int level = dupli ? 0 : 1;
objs= MEM_callocN(sizeof(Object *)*maxobj, "CollisionObjectsArray");
/* gather all collision objects */
if (group) {
/* use specified group */
for (go= group->gobject.first; go; go= go->next)
add_collision_object(&objs, &numobj, &maxobj, go->ob, self, level, modifier_type);
}
else {
Scene *sce_iter;
/* add objects in same layer in scene */
for (SETLOOPER(scene, sce_iter, base)) {
if ( base->lay & layer )
add_collision_object(&objs, &numobj, &maxobj, base->object, self, level, modifier_type);
}
}
*numcollobj= numobj;
return objs;
}
Object **get_collisionobjects(Scene *scene, Object *self, Group *group, unsigned int *numcollobj, unsigned int modifier_type)
{
/* Need to check for active layers, too.
Otherwise this check fails if the objects are not on the same layer - DG */
return get_collisionobjects_ext(scene, self, group, self->lay | scene->lay, numcollobj, modifier_type, true);
}
static void add_collider_cache_object(ListBase **objs, Object *ob, Object *self, int level)
{
CollisionModifierData *cmd= NULL;
ColliderCache *col;
if (ob == self)
return;
if (ob->pd && ob->pd->deflect)
cmd =(CollisionModifierData *)modifiers_findByType(ob, eModifierType_Collision);
if (cmd && cmd->bvhtree) {
if (*objs == NULL)
*objs = MEM_callocN(sizeof(ListBase), "ColliderCache array");
col = MEM_callocN(sizeof(ColliderCache), "ColliderCache");
col->ob = ob;
col->collmd = cmd;
/* make sure collider is properly set up */
collision_move_object(cmd, 1.0, 0.0);
BLI_addtail(*objs, col);
}
/* objects in dupli groups, one level only for now */
if (ob->dup_group && level == 0) {
GroupObject *go;
Group *group= ob->dup_group;
/* add objects */
for (go= group->gobject.first; go; go= go->next)
add_collider_cache_object(objs, go->ob, self, level+1);
}
}
ListBase *get_collider_cache(Scene *scene, Object *self, Group *group)
{
GroupObject *go;
ListBase *objs= NULL;
/* add object in same layer in scene */
if (group) {
for (go= group->gobject.first; go; go= go->next)
add_collider_cache_object(&objs, go->ob, self, 0);
}
else {
Scene *sce_iter;
Base *base;
/* add objects in same layer in scene */
for (SETLOOPER(scene, sce_iter, base)) {
if (!self || (base->lay & self->lay))
add_collider_cache_object(&objs, base->object, self, 0);
}
}
return objs;
}
void free_collider_cache(ListBase **colliders)
{
if (*colliders) {
BLI_freelistN(*colliders);
MEM_freeN(*colliders);
*colliders = NULL;
}
}
static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd,
CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap, double dt)
{
int i;
*collisions = (CollPair *) MEM_mallocN(sizeof(CollPair) * numresult * 4, "collision array" ); // * 4 since cloth_collision_static can return more than 1 collision
*collisions_index = *collisions;
for ( i = 0; i < numresult; i++ ) {
*collisions_index = cloth_collision((ModifierData *)clmd, (ModifierData *)collmd,
overlap+i, *collisions_index, dt);
}
}
static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair *collisions, CollPair *collisions_index)
{
Cloth *cloth = clmd->clothObject;
int i=0, j = 0, /*numfaces = 0, */ mvert_num = 0;
ClothVertex *verts = NULL;
int ret = 0;
int result = 0;
mvert_num = clmd->clothObject->mvert_num;
verts = cloth->verts;
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for ( j = 0; j < 2; j++ ) { /* 5 is just a value that ensures convergence */
result = 0;
if ( collmd->bvhtree ) {
result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
// apply impulses in parallel
if (result) {
for (i = 0; i < mvert_num; i++) {
// calculate "velocities" (just xnew = xold + v; no dt in v)
if (verts[i].impulse_count) {
// VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
VECADD ( verts[i].tv, verts[i].tv, verts[i].impulse);
zero_v3(verts[i].impulse);
verts[i].impulse_count = 0;
ret++;
}
}
}
}
if (!result) {
