tornavis/source/blender/blenkernel/intern/pointcache.c

4103 lines
115 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Campbell Barton <ideasman42@gmail.com>
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/pointcache.c
* \ingroup bke
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include "MEM_guardedalloc.h"
#include "DNA_ID.h"
#include "DNA_dynamicpaint_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force_types.h"
#include "DNA_particle_types.h"
#include "DNA_rigidbody_types.h"
#include "DNA_scene_types.h"
#include "DNA_smoke_types.h"
#include "BLI_blenlib.h"
#include "BLI_threads.h"
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_utildefines.h"
#include "BLT_translation.h"
#include "PIL_time.h"
#include "BKE_appdir.h"
#include "BKE_anim.h"
#include "BKE_cloth.h"
#include "BKE_dynamicpaint.h"
#include "BKE_global.h"
#include "BKE_main.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_pointcache.h"
#include "BKE_scene.h"
#include "BKE_smoke.h"
#include "BKE_softbody.h"
#include "BIK_api.h"
#ifdef WITH_BULLET
# include "RBI_api.h"
#endif
/* both in intern */
#ifdef WITH_SMOKE
#include "smoke_API.h"
#endif
#ifdef WITH_OPENVDB
#include "openvdb_capi.h"
#endif
#ifdef WITH_LZO
# ifdef WITH_SYSTEM_LZO
# include <lzo/lzo1x.h>
# else
# include "minilzo.h"
# endif
# define LZO_HEAP_ALLOC(var,size) \
lzo_align_t __LZO_MMODEL var [ ((size) + (sizeof(lzo_align_t) - 1)) / sizeof(lzo_align_t) ]
#endif
#define LZO_OUT_LEN(size) ((size) + (size) / 16 + 64 + 3)
#ifdef WITH_LZMA
#include "LzmaLib.h"
#endif
/* needed for directory lookup */
#ifndef WIN32
# include <dirent.h>
#else
# include "BLI_winstuff.h"
#endif
#define PTCACHE_DATA_FROM(data, type, from) \
if (data[type]) { \
memcpy(data[type], from, ptcache_data_size[type]); \
} (void)0
#define PTCACHE_DATA_TO(data, type, index, to) \
if (data[type]) { \
memcpy(to, (char *)(data)[type] + ((index) ? (index) * ptcache_data_size[type] : 0), ptcache_data_size[type]); \
} (void)0
/* could be made into a pointcache option */
#define DURIAN_POINTCACHE_LIB_OK 1
static int ptcache_data_size[] = {
sizeof(unsigned int), // BPHYS_DATA_INDEX
3 * sizeof(float), // BPHYS_DATA_LOCATION
3 * sizeof(float), // BPHYS_DATA_VELOCITY
4 * sizeof(float), // BPHYS_DATA_ROTATION
3 * sizeof(float), // BPHYS_DATA_AVELOCITY / BPHYS_DATA_XCONST
sizeof(float), // BPHYS_DATA_SIZE
3 * sizeof(float), // BPHYS_DATA_TIMES
sizeof(BoidData) // case BPHYS_DATA_BOIDS
};
static int ptcache_extra_datasize[] = {
0,
sizeof(ParticleSpring)
};
/* forward declerations */
static int ptcache_file_compressed_read(PTCacheFile *pf, unsigned char *result, unsigned int len);
static int ptcache_file_compressed_write(PTCacheFile *pf, unsigned char *in, unsigned int in_len, unsigned char *out, int mode);
static int ptcache_file_write(PTCacheFile *pf, const void *f, unsigned int tot, unsigned int size);
static int ptcache_file_read(PTCacheFile *pf, void *f, unsigned int tot, unsigned int size);
/* Common functions */
static int ptcache_basic_header_read(PTCacheFile *pf)
{
int error=0;
/* Custom functions should read these basic elements too! */
if (!error && !fread(&pf->totpoint, sizeof(unsigned int), 1, pf->fp))
error = 1;
if (!error && !fread(&pf->data_types, sizeof(unsigned int), 1, pf->fp))
error = 1;
return !error;
}
static int ptcache_basic_header_write(PTCacheFile *pf)
{
/* Custom functions should write these basic elements too! */
if (!fwrite(&pf->totpoint, sizeof(unsigned int), 1, pf->fp))
return 0;
if (!fwrite(&pf->data_types, sizeof(unsigned int), 1, pf->fp))
return 0;
return 1;
}
/* Softbody functions */
static int ptcache_softbody_write(int index, void *soft_v, void **data, int UNUSED(cfra))
{
SoftBody *soft= soft_v;
BodyPoint *bp = soft->bpoint + index;
PTCACHE_DATA_FROM(data, BPHYS_DATA_LOCATION, bp->pos);
PTCACHE_DATA_FROM(data, BPHYS_DATA_VELOCITY, bp->vec);
return 1;
}
static void ptcache_softbody_read(int index, void *soft_v, void **data, float UNUSED(cfra), float *old_data)
{
SoftBody *soft= soft_v;
BodyPoint *bp = soft->bpoint + index;
if (old_data) {
memcpy(bp->pos, data, 3 * sizeof(float));
memcpy(bp->vec, data + 3, 3 * sizeof(float));
}
else {
PTCACHE_DATA_TO(data, BPHYS_DATA_LOCATION, 0, bp->pos);
PTCACHE_DATA_TO(data, BPHYS_DATA_VELOCITY, 0, bp->vec);
}
}
static void ptcache_softbody_interpolate(int index, void *soft_v, void **data, float cfra, float cfra1, float cfra2, float *old_data)
{
SoftBody *soft= soft_v;
BodyPoint *bp = soft->bpoint + index;
ParticleKey keys[4];
float dfra;
if (cfra1 == cfra2)
return;
copy_v3_v3(keys[1].co, bp->pos);
copy_v3_v3(keys[1].vel, bp->vec);
if (old_data) {
memcpy(keys[2].co, old_data, 3 * sizeof(float));
memcpy(keys[2].vel, old_data + 3, 3 * sizeof(float));
}
else
BKE_ptcache_make_particle_key(keys+2, 0, data, cfra2);
dfra = cfra2 - cfra1;
mul_v3_fl(keys[1].vel, dfra);
mul_v3_fl(keys[2].vel, dfra);
psys_interpolate_particle(-1, keys, (cfra - cfra1) / dfra, keys, 1);
mul_v3_fl(keys->vel, 1.0f / dfra);
copy_v3_v3(bp->pos, keys->co);
copy_v3_v3(bp->vec, keys->vel);
}
static int ptcache_softbody_totpoint(void *soft_v, int UNUSED(cfra))
{
SoftBody *soft= soft_v;
return soft->totpoint;
}
static void ptcache_softbody_error(void *UNUSED(soft_v), const char *UNUSED(message))
{
/* ignored for now */
}
/* Particle functions */
void BKE_ptcache_make_particle_key(ParticleKey *key, int index, void **data, float time)
{
PTCACHE_DATA_TO(data, BPHYS_DATA_LOCATION, index, key->co);
PTCACHE_DATA_TO(data, BPHYS_DATA_VELOCITY, index, key->vel);
/* no rotation info, so make something nice up */
if (data[BPHYS_DATA_ROTATION]==NULL) {
vec_to_quat(key->rot, key->vel, OB_NEGX, OB_POSZ);
}
else {
PTCACHE_DATA_TO(data, BPHYS_DATA_ROTATION, index, key->rot);
}
PTCACHE_DATA_TO(data, BPHYS_DATA_AVELOCITY, index, key->ave);
key->time = time;
}
static int ptcache_particle_write(int index, void *psys_v, void **data, int cfra)
{
ParticleSystem *psys= psys_v;
ParticleData *pa = psys->particles + index;
BoidParticle *boid = (psys->part->phystype == PART_PHYS_BOIDS) ? pa->boid : NULL;
float times[3];
int step = psys->pointcache->step;
/* No need to store unborn or died particles outside cache step bounds */
if (data[BPHYS_DATA_INDEX] && (cfra < pa->time - step || cfra > pa->dietime + step))
return 0;
times[0] = pa->time;
times[1] = pa->dietime;
times[2] = pa->lifetime;
PTCACHE_DATA_FROM(data, BPHYS_DATA_INDEX, &index);
PTCACHE_DATA_FROM(data, BPHYS_DATA_LOCATION, pa->state.co);
PTCACHE_DATA_FROM(data, BPHYS_DATA_VELOCITY, pa->state.vel);
PTCACHE_DATA_FROM(data, BPHYS_DATA_ROTATION, pa->state.rot);
PTCACHE_DATA_FROM(data, BPHYS_DATA_AVELOCITY, pa->state.ave);
PTCACHE_DATA_FROM(data, BPHYS_DATA_SIZE, &pa->size);
PTCACHE_DATA_FROM(data, BPHYS_DATA_TIMES, times);
if (boid) {
PTCACHE_DATA_FROM(data, BPHYS_DATA_BOIDS, &boid->data);
}
/* return flag 1+1=2 for newly born particles to copy exact birth location to previously cached frame */
return 1 + (pa->state.time >= pa->time && pa->prev_state.time <= pa->time);
}
static void ptcache_particle_read(int index, void *psys_v, void **data, float cfra, float *old_data)
{
ParticleSystem *psys= psys_v;
ParticleData *pa;
BoidParticle *boid;
float timestep = 0.04f * psys->part->timetweak;
if (index >= psys->totpart)
return;
pa = psys->particles + index;
boid = (psys->part->phystype == PART_PHYS_BOIDS) ? pa->boid : NULL;
if (cfra > pa->state.time)
memcpy(&pa->prev_state, &pa->state, sizeof(ParticleKey));
if (old_data) {
/* old format cache */
memcpy(&pa->state, old_data, sizeof(ParticleKey));
return;
}
BKE_ptcache_make_particle_key(&pa->state, 0, data, cfra);
/* set frames cached before birth to birth time */
if (cfra < pa->time)
pa->state.time = pa->time;
else if (cfra > pa->dietime)
pa->state.time = pa->dietime;
if (data[BPHYS_DATA_SIZE]) {
PTCACHE_DATA_TO(data, BPHYS_DATA_SIZE, 0, &pa->size);
}
if (data[BPHYS_DATA_TIMES]) {
float times[3];
PTCACHE_DATA_TO(data, BPHYS_DATA_TIMES, 0, &times);
pa->time = times[0];
pa->dietime = times[1];
pa->lifetime = times[2];
}
if (boid) {
PTCACHE_DATA_TO(data, BPHYS_DATA_BOIDS, 0, &boid->data);
}
/* determine velocity from previous location */
if (data[BPHYS_DATA_LOCATION] && !data[BPHYS_DATA_VELOCITY]) {
if (cfra > pa->prev_state.time) {
sub_v3_v3v3(pa->state.vel, pa->state.co, pa->prev_state.co);
mul_v3_fl(pa->state.vel, (cfra - pa->prev_state.time) * timestep);
}
else {
sub_v3_v3v3(pa->state.vel, pa->prev_state.co, pa->state.co);
mul_v3_fl(pa->state.vel, (pa->prev_state.time - cfra) * timestep);
}
}
/* default to no rotation */
if (data[BPHYS_DATA_LOCATION] && !data[BPHYS_DATA_ROTATION]) {
unit_qt(pa->state.rot);
}
}
static void ptcache_particle_interpolate(int index, void *psys_v, void **data, float cfra, float cfra1, float cfra2, float *old_data)
{
ParticleSystem *psys= psys_v;
ParticleData *pa;
ParticleKey keys[4];
float dfra, timestep = 0.04f * psys->part->timetweak;
if (index >= psys->totpart)
return;
pa = psys->particles + index;
/* particle wasn't read from first cache so can't interpolate */