break;
}
}
return ret;
}
// cloth - object collisions
int cloth_bvh_objcollision(Object *ob, ClothModifierData *clmd, float step, float dt )
{
Cloth *cloth= clmd->clothObject;
BVHTree *cloth_bvh= cloth->bvhtree;
unsigned int i=0, /* numfaces = 0, */ /* UNUSED */ mvert_num = 0, k, l, j;
int rounds = 0; // result counts applied collisions; ic is for debug output;
ClothVertex *verts = NULL;
int ret = 0, ret2 = 0;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || cloth_bvh==NULL)
return 0;
verts = cloth->verts;
/* numfaces = cloth->numfaces; */ /* UNUSED */
mvert_num = cloth->mvert_num;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// update cloth bvh
bvhtree_update_from_cloth ( clmd, 1 ); // 0 means STATIC, 1 means MOVING (see later in this function)
bvhselftree_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if (!collobjs)
return 0;
/* move object to position (step) in time */
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
if (!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
}
do {
CollPair **collisions, **collisions_index;
ret2 = 0;
collisions = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
// check all collision objects
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap = NULL;
unsigned int result = 0;
if (!collmd->bvhtree)
continue;
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap(cloth_bvh, collmd->bvhtree, &result, NULL, NULL);
// go to next object if no overlap is there
if ( result && overlap ) {
/* check if collisions really happen (costly near check) */
cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i],
&collisions_index[i], result, overlap, dt/(float)clmd->coll_parms->loop_count);
// resolve nearby collisions
ret += cloth_bvh_objcollisions_resolve ( clmd, collmd, collisions[i], collisions_index[i]);
ret2 += ret;
}
if ( overlap )
MEM_freeN ( overlap );
}
rounds++;
for (i = 0; i < numcollobj; i++) {
if ( collisions[i] ) MEM_freeN ( collisions[i] );
}
MEM_freeN(collisions);
MEM_freeN(collisions_index);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
/* verts come from clmd */
for (i = 0; i < mvert_num; i++) {
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL ) {
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) {
continue;
}
}
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Test on *simple* selfcollisions
////////////////////////////////////////////////////////////
if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF ) {
for (l = 0; l < (unsigned int)clmd->coll_parms->self_loop_count; l++) {
/* TODO: add coll quality rounds again */
BVHTreeOverlap *overlap = NULL;
unsigned int result = 0;
// collisions = 1;
verts = cloth->verts; // needed for openMP
/* numfaces = cloth->numfaces; */ /* UNUSED */
mvert_num = cloth->mvert_num;
verts = cloth->verts;
if ( cloth->bvhselftree ) {
// search for overlapping collision pairs
overlap = BLI_bvhtree_overlap(cloth->bvhselftree, cloth->bvhselftree, &result, NULL, NULL);
/* Could be parallelized (using BLI_task)... */
for ( k = 0; k < result; k++ ) {
float temp[3];
float length = 0;
float mindistance;
i = overlap[k].indexA;
j = overlap[k].indexB;
mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL ) {
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED ) &&
( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
{
continue;
}
}
if ((cloth->verts[i].flags & CLOTH_VERT_FLAG_NOSELFCOLL) ||
(cloth->verts[j].flags & CLOTH_VERT_FLAG_NOSELFCOLL))
{
continue;
}
sub_v3_v3v3(temp, verts[i].tx, verts[j].tx);
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
if (BLI_edgeset_haskey(cloth->edgeset, i, j)) {
continue;
}
length = normalize_v3(temp );
if ( length < mindistance ) {
float correction = mindistance - length;
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED ) {
mul_v3_fl(temp, -correction);