if ((int)cfra1 < pa->time - psys->pointcache->step || (int)cfra1 > pa->dietime + psys->pointcache->step)
return;
cfra = MIN2(cfra, pa->dietime);
cfra1 = MIN2(cfra1, pa->dietime);
cfra2 = MIN2(cfra2, pa->dietime);
if (cfra1 == cfra2)
return;
memcpy(keys+1, &pa->state, sizeof(ParticleKey));
if (old_data)
memcpy(keys+2, old_data, sizeof(ParticleKey));
else
BKE_ptcache_make_particle_key(keys+2, 0, data, cfra2);
/* determine velocity from previous location */
if (data[BPHYS_DATA_LOCATION] && !data[BPHYS_DATA_VELOCITY]) {
if (keys[1].time > keys[2].time) {
sub_v3_v3v3(keys[2].vel, keys[1].co, keys[2].co);
mul_v3_fl(keys[2].vel, (keys[1].time - keys[2].time) * timestep);
}
else {
sub_v3_v3v3(keys[2].vel, keys[2].co, keys[1].co);
mul_v3_fl(keys[2].vel, (keys[2].time - keys[1].time) * timestep);
}
}
/* default to no rotation */
if (data[BPHYS_DATA_LOCATION] && !data[BPHYS_DATA_ROTATION]) {
unit_qt(keys[2].rot);
}
if (cfra > pa->time)
cfra1 = MAX2(cfra1, pa->time);
dfra = cfra2 - cfra1;
mul_v3_fl(keys[1].vel, dfra * timestep);
mul_v3_fl(keys[2].vel, dfra * timestep);
psys_interpolate_particle(-1, keys, (cfra - cfra1) / dfra, &pa->state, 1);
interp_qt_qtqt(pa->state.rot, keys[1].rot, keys[2].rot, (cfra - cfra1) / dfra);
mul_v3_fl(pa->state.vel, 1.f / (dfra * timestep));
pa->state.time = cfra;
}
static int ptcache_particle_totpoint(void *psys_v, int UNUSED(cfra))
{
ParticleSystem *psys = psys_v;
return psys->totpart;
}
static void ptcache_particle_error(void *UNUSED(psys_v), const char *UNUSED(message))
{
/* ignored for now */
}
static int ptcache_particle_totwrite(void *psys_v, int cfra)
{
ParticleSystem *psys = psys_v;
ParticleData *pa= psys->particles;
int p, step = psys->pointcache->step;
int totwrite = 0;
if (cfra == 0)
return psys->totpart;
for (p=0; p<psys->totpart; p++, pa++)
totwrite += (cfra >= pa->time - step && cfra <= pa->dietime + step);
return totwrite;
}
static void ptcache_particle_extra_write(void *psys_v, PTCacheMem *pm, int UNUSED(cfra))
{
ParticleSystem *psys = psys_v;
PTCacheExtra *extra = NULL;
if (psys->part->phystype == PART_PHYS_FLUID &&
psys->part->fluid && psys->part->fluid->flag & SPH_VISCOELASTIC_SPRINGS &&
psys->tot_fluidsprings && psys->fluid_springs)
{
extra = MEM_callocN(sizeof(PTCacheExtra), "Point cache: fluid extra data");
extra->type = BPHYS_EXTRA_FLUID_SPRINGS;
extra->totdata = psys->tot_fluidsprings;
extra->data = MEM_callocN(extra->totdata * ptcache_extra_datasize[extra->type], "Point cache: extra data");
memcpy(extra->data, psys->fluid_springs, extra->totdata * ptcache_extra_datasize[extra->type]);
BLI_addtail(&pm->extradata, extra);
}
}
static void ptcache_particle_extra_read(void *psys_v, PTCacheMem *pm, float UNUSED(cfra))
{
ParticleSystem *psys = psys_v;
PTCacheExtra *extra = pm->extradata.first;
for (; extra; extra=extra->next) {
switch (extra->type) {
case BPHYS_EXTRA_FLUID_SPRINGS:
{
if (psys->fluid_springs)
MEM_freeN(psys->fluid_springs);
psys->fluid_springs = MEM_dupallocN(extra->data);
psys->tot_fluidsprings = psys->alloc_fluidsprings = extra->totdata;
break;
}
}
}
}
/* Cloth functions */
static int ptcache_cloth_write(int index, void *cloth_v, void **data, int UNUSED(cfra))
{
ClothModifierData *clmd= cloth_v;
Cloth *cloth= clmd->clothObject;
ClothVertex *vert = cloth->verts + index;
PTCACHE_DATA_FROM(data, BPHYS_DATA_LOCATION, vert->x);
PTCACHE_DATA_FROM(data, BPHYS_DATA_VELOCITY, vert->v);
PTCACHE_DATA_FROM(data, BPHYS_DATA_XCONST, vert->xconst);
return 1;
}
static void ptcache_cloth_read(int index, void *cloth_v, void **data, float UNUSED(cfra), float *old_data)
{
ClothModifierData *clmd= cloth_v;
Cloth *cloth= clmd->clothObject;
ClothVertex *vert = cloth->verts + index;
if (old_data) {
memcpy(vert->x, data, 3 * sizeof(float));
memcpy(vert->xconst, data + 3, 3 * sizeof(float));
memcpy(vert->v, data + 6, 3 * sizeof(float));
}
else {
PTCACHE_DATA_TO(data, BPHYS_DATA_LOCATION, 0, vert->x);
PTCACHE_DATA_TO(data, BPHYS_DATA_VELOCITY, 0, vert->v);
PTCACHE_DATA_TO(data, BPHYS_DATA_XCONST, 0, vert->xconst);
}
}
static void ptcache_cloth_interpolate(int index, void *cloth_v, void **data, float cfra, float cfra1, float cfra2, float *old_data)
{
ClothModifierData *clmd= cloth_v;
Cloth *cloth= clmd->clothObject;
ClothVertex *vert = cloth->verts + index;
ParticleKey keys[4];
float dfra;
if (cfra1 == cfra2)
return;
copy_v3_v3(keys[1].co, vert->x);
copy_v3_v3(keys[1].vel, vert->v);
if (old_data) {
memcpy(keys[2].co, old_data, 3 * sizeof(float));
memcpy(keys[2].vel, old_data + 6, 3 * sizeof(float));
}
else
BKE_ptcache_make_particle_key(keys+2, 0, data, cfra2);
dfra = cfra2 - cfra1;
mul_v3_fl(keys[1].vel, dfra);
mul_v3_fl(keys[2].vel, dfra);
psys_interpolate_particle(-1, keys, (cfra - cfra1) / dfra, keys, 1);
mul_v3_fl(keys->vel, 1.0f / dfra);
copy_v3_v3(vert->x, keys->co);
copy_v3_v3(vert->v, keys->vel);
/* should vert->xconst be interpolated somehow too? - jahka */
}
static int ptcache_cloth_totpoint(void *cloth_v, int UNUSED(cfra))
{
ClothModifierData *clmd= cloth_v;
return clmd->clothObject ? clmd->clothObject->mvert_num : 0;
}
static void ptcache_cloth_error(void *cloth_v, const char *message)
{
ClothModifierData *clmd= cloth_v;
modifier_setError(&clmd->modifier, "%s", message);
}
#ifdef WITH_SMOKE
/* Smoke functions */
static int ptcache_smoke_totpoint(void *smoke_v, int UNUSED(cfra))
{
SmokeModifierData *smd= (SmokeModifierData *)smoke_v;
SmokeDomainSettings *sds = smd->domain;
if (sds->fluid) {
return sds->base_res[0]*sds->base_res[1]*sds->base_res[2];
}
else
return 0;
}
static void ptcache_smoke_error(void *smoke_v, const char *message)
{
SmokeModifierData *smd= (SmokeModifierData *)smoke_v;
modifier_setError(&smd->modifier, "%s", message);
}
#define SMOKE_CACHE_VERSION "1.04"
static int ptcache_smoke_write(PTCacheFile *pf, void *smoke_v)
{
SmokeModifierData *smd= (SmokeModifierData *)smoke_v;
SmokeDomainSettings *sds = smd->domain;
int ret = 0;
int fluid_fields = smoke_get_data_flags(sds);
/* version header */
ptcache_file_write(pf, SMOKE_CACHE_VERSION, 4, sizeof(char));
ptcache_file_write(pf, &fluid_fields, 1, sizeof(int));
ptcache_file_write(pf, &sds->active_fields, 1, sizeof(int));
ptcache_file_write(pf, &sds->res, 3, sizeof(int));
ptcache_file_write(pf, &sds->dx, 1, sizeof(float));
if (sds->fluid) {
size_t res = sds->res[0]*sds->res[1]*sds->res[2];
float dt, dx, *dens, *react, *fuel, *flame, *heat, *heatold, *vx, *vy, *vz, *r, *g, *b;
unsigned char *obstacles;
unsigned int in_len = sizeof(float)*(unsigned int)res;
unsigned char *out = (unsigned char *)MEM_callocN(LZO_OUT_LEN(in_len) * 4, "pointcache_lzo_buffer");
//int mode = res >= 1000000 ? 2 : 1;
int mode=1; // light
if (sds->cache_comp == SM_CACHE_HEAVY) mode=2; // heavy
smoke_export(sds->fluid, &dt, &dx, &dens, &react, &flame, &fuel, &heat, &heatold, &vx, &vy, &vz, &r, &g, &b, &obstacles);
ptcache_file_compressed_write(pf, (unsigned char *)sds->shadow, in_len, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)dens, in_len, out, mode);
if (fluid_fields & SM_ACTIVE_HEAT) {
ptcache_file_compressed_write(pf, (unsigned char *)heat, in_len, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)heatold, in_len, out, mode);
}
if (fluid_fields & SM_ACTIVE_FIRE) {
ptcache_file_compressed_write(pf, (unsigned char *)flame, in_len, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)fuel, in_len, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)react, in_len, out, mode);
}
if (fluid_fields & SM_ACTIVE_COLORS) {
ptcache_file_compressed_write(pf, (unsigned char *)r, in_len, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)g, in_len, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)b, in_len, out, mode);
}
ptcache_file_compressed_write(pf, (unsigned char *)vx, in_len, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)vy, in_len, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)vz, in_len, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)obstacles, (unsigned int)res, out, mode);
ptcache_file_write(pf, &dt, 1, sizeof(float));
ptcache_file_write(pf, &dx, 1, sizeof(float));
ptcache_file_write(pf, &sds->p0, 3, sizeof(float));
ptcache_file_write(pf, &sds->p1, 3, sizeof(float));
ptcache_file_write(pf, &sds->dp0, 3, sizeof(float));
ptcache_file_write(pf, &sds->shift, 3, sizeof(int));
ptcache_file_write(pf, &sds->obj_shift_f, 3, sizeof(float));
ptcache_file_write(pf, &sds->obmat, 16, sizeof(float));
ptcache_file_write(pf, &sds->base_res, 3, sizeof(int));
ptcache_file_write(pf, &sds->res_min, 3, sizeof(int));
ptcache_file_write(pf, &sds->res_max, 3, sizeof(int));
ptcache_file_write(pf, &sds->active_color, 3, sizeof(float));
MEM_freeN(out);
ret = 1;
}
if (sds->wt) {
int res_big_array[3];
int res_big;
int res = sds->res[0]*sds->res[1]*sds->res[2];
float *dens, *react, *fuel, *flame, *tcu, *tcv, *tcw, *r, *g, *b;
unsigned int in_len = sizeof(float)*(unsigned int)res;
unsigned int in_len_big;
unsigned char *out;
int mode;
smoke_turbulence_get_res(sds->wt, res_big_array);
res_big = res_big_array[0]*res_big_array[1]*res_big_array[2];
//mode = res_big >= 1000000 ? 2 : 1;
mode = 1; // light