VECADD ( verts[j].tx, verts[j].tx, temp );
}
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) {
mul_v3_fl(temp, correction);
VECADD ( verts[i].tx, verts[i].tx, temp );
}
else {
mul_v3_fl(temp, correction * -0.5f);
VECADD ( verts[j].tx, verts[j].tx, temp );
sub_v3_v3v3(verts[i].tx, verts[i].tx, temp);
}
ret = 1;
ret2 += ret;
}
else {
// check for approximated time collisions
}
}
if ( overlap )
MEM_freeN ( overlap );
}
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// SELFCOLLISIONS: update velocities
////////////////////////////////////////////////////////////
if (ret2) {
for (i = 0; i < cloth->mvert_num; i++) {
if ( ! ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) ) {
sub_v3_v3v3(verts[i].tv, verts[i].tx, verts[i].txold);
}
}
}
////////////////////////////////////////////////////////////
}
}
while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
if (collobjs)
MEM_freeN(collobjs);
return 1|MIN2 ( ret, 1 );
}
BLI_INLINE void max_v3_v3v3(float r[3], const float a[3], const float b[3])
{
r[0] = max_ff(a[0], b[0]);
r[1] = max_ff(a[1], b[1]);
r[2] = max_ff(a[2], b[2]);
}
void collision_get_collider_velocity(float vel_old[3], float vel_new[3], CollisionModifierData *collmd, CollPair *collpair)
{
float u1, u2, u3;
/* compute barycentric coordinates */
collision_compute_barycentric(collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3);
collision_interpolateOnTriangle(vel_new, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3);
/* XXX assume constant velocity of the collider for now */
copy_v3_v3(vel_old, vel_new);
}
static bool cloth_points_collision_response_static(ClothModifierData *clmd, CollisionModifierData *collmd, PartDeflect *pd,
CollPair *collpair, CollPair *collision_end, float dt)
{
bool result = false;
float restitution = (1.0f - clmd->coll_parms->damping) * (1.0f - pd->pdef_sbdamp);
float inv_dt = 1.0f / dt;
Cloth *cloth1 = clmd->clothObject;
// float w1, w2;
float u1, u2, u3;
float v1[3], v2_old[3], v2_new[3], v_rel_old[3], v_rel_new[3];
float epsilon2 = BLI_bvhtree_get_epsilon ( collmd->bvhtree );
for ( ; collpair != collision_end; collpair++ ) {
float margin_distance = (float)(collpair->distance - (double)epsilon2);
float impulse[3];
float mag_v_rel;
if (margin_distance > 0.0f)
continue;
zero_v3(impulse);
/* only handle static collisions here */
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
/* compute barycentric coordinates for both collision points */
// w1 = 1.0f - collpair->time;
// w2 = collpair->time;
/* was: txold */
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
/* Calculate relative velocity */
copy_v3_v3(v1, cloth1->verts[collpair->ap1].tv);
collision_interpolateOnTriangle ( v2_new, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
/* XXX assume constant velocity of the collider for now */
copy_v3_v3(v2_old, v2_new);
sub_v3_v3v3(v_rel_old, v1, v2_old);
sub_v3_v3v3(v_rel_new, v1, v2_new);
/* normal component of the relative velocity */
mag_v_rel = dot_v3v3(v_rel_old, collpair->normal);
/**** DEBUG ****/
BKE_sim_debug_data_add_dot(collpair->pa, 0.9, 0.2, 0.2, "collision", 833, collpair->face1, collpair->face2);
BKE_sim_debug_data_add_dot(collpair->pb, 0.2, 0.9, 0.2, "collision", 834, collpair->face1, collpair->face2);
BKE_sim_debug_data_add_line(collpair->pa, collpair->pb, 0.8, 0.8, 0.8, "collision", 835, collpair->face1, collpair->face2);
/********/
if (mag_v_rel < -ALMOST_ZERO) {
float v_nor_old, v_nor_new;
float v_tan_old[3], v_tan_new[3];
float bounce, repulse;
/* Collision response based on
* "Simulating Complex Hair with Robust Collision Handling" (Choe, Choi, Ko, ACM SIGGRAPH 2005)
* http://graphics.snu.ac.kr/publications/2005-choe-HairSim/Choe_2005_SCA.pdf
*/
v_nor_old = mag_v_rel;
v_nor_new = dot_v3v3(v_rel_new, collpair->normal);
madd_v3_v3v3fl(v_tan_old, v_rel_old, collpair->normal, -v_nor_old);