if (sds->cache_high_comp == SM_CACHE_HEAVY) mode=2; // heavy
in_len_big = sizeof(float) * (unsigned int)res_big;
smoke_turbulence_export(sds->wt, &dens, &react, &flame, &fuel, &r, &g, &b, &tcu, &tcv, &tcw);
out = (unsigned char *)MEM_callocN(LZO_OUT_LEN(in_len_big), "pointcache_lzo_buffer");
ptcache_file_compressed_write(pf, (unsigned char *)dens, in_len_big, out, mode);
if (fluid_fields & SM_ACTIVE_FIRE) {
ptcache_file_compressed_write(pf, (unsigned char *)flame, in_len_big, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)fuel, in_len_big, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)react, in_len_big, out, mode);
}
if (fluid_fields & SM_ACTIVE_COLORS) {
ptcache_file_compressed_write(pf, (unsigned char *)r, in_len_big, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)g, in_len_big, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)b, in_len_big, out, mode);
}
MEM_freeN(out);
out = (unsigned char *)MEM_callocN(LZO_OUT_LEN(in_len), "pointcache_lzo_buffer");
ptcache_file_compressed_write(pf, (unsigned char *)tcu, in_len, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)tcv, in_len, out, mode);
ptcache_file_compressed_write(pf, (unsigned char *)tcw, in_len, out, mode);
MEM_freeN(out);
ret = 1;
}
return ret;
}
/* read old smoke cache from 2.64 */
static int ptcache_smoke_read_old(PTCacheFile *pf, void *smoke_v)
{
SmokeModifierData *smd= (SmokeModifierData *)smoke_v;
SmokeDomainSettings *sds = smd->domain;
if (sds->fluid) {
const size_t res = sds->res[0] * sds->res[1] * sds->res[2];
const unsigned int out_len = (unsigned int)res * sizeof(float);
float dt, dx, *dens, *heat, *heatold, *vx, *vy, *vz;
unsigned char *obstacles;
float *tmp_array = MEM_callocN(out_len, "Smoke old cache tmp");
int fluid_fields = smoke_get_data_flags(sds);
/* Part part of the new cache header */
sds->active_color[0] = 0.7f;
sds->active_color[1] = 0.7f;
sds->active_color[2] = 0.7f;
smoke_export(sds->fluid, &dt, &dx, &dens, NULL, NULL, NULL, &heat, &heatold, &vx, &vy, &vz, NULL, NULL, NULL, &obstacles);
ptcache_file_compressed_read(pf, (unsigned char *)sds->shadow, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)dens, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)tmp_array, out_len);
if (fluid_fields & SM_ACTIVE_HEAT)
{
ptcache_file_compressed_read(pf, (unsigned char*)heat, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)heatold, out_len);
}
else
{
ptcache_file_compressed_read(pf, (unsigned char*)tmp_array, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)tmp_array, out_len);
}
ptcache_file_compressed_read(pf, (unsigned char*)vx, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)vy, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)vz, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)tmp_array, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)tmp_array, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)tmp_array, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)obstacles, (unsigned int)res);
ptcache_file_read(pf, &dt, 1, sizeof(float));
ptcache_file_read(pf, &dx, 1, sizeof(float));
MEM_freeN(tmp_array);
if (pf->data_types & (1<<BPHYS_DATA_SMOKE_HIGH) && sds->wt) {
int res_big, res_big_array[3];
float *tcu, *tcv, *tcw;
unsigned int out_len_big;
unsigned char *tmp_array_big;
smoke_turbulence_get_res(sds->wt, res_big_array);
res_big = res_big_array[0]*res_big_array[1]*res_big_array[2];
out_len_big = sizeof(float) * (unsigned int)res_big;
tmp_array_big = MEM_callocN(out_len_big, "Smoke old cache tmp");
smoke_turbulence_export(sds->wt, &dens, NULL, NULL, NULL, NULL, NULL, NULL, &tcu, &tcv, &tcw);
ptcache_file_compressed_read(pf, (unsigned char*)dens, out_len_big);
ptcache_file_compressed_read(pf, (unsigned char*)tmp_array_big, out_len_big);
ptcache_file_compressed_read(pf, (unsigned char*)tcu, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)tcv, out_len);
ptcache_file_compressed_read(pf, (unsigned char*)tcw, out_len);
MEM_freeN(tmp_array_big);
}
}
return 1;
}
static int ptcache_smoke_read(PTCacheFile *pf, void *smoke_v)
{
SmokeModifierData *smd= (SmokeModifierData *)smoke_v;
SmokeDomainSettings *sds = smd->domain;
char version[4];
int ch_res[3];
float ch_dx;
int fluid_fields = smoke_get_data_flags(sds);
int cache_fields = 0;
int active_fields = 0;
int reallocate = 0;
/* version header */
ptcache_file_read(pf, version, 4, sizeof(char));
if (!STREQLEN(version, SMOKE_CACHE_VERSION, 4))
{
/* reset file pointer */
fseek(pf->fp, -4, SEEK_CUR);
return ptcache_smoke_read_old(pf, smoke_v);
}
/* fluid info */
ptcache_file_read(pf, &cache_fields, 1, sizeof(int));
ptcache_file_read(pf, &active_fields, 1, sizeof(int));
ptcache_file_read(pf, &ch_res, 3, sizeof(int));
ptcache_file_read(pf, &ch_dx, 1, sizeof(float));
/* check if resolution has changed */
if (sds->res[0] != ch_res[0] ||
sds->res[1] != ch_res[1] ||
sds->res[2] != ch_res[2])
{
if (sds->flags & MOD_SMOKE_ADAPTIVE_DOMAIN)
reallocate = 1;
else
return 0;
}
/* check if active fields have changed */
if (fluid_fields != cache_fields ||
active_fields != sds->active_fields)
reallocate = 1;
/* reallocate fluid if needed*/
if (reallocate) {
sds->active_fields = active_fields | cache_fields;
smoke_reallocate_fluid(sds, ch_dx, ch_res, 1);
sds->dx = ch_dx;
VECCOPY(sds->res, ch_res);
sds->total_cells = ch_res[0]*ch_res[1]*ch_res[2];
if (sds->flags & MOD_SMOKE_HIGHRES) {
smoke_reallocate_highres_fluid(sds, ch_dx, ch_res, 1);
}
}
if (sds->fluid) {
size_t res = sds->res[0]*sds->res[1]*sds->res[2];
float dt, dx, *dens, *react, *fuel, *flame, *heat, *heatold, *vx, *vy, *vz, *r, *g, *b;
unsigned char *obstacles;
unsigned int out_len = (unsigned int)res * sizeof(float);
smoke_export(sds->fluid, &dt, &dx, &dens, &react, &flame, &fuel, &heat, &heatold, &vx, &vy, &vz, &r, &g, &b, &obstacles);
ptcache_file_compressed_read(pf, (unsigned char *)sds->shadow, out_len);
ptcache_file_compressed_read(pf, (unsigned char *)dens, out_len);
if (cache_fields & SM_ACTIVE_HEAT) {
ptcache_file_compressed_read(pf, (unsigned char *)heat, out_len);
ptcache_file_compressed_read(pf, (unsigned char *)heatold, out_len);
}
if (cache_fields & SM_ACTIVE_FIRE) {
ptcache_file_compressed_read(pf, (unsigned char *)flame, out_len);
ptcache_file_compressed_read(pf, (unsigned char *)fuel, out_len);
ptcache_file_compressed_read(pf, (unsigned char *)react, out_len);
}
if (cache_fields & SM_ACTIVE_COLORS) {
ptcache_file_compressed_read(pf, (unsigned char *)r, out_len);
ptcache_file_compressed_read(pf, (unsigned char *)g, out_len);
ptcache_file_compressed_read(pf, (unsigned char *)b, out_len);
}
ptcache_file_compressed_read(pf, (unsigned char *)vx, out_len);
ptcache_file_compressed_read(pf, (unsigned char *)vy, out_len);
ptcache_file_compressed_read(pf, (unsigned char *)vz, out_len);
ptcache_file_compressed_read(pf, (unsigned char *)obstacles, (unsigned int)res);
ptcache_file_read(pf, &dt, 1, sizeof(float));
ptcache_file_read(pf, &dx, 1, sizeof(float));
ptcache_file_read(pf, &sds->p0, 3, sizeof(float));
ptcache_file_read(pf, &sds->p1, 3, sizeof(float));
ptcache_file_read(pf, &sds->dp0, 3, sizeof(float));
ptcache_file_read(pf, &sds->shift, 3, sizeof(int));
ptcache_file_read(pf, &sds->obj_shift_f, 3, sizeof(float));
ptcache_file_read(pf, &sds->obmat, 16, sizeof(float));
ptcache_file_read(pf, &sds->base_res, 3, sizeof(int));
ptcache_file_read(pf, &sds->res_min, 3, sizeof(int));
ptcache_file_read(pf, &sds->res_max, 3, sizeof(int));
ptcache_file_read(pf, &sds->active_color, 3, sizeof(float));
}
if (pf->data_types & (1<<BPHYS_DATA_SMOKE_HIGH) && sds->wt) {
int res = sds->res[0]*sds->res[1]*sds->res[2];
int res_big, res_big_array[3];
float *dens, *react, *fuel, *flame, *tcu, *tcv, *tcw, *r, *g, *b;
unsigned int out_len = sizeof(float)*(unsigned int)res;
unsigned int out_len_big;
smoke_turbulence_get_res(sds->wt, res_big_array);
res_big = res_big_array[0]*res_big_array[1]*res_big_array[2];
out_len_big = sizeof(float) * (unsigned int)res_big;
smoke_turbulence_export(sds->wt, &dens, &react, &flame, &fuel, &r, &g, &b, &tcu, &tcv, &tcw);
ptcache_file_compressed_read(pf, (unsigned char *)dens, out_len_big);
if (cache_fields & SM_ACTIVE_FIRE) {
ptcache_file_compressed_read(pf, (unsigned char *)flame, out_len_big);
ptcache_file_compressed_read(pf, (unsigned char *)fuel, out_len_big);
ptcache_file_compressed_read(pf, (unsigned char *)react, out_len_big);
}
if (cache_fields & SM_ACTIVE_COLORS) {
ptcache_file_compressed_read(pf, (unsigned char *)r, out_len_big);
ptcache_file_compressed_read(pf, (unsigned char *)g, out_len_big);
ptcache_file_compressed_read(pf, (unsigned char *)b, out_len_big);
}
ptcache_file_compressed_read(pf, (unsigned char *)tcu, out_len);
ptcache_file_compressed_read(pf, (unsigned char *)tcv, out_len);
ptcache_file_compressed_read(pf, (unsigned char *)tcw, out_len);
}
return 1;
}
#ifdef WITH_OPENVDB
/**
* Construct matrices which represent the fluid object, for low and high res:
* <pre>
* vs 0 0 0
* 0 vs 0 0
* 0 0 vs 0
* px py pz 1
* </pre>
*
* with `vs` = voxel size, and `px, py, pz`,
* the min position of the domain's bounding box.