madd_v3_v3v3fl(v_tan_new, v_rel_new, collpair->normal, -v_nor_new);
repulse = -margin_distance * inv_dt + dot_v3v3(v1, collpair->normal);
if (margin_distance < -epsilon2) {
bounce = -v_nor_new + v_nor_old * restitution;
mul_v3_v3fl(impulse, collpair->normal, max_ff(repulse, bounce));
}
else {
bounce = 0.0f;
mul_v3_v3fl(impulse, collpair->normal, repulse);
}
cloth1->verts[collpair->ap1].impulse_count++;
result = true;
}
if (result) {
int i = 0;
for (i = 0; i < 3; i++) {
if (cloth1->verts[collpair->ap1].impulse_count > 0 && fabsf(cloth1->verts[collpair->ap1].impulse[i]) < fabsf(impulse[i]))
cloth1->verts[collpair->ap1].impulse[i] = impulse[i];
}
}
}
return result;
}
BLI_INLINE bool cloth_point_face_collision_params(const float p1[3], const float p2[3], const float v0[3], const float v1[3], const float v2[3],
float r_nor[3], float *r_lambda, float r_w[3])
{
float edge1[3], edge2[3], p2face[3], p1p2[3], v0p2[3];
float nor_v0p2, nor_p1p2;
sub_v3_v3v3(edge1, v1, v0);
sub_v3_v3v3(edge2, v2, v0);
cross_v3_v3v3(r_nor, edge1, edge2);
normalize_v3(r_nor);
nor_v0p2 = dot_v3v3(v0p2, r_nor);
madd_v3_v3v3fl(p2face, p2, r_nor, -nor_v0p2);
interp_weights_tri_v3(r_w, v0, v1, v2, p2face);
sub_v3_v3v3(p1p2, p2, p1);
sub_v3_v3v3(v0p2, p2, v0);
nor_p1p2 = dot_v3v3(p1p2, r_nor);
*r_lambda = (nor_p1p2 != 0.0f ? nor_v0p2 / nor_p1p2 : 0.0f);
return r_w[1] >= 0.0f && r_w[2] >= 0.0f && r_w[1] + r_w[2] <= 1.0f;
#if 0 /* XXX this method uses the intersection point, but is broken and doesn't work well in general */
float p[3], vec1[3], line[3], edge1[3], edge2[3], q[3];
float a, f, u, v;
sub_v3_v3v3(edge1, v1, v0);
sub_v3_v3v3(edge2, v2, v0);
sub_v3_v3v3(line, p2, p1);
cross_v3_v3v3(p, line, edge2);
a = dot_v3v3(edge1, p);
if (a == 0.0f) return 0;
f = 1.0f / a;
sub_v3_v3v3(vec1, p1, v0);
u = f * dot_v3v3(vec1, p);
if ((u < 0.0f) || (u > 1.0f))
return false;
cross_v3_v3v3(q, vec1, edge1);
v = f * dot_v3v3(line, q);
if ((v < 0.0f) || ((u + v) > 1.0f))
return false;
*r_lambda = f * dot_v3v3(edge2, q);
/* don't care about 0..1 lambda range here */
/*if ((*r_lambda < 0.0f) || (*r_lambda > 1.0f))
* return 0;
*/
r_w[0] = 1.0f - u - v;
r_w[1] = u;
r_w[2] = v;
r_w[3] = 0.0f;
cross_v3_v3v3(r_nor, edge1, edge2);
normalize_v3(r_nor);
return true;
#endif
}
static CollPair *cloth_point_collpair(
float p1[3], float p2[3], const MVert *mverts, int bp1, int bp2, int bp3,
int index_cloth, int index_coll, float epsilon, CollPair *collpair)
{
const float *co1 = mverts[bp1].co, *co2 = mverts[bp2].co, *co3 = mverts[bp3].co;
float lambda /*, distance1 */, distance2;
float facenor[3], v1p1[3], v1p2[3];
float w[3];
if (!cloth_point_face_collision_params(p1, p2, co1, co2, co3, facenor, &lambda, w))
return collpair;
sub_v3_v3v3(v1p1, p1, co1);
// distance1 = dot_v3v3(v1p1, facenor);
sub_v3_v3v3(v1p2, p2, co1);
distance2 = dot_v3v3(v1p2, facenor);
// if (distance2 > epsilon || (distance1 < 0.0f && distance2 < 0.0f))
if (distance2 > epsilon)
return collpair;
collpair->face1 = index_cloth; /* XXX actually not a face, but equivalent index for point */
collpair->face2 = index_coll;
collpair->ap1 = index_cloth;
collpair->ap2 = collpair->ap3 = -1; /* unused */
collpair->bp1 = bp1;
collpair->bp2 = bp2;
collpair->bp3 = bp3;
/* note: using the second point here, which is
* the current updated position that needs to be corrected
*/
copy_v3_v3(collpair->pa, p2);
collpair->distance = distance2;
mul_v3_v3fl(collpair->vector, facenor, -distance2);
interp_v3_v3v3v3(collpair->pb, co1, co2, co3, w);
copy_v3_v3(collpair->normal, facenor);
collpair->time = lambda;
collpair->flag = 0;
collpair++;
return collpair;
}
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
static CollPair *cloth_point_collision(
ModifierData *md1, ModifierData *md2,
BVHTreeOverlap *overlap, float epsilon, CollPair *collpair, float UNUSED(dt))
{
ClothModifierData *clmd = (ClothModifierData *)md1;
CollisionModifierData *collmd = (CollisionModifierData *) md2;
/* Cloth *cloth = clmd->clothObject; */ /* UNUSED */
ClothVertex *vert = NULL;
const MVertTri *vt;
const MVert *mverts = collmd->current_x;
vert = &clmd->clothObject->verts[overlap->indexA];
vt = &collmd->tri[overlap->indexB];
collpair = cloth_point_collpair(
vert->tx, vert->x, mverts,
vt->tri[0], vt->tri[1], vt->tri[2],
overlap->indexA, overlap->indexB,
epsilon, collpair);
return collpair;
}
static void cloth_points_objcollisions_nearcheck(
ClothModifierData *clmd, CollisionModifierData *collmd,
CollPair **collisions, CollPair **collisions_index,
int numresult, BVHTreeOverlap *overlap, float epsilon, double dt)
{
int i;
/* can return 2 collisions in total */
*collisions = (CollPair *) MEM_mallocN(sizeof(CollPair) * numresult * 2, "collision array" );
*collisions_index = *collisions;
for ( i = 0; i < numresult; i++ ) {
*collisions_index = cloth_point_collision((ModifierData *)clmd, (ModifierData *)collmd,
overlap+i, epsilon, *collisions_index, dt);
}
}
static int cloth_points_objcollisions_resolve(
ClothModifierData *clmd, CollisionModifierData *collmd, PartDeflect *pd,
CollPair *collisions, CollPair *collisions_index, float dt)
{
Cloth *cloth = clmd->clothObject;
int i = 0, mvert_num = clmd->clothObject->mvert_num;
ClothVertex *verts = cloth->verts;
int ret = 0;
// process all collisions
if ( collmd->bvhtree ) {
bool result = cloth_points_collision_response_static(clmd, collmd, pd, collisions, collisions_index, dt);
// apply impulses in parallel
if (result) {
for (i = 0; i < mvert_num; i++) {
// calculate "velocities" (just xnew = xold + v; no dt in v)
if (verts[i].impulse_count) {
// VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
VECADD ( verts[i].tv, verts[i].tv, verts[i].impulse);
zero_v3(verts[i].impulse);
verts[i].impulse_count = 0;
ret++;
}
}
}
}
return ret;
}
// cloth - object collisions
int cloth_points_objcollision(Object *ob, ClothModifierData *clmd, float step, float dt)
{
Cloth *cloth= clmd->clothObject;
BVHTree *cloth_bvh;
int rounds = 0; // result counts applied collisions; ic is for debug output;
float round_dt = dt / (float)clmd->coll_parms->loop_count;
unsigned int i = 0, mvert_num = 0;
ClothVertex *verts = NULL;
int ret = 0, ret2 = 0;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
verts = cloth->verts;
mvert_num = cloth->mvert_num;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// create temporary cloth points bvh
cloth_bvh = BLI_bvhtree_new(mvert_num, max_ff(clmd->coll_parms->epsilon, clmd->coll_parms->distance_repel), 4, 6);
/* fill tree */
for (i = 0; i < mvert_num; i++) {
float co[2][3];
copy_v3_v3(co[0], verts[i].x);
copy_v3_v3(co[1], verts[i].tx);
BLI_bvhtree_insert(cloth_bvh, i, co[0], 2);
}
/* balance tree */
BLI_bvhtree_balance(cloth_bvh);
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if (!collobjs)
return 0;
/* move object to position (step) in time */
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
if (!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
}
do {
CollPair **collisions, **collisions_index;
ret2 = 0;
collisions = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
// check all collision objects
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap = NULL;
unsigned int result = 0;
float epsilon;
if (!collmd->bvhtree)
continue;
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap(cloth_bvh, collmd->bvhtree, &result, NULL, NULL);
epsilon = BLI_bvhtree_get_epsilon(collmd->bvhtree);
// go to next object if no overlap is there
if (result && overlap) {
/* check if collisions really happen (costly near check) */
cloth_points_objcollisions_nearcheck(clmd, collmd, &collisions[i], &collisions_index[i],