*/
static void compute_fluid_matrices(SmokeDomainSettings *sds)
{
float bbox_min[3];
copy_v3_v3(bbox_min, sds->p0);
if (sds->flags & MOD_SMOKE_ADAPTIVE_DOMAIN) {
bbox_min[0] += (sds->cell_size[0] * (float)sds->res_min[0]);
bbox_min[1] += (sds->cell_size[1] * (float)sds->res_min[1]);
bbox_min[2] += (sds->cell_size[2] * (float)sds->res_min[2]);
add_v3_v3(bbox_min, sds->obj_shift_f);
}
/* construct low res matrix */
size_to_mat4(sds->fluidmat, sds->cell_size);
copy_v3_v3(sds->fluidmat[3], bbox_min);
/* The smoke simulator stores voxels cell-centered, whilst VDB is node
* centered, so we offset the matrix by half a voxel to compensate. */
madd_v3_v3fl(sds->fluidmat[3], sds->cell_size, 0.5f);
mul_m4_m4m4(sds->fluidmat, sds->obmat, sds->fluidmat);
if (sds->wt) {
float voxel_size_high[3];
/* construct high res matrix */
mul_v3_v3fl(voxel_size_high, sds->cell_size, 1.0f / (float)(sds->amplify + 1));
size_to_mat4(sds->fluidmat_wt, voxel_size_high);
copy_v3_v3(sds->fluidmat_wt[3], bbox_min);
/* Same here, add half a voxel to adjust the position of the fluid. */
madd_v3_v3fl(sds->fluidmat_wt[3], voxel_size_high, 0.5f);
mul_m4_m4m4(sds->fluidmat_wt, sds->obmat, sds->fluidmat_wt);
}
}
static int ptcache_smoke_openvdb_write(struct OpenVDBWriter *writer, void *smoke_v)
{
SmokeModifierData *smd = (SmokeModifierData *)smoke_v;
SmokeDomainSettings *sds = smd->domain;
OpenVDBWriter_set_flags(writer, sds->openvdb_comp, (sds->data_depth == 16));
OpenVDBWriter_add_meta_int(writer, "blender/smoke/active_fields", sds->active_fields);
OpenVDBWriter_add_meta_v3_int(writer, "blender/smoke/resolution", sds->res);
OpenVDBWriter_add_meta_v3_int(writer, "blender/smoke/min_resolution", sds->res_min);
OpenVDBWriter_add_meta_v3_int(writer, "blender/smoke/max_resolution", sds->res_max);
OpenVDBWriter_add_meta_v3_int(writer, "blender/smoke/base_resolution", sds->base_res);
OpenVDBWriter_add_meta_v3(writer, "blender/smoke/min_bbox", sds->p0);
OpenVDBWriter_add_meta_v3(writer, "blender/smoke/max_bbox", sds->p1);
OpenVDBWriter_add_meta_v3(writer, "blender/smoke/dp0", sds->dp0);
OpenVDBWriter_add_meta_v3_int(writer, "blender/smoke/shift", sds->shift);
OpenVDBWriter_add_meta_v3(writer, "blender/smoke/obj_shift_f", sds->obj_shift_f);
OpenVDBWriter_add_meta_v3(writer, "blender/smoke/active_color", sds->active_color);
OpenVDBWriter_add_meta_mat4(writer, "blender/smoke/obmat", sds->obmat);
int fluid_fields = smoke_get_data_flags(sds);
struct OpenVDBFloatGrid *clip_grid = NULL;
compute_fluid_matrices(sds);
OpenVDBWriter_add_meta_int(writer, "blender/smoke/fluid_fields", fluid_fields);
if (sds->wt) {
struct OpenVDBFloatGrid *wt_density_grid;
float *dens, *react, *fuel, *flame, *tcu, *tcv, *tcw, *r, *g, *b;
smoke_turbulence_export(sds->wt, &dens, &react, &flame, &fuel, &r, &g, &b, &tcu, &tcv, &tcw);
wt_density_grid = OpenVDB_export_grid_fl(writer, "density", dens, sds->res_wt, sds->fluidmat_wt, sds->clipping, NULL);
clip_grid = wt_density_grid;
if (fluid_fields & SM_ACTIVE_FIRE) {
OpenVDB_export_grid_fl(writer, "flame", flame, sds->res_wt, sds->fluidmat_wt, sds->clipping, wt_density_grid);
OpenVDB_export_grid_fl(writer, "fuel", fuel, sds->res_wt, sds->fluidmat_wt, sds->clipping, wt_density_grid);
OpenVDB_export_grid_fl(writer, "react", react, sds->res_wt, sds->fluidmat_wt, sds->clipping, wt_density_grid);
}
if (fluid_fields & SM_ACTIVE_COLORS) {
OpenVDB_export_grid_vec(writer, "color", r, g, b, sds->res_wt, sds->fluidmat_wt, VEC_INVARIANT, true, sds->clipping, wt_density_grid);
}
OpenVDB_export_grid_vec(writer, "texture coordinates", tcu, tcv, tcw, sds->res, sds->fluidmat, VEC_INVARIANT, false, sds->clipping, wt_density_grid);
}
if (sds->fluid) {
struct OpenVDBFloatGrid *density_grid;
float dt, dx, *dens, *react, *fuel, *flame, *heat, *heatold, *vx, *vy, *vz, *r, *g, *b;
unsigned char *obstacles;
smoke_export(sds->fluid, &dt, &dx, &dens, &react, &flame, &fuel, &heat,
&heatold, &vx, &vy, &vz, &r, &g, &b, &obstacles);
OpenVDBWriter_add_meta_fl(writer, "blender/smoke/dx", dx);
OpenVDBWriter_add_meta_fl(writer, "blender/smoke/dt", dt);
const char *name = (!sds->wt) ? "density" : "density_low";
density_grid = OpenVDB_export_grid_fl(writer, name, dens, sds->res, sds->fluidmat, sds->clipping, NULL);
clip_grid = sds->wt ? clip_grid : density_grid;
OpenVDB_export_grid_fl(writer, "shadow", sds->shadow, sds->res, sds->fluidmat, sds->clipping, NULL);
if (fluid_fields & SM_ACTIVE_HEAT) {
OpenVDB_export_grid_fl(writer, "heat", heat, sds->res, sds->fluidmat, sds->clipping, clip_grid);
OpenVDB_export_grid_fl(writer, "heat_old", heatold, sds->res, sds->fluidmat, sds->clipping, clip_grid);
}
if (fluid_fields & SM_ACTIVE_FIRE) {
name = (!sds->wt) ? "flame" : "flame_low";
OpenVDB_export_grid_fl(writer, name, flame, sds->res, sds->fluidmat, sds->clipping, density_grid);
name = (!sds->wt) ? "fuel" : "fuel_low";
OpenVDB_export_grid_fl(writer, name, fuel, sds->res, sds->fluidmat, sds->clipping, density_grid);
name = (!sds->wt) ? "react" : "react_low";
OpenVDB_export_grid_fl(writer, name, react, sds->res, sds->fluidmat, sds->clipping, density_grid);
}
if (fluid_fields & SM_ACTIVE_COLORS) {
name = (!sds->wt) ? "color" : "color_low";
OpenVDB_export_grid_vec(writer, name, r, g, b, sds->res, sds->fluidmat, VEC_INVARIANT, true, sds->clipping, density_grid);
}
OpenVDB_export_grid_vec(writer, "velocity", vx, vy, vz, sds->res, sds->fluidmat, VEC_CONTRAVARIANT_RELATIVE, false, sds->clipping, clip_grid);
OpenVDB_export_grid_ch(writer, "obstacles", obstacles, sds->res, sds->fluidmat, sds->clipping, NULL);
}
return 1;
}
static int ptcache_smoke_openvdb_read(struct OpenVDBReader *reader, void *smoke_v)
{
SmokeModifierData *smd = (SmokeModifierData *)smoke_v;
if (!smd) {
return 0;
}
SmokeDomainSettings *sds = smd->domain;
int fluid_fields = smoke_get_data_flags(sds);
int active_fields, cache_fields = 0;
int cache_res[3];
float cache_dx;
bool reallocate = false;
OpenVDBReader_get_meta_v3_int(reader, "blender/smoke/min_resolution", sds->res_min);
OpenVDBReader_get_meta_v3_int(reader, "blender/smoke/max_resolution", sds->res_max);
OpenVDBReader_get_meta_v3_int(reader, "blender/smoke/base_resolution", sds->base_res);
OpenVDBReader_get_meta_v3(reader, "blender/smoke/min_bbox", sds->p0);
OpenVDBReader_get_meta_v3(reader, "blender/smoke/max_bbox", sds->p1);
OpenVDBReader_get_meta_v3(reader, "blender/smoke/dp0", sds->dp0);
OpenVDBReader_get_meta_v3_int(reader, "blender/smoke/shift", sds->shift);
OpenVDBReader_get_meta_v3(reader, "blender/smoke/obj_shift_f", sds->obj_shift_f);
OpenVDBReader_get_meta_v3(reader, "blender/smoke/active_color", sds->active_color);
OpenVDBReader_get_meta_mat4(reader, "blender/smoke/obmat", sds->obmat);
OpenVDBReader_get_meta_int(reader, "blender/smoke/fluid_fields", &cache_fields);
OpenVDBReader_get_meta_int(reader, "blender/smoke/active_fields", &active_fields);
OpenVDBReader_get_meta_fl(reader, "blender/smoke/dx", &cache_dx);
OpenVDBReader_get_meta_v3_int(reader, "blender/smoke/resolution", cache_res);
/* check if resolution has changed */
if (sds->res[0] != cache_res[0] ||
sds->res[1] != cache_res[1] ||
sds->res[2] != cache_res[2])
{
if (sds->flags & MOD_SMOKE_ADAPTIVE_DOMAIN) {
reallocate = true;
}
else {
return 0;
}
}
/* check if active fields have changed */
if ((fluid_fields != cache_fields) || (active_fields != sds->active_fields)) {
reallocate = true;
}
/* reallocate fluid if needed*/
if (reallocate) {
sds->active_fields = active_fields | cache_fields;
smoke_reallocate_fluid(sds, cache_dx, cache_res, 1);
sds->dx = cache_dx;
copy_v3_v3_int(sds->res, cache_res);
sds->total_cells = cache_res[0] * cache_res[1] * cache_res[2];
if (sds->flags & MOD_SMOKE_HIGHRES) {
smoke_reallocate_highres_fluid(sds, cache_dx, cache_res, 1);
}
}
if (sds->fluid) {
float dt, dx, *dens, *react, *fuel, *flame, *heat, *heatold, *vx, *vy, *vz, *r, *g, *b;
unsigned char *obstacles;
smoke_export(sds->fluid, &dt, &dx, &dens, &react, &flame, &fuel, &heat,
&heatold, &vx, &vy, &vz, &r, &g, &b, &obstacles);
OpenVDBReader_get_meta_fl(reader, "blender/smoke/dt", &dt);
OpenVDB_import_grid_fl(reader, "shadow", &sds->shadow, sds->res);
const char *name = (!sds->wt) ? "density" : "density_low";
OpenVDB_import_grid_fl(reader, name, &dens, sds->res);
if (cache_fields & SM_ACTIVE_HEAT) {
OpenVDB_import_grid_fl(reader, "heat", &heat, sds->res);
OpenVDB_import_grid_fl(reader, "heat_old", &heatold, sds->res);
}
if (cache_fields & SM_ACTIVE_FIRE) {
name = (!sds->wt) ? "flame" : "flame_low";
OpenVDB_import_grid_fl(reader, name, &flame, sds->res);
name = (!sds->wt) ? "fuel" : "fuel_low";
OpenVDB_import_grid_fl(reader, name, &fuel, sds->res);
name = (!sds->wt) ? "react" : "react_low";
OpenVDB_import_grid_fl(reader, name, &react, sds->res);
}
if (cache_fields & SM_ACTIVE_COLORS) {
name = (!sds->wt) ? "color" : "color_low";
OpenVDB_import_grid_vec(reader, name, &r, &g, &b, sds->res);
}
OpenVDB_import_grid_vec(reader, "velocity", &vx, &vy, &vz, sds->res);
OpenVDB_import_grid_ch(reader, "obstacles", &obstacles, sds->res);
}
if (sds->wt) {
float *dens, *react, *fuel, *flame, *tcu, *tcv, *tcw, *r, *g, *b;
smoke_turbulence_export(sds->wt, &dens, &react, &flame, &fuel, &r, &g, &b, &tcu, &tcv, &tcw);
OpenVDB_import_grid_fl(reader, "density", &dens, sds->res_wt);
if (cache_fields & SM_ACTIVE_FIRE) {
OpenVDB_import_grid_fl(reader, "flame", &flame, sds->res_wt);
OpenVDB_import_grid_fl(reader, "fuel", &fuel, sds->res_wt);
OpenVDB_import_grid_fl(reader, "react", &react, sds->res_wt);
}
if (cache_fields & SM_ACTIVE_COLORS) {
OpenVDB_import_grid_vec(reader, "color", &r, &g, &b, sds->res_wt);
}
OpenVDB_import_grid_vec(reader, "texture coordinates", &tcu, &tcv, &tcw, sds->res);
}
OpenVDBReader_free(reader);
return 1;
}
#endif
#else // WITH_SMOKE
static int ptcache_smoke_totpoint(void *UNUSED(smoke_v), int UNUSED(cfra)) { return 0; }
static void ptcache_smoke_error(void *UNUSED(smoke_v), const char *UNUSED(message)) { }
static int ptcache_smoke_read(PTCacheFile *UNUSED(pf), void *UNUSED(smoke_v)) { return 0; }
static int ptcache_smoke_write(PTCacheFile *UNUSED(pf), void *UNUSED(smoke_v)) { return 0; }
#endif // WITH_SMOKE
#if !defined(WITH_SMOKE) || !defined(WITH_OPENVDB)
static int ptcache_smoke_openvdb_write(struct OpenVDBWriter *writer, void *smoke_v)
{
UNUSED_VARS(writer, smoke_v);
return 0;
}
static int ptcache_smoke_openvdb_read(struct OpenVDBReader *reader, void *smoke_v)
{
UNUSED_VARS(reader, smoke_v);
return 0;
}
#endif
static int ptcache_dynamicpaint_totpoint(void *sd, int UNUSED(cfra))
{
DynamicPaintSurface *surface = (DynamicPaintSurface*)sd;
if (!surface->data) return 0;
else return surface->data->total_points;
}
static void ptcache_dynamicpaint_error(void *UNUSED(sd), const char *UNUSED(message))
{
/* ignored for now */
}
#define DPAINT_CACHE_VERSION "1.01"
static int ptcache_dynamicpaint_write(PTCacheFile *pf, void *dp_v)
{
DynamicPaintSurface *surface = (DynamicPaintSurface*)dp_v;
int cache_compress = 1;
/* version header */
ptcache_file_write(pf, DPAINT_CACHE_VERSION, 1, sizeof(char) * 4);
if (surface->format != MOD_DPAINT_SURFACE_F_IMAGESEQ && surface->data) {
int total_points=surface->data->total_points;
unsigned int in_len;
unsigned char *out;
/* cache type */
ptcache_file_write(pf, &surface->type, 1, sizeof(int));
if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
in_len = sizeof(PaintPoint) * total_points;
}
else if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE ||
surface->type == MOD_DPAINT_SURFACE_T_WEIGHT)
{
in_len = sizeof(float) * total_points;
}
else if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
in_len = sizeof(PaintWavePoint) * total_points;
}
else {
return 0;
}
out = (unsigned char *)MEM_callocN(LZO_OUT_LEN(in_len), "pointcache_lzo_buffer");
ptcache_file_compressed_write(pf, (unsigned char *)surface->data->type_data, in_len, out, cache_compress);
MEM_freeN(out);
}
return 1;
}
static int ptcache_dynamicpaint_read(PTCacheFile *pf, void *dp_v)
{
DynamicPaintSurface *surface = (DynamicPaintSurface*)dp_v;
char version[4];
/* version header */
ptcache_file_read(pf, version, 1, sizeof(char) * 4);
if (!STREQLEN(version, DPAINT_CACHE_VERSION, 4)) {
printf("Dynamic Paint: Invalid cache version: '%c%c%c%c'!\n", UNPACK4(version));
return 0;
}
if (surface->format != MOD_DPAINT_SURFACE_F_IMAGESEQ && surface->data) {
unsigned int data_len;
int surface_type;
/* cache type */
ptcache_file_read(pf, &surface_type, 1, sizeof(int));
if (surface_type != surface->type)
return 0;
/* read surface data */
if (surface->type == MOD_DPAINT_SURFACE_T_PAINT) {
data_len = sizeof(PaintPoint);
}
else if (surface->type == MOD_DPAINT_SURFACE_T_DISPLACE ||
surface->type == MOD_DPAINT_SURFACE_T_WEIGHT)
{
data_len = sizeof(float);
}
else if (surface->type == MOD_DPAINT_SURFACE_T_WAVE) {
data_len = sizeof(PaintWavePoint);
}
else {
return 0;
}
ptcache_file_compressed_read(pf, (unsigned char *)surface->data->type_data, data_len*surface->data->total_points);
}
return 1;
}
/* Rigid Body functions */
static int ptcache_rigidbody_write(int index, void *rb_v, void **data, int UNUSED(cfra))
{
RigidBodyWorld *rbw = rb_v;
Object *ob = NULL;
if (rbw->objects)
ob = rbw->objects[index];
if (ob && ob->rigidbody_object) {
RigidBodyOb *rbo = ob->rigidbody_object;
if (rbo->type == RBO_TYPE_ACTIVE) {
#ifdef WITH_BULLET
RB_body_get_position(rbo->physics_object, rbo->pos);
RB_body_get_orientation(rbo->physics_object, rbo->orn);
#endif
PTCACHE_DATA_FROM(data, BPHYS_DATA_LOCATION, rbo->pos);
PTCACHE_DATA_FROM(data, BPHYS_DATA_ROTATION, rbo->orn);
}
}
return 1;
}
static void ptcache_rigidbody_read(int index, void *rb_v, void **data, float UNUSED(cfra), float *old_data)
{
RigidBodyWorld *rbw = rb_v;
Object *ob = NULL;
if (rbw->objects)
ob = rbw->objects[index];
if (ob && ob->rigidbody_object) {
RigidBodyOb *rbo = ob->rigidbody_object;
if (rbo->type == RBO_TYPE_ACTIVE) {
if (old_data) {
memcpy(rbo->pos, data, 3 * sizeof(float));
memcpy(rbo->orn, data + 3, 4 * sizeof(float));
}
else {
PTCACHE_DATA_TO(data, BPHYS_DATA_LOCATION, 0, rbo->pos);
PTCACHE_DATA_TO(data, BPHYS_DATA_ROTATION, 0, rbo->orn);
}
}
}
}
static void ptcache_rigidbody_interpolate(int index, void *rb_v, void **data, float cfra, float cfra1, float cfra2, float *old_data)
{
RigidBodyWorld *rbw = rb_v;
Object *ob = NULL;
if (rbw->objects)
ob = rbw->objects[index];
if (ob && ob->rigidbody_object) {
RigidBodyOb *rbo = ob->rigidbody_object;
if (rbo->type == RBO_TYPE_ACTIVE) {
ParticleKey keys[4];
ParticleKey result;
float dfra;
memset(keys, 0, sizeof(keys));
copy_v3_v3(keys[1].co, rbo->pos);
copy_qt_qt(keys[1].rot, rbo->orn);
if (old_data) {
memcpy(keys[2].co, data, 3 * sizeof(float));
memcpy(keys[2].rot, data + 3, 4 * sizeof(float));
}
else {
BKE_ptcache_make_particle_key(&keys[2], 0, data, cfra2);
}
dfra = cfra2 - cfra1;
/* note: keys[0] and keys[3] unused for type < 1 (crappy) */
psys_interpolate_particle(-1, keys, (cfra - cfra1) / dfra, &result, true);
interp_qt_qtqt(result.rot, keys[1].rot, keys[2].rot, (cfra - cfra1) / dfra);
copy_v3_v3(rbo->pos, result.co);
copy_qt_qt(rbo->orn, result.rot);
}
}
}
static int ptcache_rigidbody_totpoint(void *rb_v, int UNUSED(cfra))
{
RigidBodyWorld *rbw = rb_v;
return rbw->numbodies;
}
static void ptcache_rigidbody_error(void *UNUSED(rb_v), const char *UNUSED(message))
{
/* ignored for now */
}
/* Creating ID's */
void BKE_ptcache_id_from_softbody(PTCacheID *pid, Object *ob, SoftBody *sb)
{
memset(pid, 0, sizeof(PTCacheID));
pid->ob= ob;
pid->calldata= sb;
pid->type= PTCACHE_TYPE_SOFTBODY;
pid->cache= sb->pointcache;
pid->cache_ptr= &sb->pointcache;
pid->ptcaches= &sb->ptcaches;
pid->totpoint= pid->totwrite= ptcache_softbody_totpoint;
pid->error = ptcache_softbody_error;
pid->write_point = ptcache_softbody_write;
pid->read_point = ptcache_softbody_read;
pid->interpolate_point = ptcache_softbody_interpolate;
pid->write_stream = NULL;
pid->read_stream = NULL;
pid->write_openvdb_stream = NULL;