result, overlap, epsilon, round_dt);
// resolve nearby collisions
ret += cloth_points_objcollisions_resolve(clmd, collmd, collob->pd, collisions[i], collisions_index[i], round_dt);
ret2 += ret;
}
if (overlap)
MEM_freeN ( overlap );
}
rounds++;
for (i = 0; i < numcollobj; i++) {
if (collisions[i])
MEM_freeN(collisions[i]);
}
MEM_freeN(collisions);
MEM_freeN(collisions_index);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for (i = 0; i < mvert_num; i++) {
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL ) {
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) {
continue;
}
}
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
}
////////////////////////////////////////////////////////////
}
while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
if (collobjs)
MEM_freeN(collobjs);
BLI_bvhtree_free(cloth_bvh);
return 1|MIN2 ( ret, 1 );
}
void cloth_find_point_contacts(Object *ob, ClothModifierData *clmd, float step, float dt,
ColliderContacts **r_collider_contacts, int *r_totcolliders)
{
Cloth *cloth= clmd->clothObject;
BVHTree *cloth_bvh;
unsigned int i = 0, mvert_num = 0;
ClothVertex *verts = NULL;
ColliderContacts *collider_contacts;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
verts = cloth->verts;
mvert_num = cloth->mvert_num;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// create temporary cloth points bvh
cloth_bvh = BLI_bvhtree_new(mvert_num, max_ff(clmd->coll_parms->epsilon, clmd->coll_parms->distance_repel), 4, 6);
/* fill tree */
for (i = 0; i < mvert_num; i++) {
float co[6];
copy_v3_v3(&co[0*3], verts[i].x);
copy_v3_v3(&co[1*3], verts[i].tx);
BLI_bvhtree_insert(cloth_bvh, i, co, 2);
}
/* balance tree */
BLI_bvhtree_balance(cloth_bvh);
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if (!collobjs) {
*r_collider_contacts = NULL;
*r_totcolliders = 0;
return;
}
/* move object to position (step) in time */
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
if (!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
}
collider_contacts = MEM_callocN(sizeof(ColliderContacts) * numcollobj, "CollPair");
// check all collision objects
for (i = 0; i < numcollobj; i++) {
ColliderContacts *ct = collider_contacts + i;
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap;
unsigned int result = 0;
float epsilon;
ct->ob = collob;
ct->collmd = collmd;
ct->collisions = NULL;
ct->totcollisions = 0;
if (!collmd->bvhtree)
continue;
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap(cloth_bvh, collmd->bvhtree, &result, NULL, NULL);
epsilon = BLI_bvhtree_get_epsilon(collmd->bvhtree);
// go to next object if no overlap is there
if (result && overlap) {
CollPair *collisions_index;
/* check if collisions really happen (costly near check) */
cloth_points_objcollisions_nearcheck(clmd, collmd, &ct->collisions, &collisions_index,
result, overlap, epsilon, dt);
ct->totcollisions = (int)(collisions_index - ct->collisions);
// resolve nearby collisions
// ret += cloth_points_objcollisions_resolve(clmd, collmd, collob->pd, collisions[i], collisions_index[i], dt);
}
if (overlap)
MEM_freeN(overlap);
}
if (collobjs)
MEM_freeN(collobjs);
BLI_bvhtree_free(cloth_bvh);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for (i = 0; i < mvert_num; i++) {
if (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) {
if (verts [i].flags & CLOTH_VERT_FLAG_PINNED) {
continue;
}
}
VECADD(verts[i].tx, verts[i].txold, verts[i].tv);
}
////////////////////////////////////////////////////////////
*r_collider_contacts = collider_contacts;
*r_totcolliders = numcollobj;
}
void cloth_free_contacts(ColliderContacts *collider_contacts, int totcolliders)
{
if (collider_contacts) {
int i;
for (i = 0; i < totcolliders; ++i) {
ColliderContacts *ct = collider_contacts + i;
if (ct->collisions) {
MEM_freeN(ct->collisions);
}
}
MEM_freeN(collider_contacts);
}
}