pid->read_openvdb_stream = NULL;
pid->write_extra_data = NULL;
pid->read_extra_data = NULL;
pid->interpolate_extra_data = NULL;
pid->write_header = ptcache_basic_header_write;
pid->read_header = ptcache_basic_header_read;
pid->data_types= (1<<BPHYS_DATA_LOCATION) | (1<<BPHYS_DATA_VELOCITY);
pid->info_types= 0;
pid->stack_index = pid->cache->index;
pid->default_step = 10;
pid->max_step = 20;
pid->file_type = PTCACHE_FILE_PTCACHE;
}
void BKE_ptcache_id_from_particles(PTCacheID *pid, Object *ob, ParticleSystem *psys)
{
memset(pid, 0, sizeof(PTCacheID));
pid->ob= ob;
pid->calldata= psys;
pid->type= PTCACHE_TYPE_PARTICLES;
pid->stack_index= psys->pointcache->index;
pid->cache= psys->pointcache;
pid->cache_ptr= &psys->pointcache;
pid->ptcaches= &psys->ptcaches;
if (psys->part->type != PART_HAIR)
pid->flag |= PTCACHE_VEL_PER_SEC;
pid->totpoint = ptcache_particle_totpoint;
pid->totwrite = ptcache_particle_totwrite;
pid->error = ptcache_particle_error;
pid->write_point = ptcache_particle_write;
pid->read_point = ptcache_particle_read;
pid->interpolate_point = ptcache_particle_interpolate;
pid->write_stream = NULL;
pid->read_stream = NULL;
pid->write_openvdb_stream = NULL;
pid->read_openvdb_stream = NULL;
pid->write_extra_data = NULL;
pid->read_extra_data = NULL;
pid->interpolate_extra_data = NULL;
pid->write_header = ptcache_basic_header_write;
pid->read_header = ptcache_basic_header_read;
pid->data_types = (1<<BPHYS_DATA_LOCATION) | (1<<BPHYS_DATA_VELOCITY) | (1<<BPHYS_DATA_INDEX);
if (psys->part->phystype == PART_PHYS_BOIDS)
pid->data_types|= (1<<BPHYS_DATA_AVELOCITY) | (1<<BPHYS_DATA_ROTATION) | (1<<BPHYS_DATA_BOIDS);
else if (psys->part->phystype == PART_PHYS_FLUID && psys->part->fluid && psys->part->fluid->flag & SPH_VISCOELASTIC_SPRINGS) {
pid->write_extra_data = ptcache_particle_extra_write;
pid->read_extra_data = ptcache_particle_extra_read;
}
if (psys->part->flag & PART_ROTATIONS) {
pid->data_types|= (1<<BPHYS_DATA_ROTATION);
if (psys->part->rotmode != PART_ROT_VEL ||
psys->part->avemode == PART_AVE_RAND ||
psys->part->avefac != 0.0f)
{
pid->data_types |= (1 << BPHYS_DATA_AVELOCITY);
}
}
pid->info_types= (1<<BPHYS_DATA_TIMES);
pid->default_step = 10;
pid->max_step = 20;
pid->file_type = PTCACHE_FILE_PTCACHE;
}
void BKE_ptcache_id_from_cloth(PTCacheID *pid, Object *ob, ClothModifierData *clmd)
{
memset(pid, 0, sizeof(PTCacheID));
pid->ob= ob;
pid->calldata= clmd;
pid->type= PTCACHE_TYPE_CLOTH;
pid->stack_index= clmd->point_cache->index;
pid->cache= clmd->point_cache;
pid->cache_ptr= &clmd->point_cache;
pid->ptcaches= &clmd->ptcaches;
pid->totpoint= pid->totwrite= ptcache_cloth_totpoint;
pid->error = ptcache_cloth_error;
pid->write_point = ptcache_cloth_write;
pid->read_point = ptcache_cloth_read;
pid->interpolate_point = ptcache_cloth_interpolate;
pid->write_openvdb_stream = NULL;
pid->read_openvdb_stream = NULL;
pid->write_stream = NULL;
pid->read_stream = NULL;
pid->write_extra_data = NULL;
pid->read_extra_data = NULL;
pid->interpolate_extra_data = NULL;
pid->write_header = ptcache_basic_header_write;
pid->read_header = ptcache_basic_header_read;
pid->data_types= (1<<BPHYS_DATA_LOCATION) | (1<<BPHYS_DATA_VELOCITY) | (1<<BPHYS_DATA_XCONST);
pid->info_types= 0;
pid->default_step = 1;
pid->max_step = 1;
pid->file_type = PTCACHE_FILE_PTCACHE;
}
void BKE_ptcache_id_from_smoke(PTCacheID *pid, struct Object *ob, struct SmokeModifierData *smd)
{
SmokeDomainSettings *sds = smd->domain;
memset(pid, 0, sizeof(PTCacheID));
pid->ob= ob;
pid->calldata= smd;
pid->type= PTCACHE_TYPE_SMOKE_DOMAIN;
pid->stack_index= sds->point_cache[0]->index;
pid->cache= sds->point_cache[0];
pid->cache_ptr= &(sds->point_cache[0]);
pid->ptcaches= &(sds->ptcaches[0]);
pid->totpoint= pid->totwrite= ptcache_smoke_totpoint;
pid->error = ptcache_smoke_error;
pid->write_point = NULL;
pid->read_point = NULL;
pid->interpolate_point = NULL;
pid->read_stream = ptcache_smoke_read;
pid->write_stream = ptcache_smoke_write;
pid->write_openvdb_stream = ptcache_smoke_openvdb_write;
pid->read_openvdb_stream = ptcache_smoke_openvdb_read;
pid->write_extra_data = NULL;
pid->read_extra_data = NULL;
pid->interpolate_extra_data = NULL;
pid->write_header = ptcache_basic_header_write;
pid->read_header = ptcache_basic_header_read;
pid->data_types= 0;
pid->info_types= 0;
if (sds->fluid)
pid->data_types |= (1<<BPHYS_DATA_SMOKE_LOW);
if (sds->wt)
pid->data_types |= (1<<BPHYS_DATA_SMOKE_HIGH);
pid->default_step = 1;
pid->max_step = 1;
pid->file_type = smd->domain->cache_file_format;
}
void BKE_ptcache_id_from_dynamicpaint(PTCacheID *pid, Object *ob, DynamicPaintSurface *surface)
{
memset(pid, 0, sizeof(PTCacheID));
pid->ob= ob;
pid->calldata= surface;
pid->type= PTCACHE_TYPE_DYNAMICPAINT;
pid->cache= surface->pointcache;
pid->cache_ptr= &surface->pointcache;
pid->ptcaches= &surface->ptcaches;
pid->totpoint= pid->totwrite= ptcache_dynamicpaint_totpoint;
pid->error = ptcache_dynamicpaint_error;
pid->write_point = NULL;
pid->read_point = NULL;
pid->interpolate_point = NULL;
pid->write_stream = ptcache_dynamicpaint_write;
pid->read_stream = ptcache_dynamicpaint_read;
pid->write_openvdb_stream = NULL;
pid->read_openvdb_stream = NULL;
pid->write_extra_data = NULL;
pid->read_extra_data = NULL;
pid->interpolate_extra_data = NULL;
pid->write_header = ptcache_basic_header_write;
pid->read_header = ptcache_basic_header_read;
pid->data_types= BPHYS_DATA_DYNAMICPAINT;
pid->info_types= 0;
pid->stack_index = pid->cache->index;
pid->default_step = 1;
pid->max_step = 1;
pid->file_type = PTCACHE_FILE_PTCACHE;
}
void BKE_ptcache_id_from_rigidbody(PTCacheID *pid, Object *ob, RigidBodyWorld *rbw)
{
memset(pid, 0, sizeof(PTCacheID));
pid->ob= ob;
pid->calldata= rbw;
pid->type= PTCACHE_TYPE_RIGIDBODY;
pid->cache= rbw->pointcache;
pid->cache_ptr= &rbw->pointcache;
pid->ptcaches= &rbw->ptcaches;
pid->totpoint= pid->totwrite= ptcache_rigidbody_totpoint;
pid->error = ptcache_rigidbody_error;
pid->write_point = ptcache_rigidbody_write;
pid->read_point = ptcache_rigidbody_read;
pid->interpolate_point = ptcache_rigidbody_interpolate;
pid->write_stream = NULL;
pid->read_stream = NULL;
pid->write_openvdb_stream = NULL;
pid->read_openvdb_stream = NULL;
pid->write_extra_data = NULL;
pid->read_extra_data = NULL;
pid->interpolate_extra_data = NULL;
pid->write_header = ptcache_basic_header_write;
pid->read_header = ptcache_basic_header_read;
pid->data_types= (1<<BPHYS_DATA_LOCATION) | (1<<BPHYS_DATA_ROTATION);
pid->info_types= 0;
pid->stack_index = pid->cache->index;
pid->default_step = 1;
pid->max_step = 1;
pid->file_type = PTCACHE_FILE_PTCACHE;
}
void BKE_ptcache_ids_from_object(ListBase *lb, Object *ob, Scene *scene, int duplis)
{
PTCacheID *pid;
ParticleSystem *psys;
ModifierData *md;
lb->first= lb->last= NULL;
if (ob->soft) {
pid= MEM_callocN(sizeof(PTCacheID), "PTCacheID");
BKE_ptcache_id_from_softbody(pid, ob, ob->soft);
BLI_addtail(lb, pid);
}
for (psys=ob->particlesystem.first; psys; psys=psys->next) {
if (psys->part==NULL)
continue;
/* check to make sure point cache is actually used by the particles */
if (ELEM(psys->part->phystype, PART_PHYS_NO, PART_PHYS_KEYED))
continue;
/* hair needs to be included in id-list for cache edit mode to work */
/* if (psys->part->type == PART_HAIR && (psys->flag & PSYS_HAIR_DYNAMICS)==0) */
/* continue; */
if (psys->part->type == PART_FLUID)
continue;
pid= MEM_callocN(sizeof(PTCacheID), "PTCacheID");
BKE_ptcache_id_from_particles(pid, ob, psys);
BLI_addtail(lb, pid);
}
for (md=ob->modifiers.first; md; md=md->next) {
if (md->type == eModifierType_Cloth) {
pid= MEM_callocN(sizeof(PTCacheID), "PTCacheID");
BKE_ptcache_id_from_cloth(pid, ob, (ClothModifierData*)md);
BLI_addtail(lb, pid);
}
else if (md->type == eModifierType_Smoke) {
SmokeModifierData *smd = (SmokeModifierData *)md;
if (smd->type & MOD_SMOKE_TYPE_DOMAIN) {
pid= MEM_callocN(sizeof(PTCacheID), "PTCacheID");
BKE_ptcache_id_from_smoke(pid, ob, (SmokeModifierData*)md);
BLI_addtail(lb, pid);
}
}
else if (md->type == eModifierType_DynamicPaint) {
DynamicPaintModifierData *pmd = (DynamicPaintModifierData *)md;
if (pmd->canvas) {
DynamicPaintSurface *surface = pmd->canvas->surfaces.first;
for (; surface; surface=surface->next) {
pid= MEM_callocN(sizeof(PTCacheID), "PTCacheID");
BKE_ptcache_id_from_dynamicpaint(pid, ob, surface);
BLI_addtail(lb, pid);
}
}
}
}
if (scene && ob->rigidbody_object && scene->rigidbody_world) {
pid = MEM_callocN(sizeof(PTCacheID), "PTCacheID");
BKE_ptcache_id_from_rigidbody(pid, ob, scene->rigidbody_world);
BLI_addtail(lb, pid);
}
if (scene && (duplis-- > 0) && (ob->transflag & OB_DUPLI)) {
ListBase *lb_dupli_ob;
/* don't update the dupli groups, we only want their pid's */
if ((lb_dupli_ob = object_duplilist_ex(G.main, G.main->eval_ctx, scene, ob, false))) {
DupliObject *dob;
for (dob= lb_dupli_ob->first; dob; dob= dob->next) {
if (dob->ob != ob) { /* avoids recursive loops with dupliframes: bug 22988 */
ListBase lb_dupli_pid;
BKE_ptcache_ids_from_object(&lb_dupli_pid, dob->ob, scene, duplis);
BLI_movelisttolist(lb, &lb_dupli_pid);
if (lb_dupli_pid.first)
printf("Adding Dupli\n");
}
}
free_object_duplilist(lb_dupli_ob); /* does restore */
}
}
}
/* File handling */
static const char *ptcache_file_extension(const PTCacheID *pid)
{
switch (pid->file_type) {
default:
case PTCACHE_FILE_PTCACHE:
return PTCACHE_EXT;
case PTCACHE_FILE_OPENVDB:
return ".vdb";
}
}
/**
* Similar to #BLI_path_frame_get, but takes into account the stack-index which is after the frame.
*/
static int ptcache_frame_from_filename(const char *filename, const char *ext)
{
const int frame_len = 6;
const int ext_len = frame_len + strlen(ext);
const int len = strlen(filename);
/* could crash if trying to copy a string out of this range */
if (len > ext_len) {
/* using frame_len here gives compile error (vla) */
char num[/* frame_len */6 + 1];
BLI_strncpy(num, filename + len - ext_len, sizeof(num));
return atoi(num);
}
return -1;
}
/* Takes an Object ID and returns a unique name
* - id: object id
* - cfra: frame for the cache, can be negative
* - stack_index: index in the modifier stack. we can have cache for more than one stack_index
*/
#define MAX_PTCACHE_PATH FILE_MAX
#define MAX_PTCACHE_FILE (FILE_MAX * 2)
static int ptcache_path(PTCacheID *pid, char *filename)
{
Library *lib = (pid->ob) ? pid->ob->id.lib : NULL;
const char *blendfilename= (lib && (pid->cache->flag & PTCACHE_IGNORE_LIBPATH)==0) ? lib->filepath: BKE_main_blendfile_path_from_global();
size_t i;
if (pid->cache->flag & PTCACHE_EXTERNAL) {
strcpy(filename, pid->cache->path);
if (BLI_path_is_rel(filename)) {
BLI_path_abs(filename, blendfilename);
}
return BLI_add_slash(filename); /* new strlen() */
}
else if (G.relbase_valid || lib) {
char file[MAX_PTCACHE_PATH]; /* we don't want the dir, only the file */
BLI_split_file_part(blendfilename, file, sizeof(file));
i = strlen(file);
/* remove .blend */
if (i > 6)
file[i-6] = '\0';
BLI_snprintf(filename, MAX_PTCACHE_PATH, "//"PTCACHE_PATH"%s", file); /* add blend file name to pointcache dir */
BLI_path_abs(filename, blendfilename);
return BLI_add_slash(filename); /* new strlen() */
}
/* use the temp path. this is weak but better then not using point cache at all */
/* temporary directory is assumed to exist and ALWAYS has a trailing slash */
BLI_snprintf(filename, MAX_PTCACHE_PATH, "%s"PTCACHE_PATH, BKE_tempdir_session());
return BLI_add_slash(filename); /* new strlen() */
}
static int ptcache_filename(PTCacheID *pid, char *filename, int cfra, short do_path, short do_ext)
{
int len=0;
char *idname;
char *newname;
filename[0] = '\0';
newname = filename;
if (!G.relbase_valid && (pid->cache->flag & PTCACHE_EXTERNAL)==0) return 0; /* save blend file before using disk pointcache */
/* start with temp dir */
if (do_path) {
len = ptcache_path(pid, filename);
newname += len;
}
if (pid->cache->name[0] == '\0' && (pid->cache->flag & PTCACHE_EXTERNAL)==0) {
idname = (pid->ob->id.name + 2);
/* convert chars to hex so they are always a valid filename */
while ('\0' != *idname) {
BLI_snprintf(newname, MAX_PTCACHE_FILE, "%02X", (unsigned int)(*idname++));
newname+=2;
len += 2;
}
}
else {
int temp = (int)strlen(pid->cache->name);
strcpy(newname, pid->cache->name);
newname+=temp;
len += temp;
}
if (do_ext) {
if (pid->cache->index < 0)
pid->cache->index = pid->stack_index = BKE_object_insert_ptcache(pid->ob);
const char *ext = ptcache_file_extension(pid);
if (pid->cache->flag & PTCACHE_EXTERNAL) {
if (pid->cache->index >= 0)
BLI_snprintf(newname, MAX_PTCACHE_FILE, "_%06d_%02u%s", cfra, pid->stack_index, ext); /* always 6 chars */
else
BLI_snprintf(newname, MAX_PTCACHE_FILE, "_%06d%s", cfra, ext); /* always 6 chars */
}
else {
BLI_snprintf(newname, MAX_PTCACHE_FILE, "_%06d_%02u%s", cfra, pid->stack_index, ext); /* always 6 chars */
}
len += 16;
}
return len; /* make sure the above string is always 16 chars */
}
/* youll need to close yourself after! */
static PTCacheFile *ptcache_file_open(PTCacheID *pid, int mode, int cfra)
{
PTCacheFile *pf;
FILE *fp = NULL;
char filename[FILE_MAX * 2];
#ifndef DURIAN_POINTCACHE_LIB_OK
/* don't allow writing for linked objects */
if (pid->ob->id.lib && mode == PTCACHE_FILE_WRITE)
return NULL;
#endif
if (!G.relbase_valid && (pid->cache->flag & PTCACHE_EXTERNAL)==0) return NULL; /* save blend file before using disk pointcache */
ptcache_filename(pid, filename, cfra, 1, 1);
if (mode==PTCACHE_FILE_READ) {
fp = BLI_fopen(filename, "rb");
}
else if (mode==PTCACHE_FILE_WRITE) {
BLI_make_existing_file(filename); /* will create the dir if needs be, same as //textures is created */
fp = BLI_fopen(filename, "wb");
}
else if (mode==PTCACHE_FILE_UPDATE) {
BLI_make_existing_file(filename);
fp = BLI_fopen(filename, "rb+");
}
if (!fp)
return NULL;
pf= MEM_mallocN(sizeof(PTCacheFile), "PTCacheFile");
pf->fp= fp;
pf->old_format = 0;
pf->frame = cfra;
return pf;
}
static void ptcache_file_close(PTCacheFile *pf)
{
if (pf) {
fclose(pf->fp);
MEM_freeN(pf);
}
}
static int ptcache_file_compressed_read(PTCacheFile *pf, unsigned char *result, unsigned int len)
{
int r = 0;
unsigned char compressed = 0;
size_t in_len;
#ifdef WITH_LZO
size_t out_len = len;
#endif
unsigned char *in;
unsigned char *props = MEM_callocN(16 * sizeof(char), "tmp");
ptcache_file_read(pf, &compressed, 1, sizeof(unsigned char));
if (compressed) {
unsigned int size;
ptcache_file_read(pf, &size, 1, sizeof(unsigned int));
in_len = (size_t)size;
if (in_len==0) {
/* do nothing */
}
else {
in = (unsigned char *)MEM_callocN(sizeof(unsigned char)*in_len, "pointcache_compressed_buffer");
ptcache_file_read(pf, in, in_len, sizeof(unsigned char));
#ifdef WITH_LZO
if (compressed == 1)
r = lzo1x_decompress_safe(in, (lzo_uint)in_len, result, (lzo_uint *)&out_len, NULL);
#endif
#ifdef WITH_LZMA
if (compressed == 2) {
size_t sizeOfIt;
size_t leni = in_len, leno = len;
ptcache_file_read(pf, &size, 1, sizeof(unsigned int));
sizeOfIt = (size_t)size;
ptcache_file_read(pf, props, sizeOfIt, sizeof(unsigned char));
r = LzmaUncompress(result, &leno, in, &leni, props, sizeOfIt);
}
#endif
MEM_freeN(in);
}
}
else {
ptcache_file_read(pf, result, len, sizeof(unsigned char));
}
MEM_freeN(props);
return r;
}
static int ptcache_file_compressed_write(PTCacheFile *pf, unsigned char *in, unsigned int in_len, unsigned char *out, int mode)
{
int r = 0;
unsigned char compressed = 0;
size_t out_len= 0;
unsigned char *props = MEM_callocN(16 * sizeof(char), "tmp");
size_t sizeOfIt = 5;
(void)mode; /* unused when building w/o compression */
#ifdef WITH_LZO
out_len= LZO_OUT_LEN(in_len);
if (mode == 1) {
LZO_HEAP_ALLOC(wrkmem, LZO1X_MEM_COMPRESS);
r = lzo1x_1_compress(in, (lzo_uint)in_len, out, (lzo_uint *)&out_len, wrkmem);
if (!(r == LZO_E_OK) || (out_len >= in_len))
compressed = 0;
else
compressed = 1;
}
#endif
#ifdef WITH_LZMA
if (mode == 2) {
r = LzmaCompress(out, &out_len, in, in_len, //assume sizeof(char)==1....
props, &sizeOfIt, 5, 1 << 24, 3, 0, 2, 32, 2);
if (!(r == SZ_OK) || (out_len >= in_len))
compressed = 0;
else
compressed = 2;
}
#endif
ptcache_file_write(pf, &compressed, 1, sizeof(unsigned char));
if (compressed) {
unsigned int size = out_len;
ptcache_file_write(pf, &size, 1, sizeof(unsigned int));
ptcache_file_write(pf, out, out_len, sizeof(unsigned char));
}
else
ptcache_file_write(pf, in, in_len, sizeof(unsigned char));
if (compressed == 2) {
unsigned int size = sizeOfIt;
ptcache_file_write(pf, &sizeOfIt, 1, sizeof(unsigned int));
ptcache_file_write(pf, props, size, sizeof(unsigned char));
}
MEM_freeN(props);
return r;
}
static int ptcache_file_read(PTCacheFile *pf, void *f, unsigned int tot, unsigned int size)
{
return (fread(f, size, tot, pf->fp) == tot);
}
static int ptcache_file_write(PTCacheFile *pf, const void *f, unsigned int tot, unsigned int size)
{
return (fwrite(f, size, tot, pf->fp) == tot);
}
static int ptcache_file_data_read(PTCacheFile *pf)
{
int i;
for (i=0; i<BPHYS_TOT_DATA; i++) {
if ((pf->data_types & (1<<i)) && !ptcache_file_read(pf, pf->cur[i], 1, ptcache_data_size[i]))
return 0;
}
return 1;
}
static int ptcache_file_data_write(PTCacheFile *pf)
{
int i;
for (i=0; i<BPHYS_TOT_DATA; i++) {
if ((pf->data_types & (1<<i)) && !ptcache_file_write(pf, pf->cur[i], 1, ptcache_data_size[i]))
return 0;
}
return 1;
}
static int ptcache_file_header_begin_read(PTCacheFile *pf)
{
unsigned int typeflag=0;
int error=0;
char bphysics[8];
pf->data_types = 0;
if (fread(bphysics, sizeof(char), 8, pf->fp) != 8)
error = 1;
if (!error && !STREQLEN(bphysics, "BPHYSICS", 8))
error = 1;
if (!error && !fread(&typeflag, sizeof(unsigned int), 1, pf->fp))
error = 1;
pf->type = (typeflag & PTCACHE_TYPEFLAG_TYPEMASK);
pf->flag = (typeflag & PTCACHE_TYPEFLAG_FLAGMASK);
/* if there was an error set file as it was */
if (error)
fseek(pf->fp, 0, SEEK_SET);
return !error;
}
static int ptcache_file_header_begin_write(PTCacheFile *pf)
{
const char *bphysics = "BPHYSICS";
unsigned int typeflag = pf->type + pf->flag;
if (fwrite(bphysics, sizeof(char), 8, pf->fp) != 8)
return 0;
if (!fwrite(&typeflag, sizeof(unsigned int), 1, pf->fp))
return 0;
return 1;
}
/* Data pointer handling */
int BKE_ptcache_data_size(int data_type)
{
return ptcache_data_size[data_type];
}
static void ptcache_file_pointers_init(PTCacheFile *pf)
{
int data_types = pf->data_types;
pf->cur[BPHYS_DATA_INDEX] = (data_types & (1<<BPHYS_DATA_INDEX)) ? &pf->data.index : NULL;
pf->cur[BPHYS_DATA_LOCATION] = (data_types & (1<<BPHYS_DATA_LOCATION)) ? &pf->data.loc : NULL;
pf->cur[BPHYS_DATA_VELOCITY] = (data_types & (1<<BPHYS_DATA_VELOCITY)) ? &pf->data.vel : NULL;
pf->cur[BPHYS_DATA_ROTATION] = (data_types & (1<<BPHYS_DATA_ROTATION)) ? &pf->data.rot : NULL;
pf->cur[BPHYS_DATA_AVELOCITY] = (data_types & (1<<BPHYS_DATA_AVELOCITY))? &pf->data.ave : NULL;
pf->cur[BPHYS_DATA_SIZE] = (data_types & (1<<BPHYS_DATA_SIZE)) ? &pf->data.size : NULL;
pf->cur[BPHYS_DATA_TIMES] = (data_types & (1<<BPHYS_DATA_TIMES)) ? &pf->data.times : NULL;
pf->cur[BPHYS_DATA_BOIDS] = (data_types & (1<<BPHYS_DATA_BOIDS)) ? &pf->data.boids : NULL;
}
/* Check to see if point number "index" is in pm, uses binary search for index data. */
int BKE_ptcache_mem_index_find(PTCacheMem *pm, unsigned int index)
{
if (pm->totpoint > 0 && pm->data[BPHYS_DATA_INDEX]) {
unsigned int *data = pm->data[BPHYS_DATA_INDEX];
unsigned int mid, low = 0, high = pm->totpoint - 1;
if (index < *data || index > *(data+high))
return -1;
/* check simple case for continuous indexes first */
if (index-*data < high && data[index-*data] == index)
return index-*data;
while (low <= high) {
mid= (low + high)/2;
if (data[mid] > index)
high = mid - 1;
else if (data[mid] < index)
low = mid + 1;
else
return mid;
}
return -1;
}
else {
return (index < pm->totpoint ? index : -1);
}
}
void BKE_ptcache_mem_pointers_init(PTCacheMem *pm)
{
int data_types = pm->data_types;
int i;
for (i=0; i<BPHYS_TOT_DATA; i++)
pm->cur[i] = ((data_types & (1<<i)) ? pm->data[i] : NULL);
}
void BKE_ptcache_mem_pointers_incr(PTCacheMem *pm)
{
int i;
for (i=0; i<BPHYS_TOT_DATA; i++) {
if (pm->cur[i])
pm->cur[i] = (char *)pm->cur[i] + ptcache_data_size[i];
}
}
int BKE_ptcache_mem_pointers_seek(int point_index, PTCacheMem *pm)
{
int data_types = pm->data_types;
int i, index = BKE_ptcache_mem_index_find(pm, point_index);
if (index < 0) {
/* Can't give proper location without reallocation, so don't give any location.
* Some points will be cached improperly, but this only happens with simulation
* steps bigger than cache->step, so the cache has to be recalculated anyways
* at some point.
*/
return 0;
}
for (i=0; i<BPHYS_TOT_DATA; i++)
pm->cur[i] = data_types & (1<<i) ? (char *)pm->data[i] + index * ptcache_data_size[i] : NULL;
return 1;
}
static void ptcache_data_alloc(PTCacheMem *pm)
{
int data_types = pm->data_types;
int totpoint = pm->totpoint;
int i;
for (i=0; i<BPHYS_TOT_DATA; i++) {
if (data_types & (1<<i))
pm->data[i] = MEM_callocN(totpoint * ptcache_data_size[i], "PTCache Data");
}
}
static void ptcache_data_free(PTCacheMem *pm)
{
void **data = pm->data;
int i;
for (i=0; i<BPHYS_TOT_DATA; i++) {
if (data[i])
MEM_freeN(data[i]);
}
}
static void ptcache_data_copy(void *from[], void *to[])
{
int i;
for (i=0; i<BPHYS_TOT_DATA; i++) {
/* note, durian file 03.4b_comp crashes if to[i] is not tested
* its NULL, not sure if this should be fixed elsewhere but for now its needed */
if (from[i] && to[i])
memcpy(to[i], from[i], ptcache_data_size[i]);
}
}
static void ptcache_extra_free(PTCacheMem *pm)
{
PTCacheExtra *extra = pm->extradata.first;
if (extra) {
for (; extra; extra=extra->next) {
if (extra->data)
MEM_freeN(extra->data);
}
BLI_freelistN(&pm->extradata);
}
}
static int ptcache_old_elemsize(PTCacheID *pid)
{
if (pid->type==PTCACHE_TYPE_SOFTBODY)
return 6 * sizeof(float);
else if (pid->type==PTCACHE_TYPE_PARTICLES)
return sizeof(ParticleKey);
else if (pid->type==PTCACHE_TYPE_CLOTH)
return 9 * sizeof(float);
return 0;
}
static void ptcache_find_frames_around(PTCacheID *pid, unsigned int frame, int *fra1, int *fra2)
{
if (pid->cache->flag & PTCACHE_DISK_CACHE) {
int cfra1=frame, cfra2=frame+1;
while (cfra1 >= pid->cache->startframe && !BKE_ptcache_id_exist(pid, cfra1))
cfra1--;
if (cfra1 < pid->cache->startframe)
cfra1 = 0;
while (cfra2 <= pid->cache->endframe && !BKE_ptcache_id_exist(pid, cfra2))
cfra2++;
if (cfra2 > pid->cache->endframe)
cfra2 = 0;
if (cfra1 && !cfra2) {
*fra1 = 0;
*fra2 = cfra1;
}
else {
*fra1 = cfra1;
*fra2 = cfra2;
}
}
else if (pid->cache->mem_cache.first) {
PTCacheMem *pm = pid->cache->mem_cache.first;
PTCacheMem *pm2 = pid->cache->mem_cache.last;
while (pm->next && pm->next->frame <= frame)
pm= pm->next;
if (pm2->frame < frame) {
pm2 = NULL;
}
else {
while (pm2->prev && pm2->prev->frame > frame) {
pm2= pm2->prev;
}
}
if (!pm2) {
*fra1 = 0;
*fra2 = pm->frame;
}
else {
*fra1 = pm->frame;
*fra2 = pm2->frame;
}
}
}
static PTCacheMem *ptcache_disk_frame_to_mem(PTCacheID *pid, int cfra)
{
PTCacheFile *pf = ptcache_file_open(pid, PTCACHE_FILE_READ, cfra);
PTCacheMem *pm = NULL;
unsigned int i, error = 0;
if (pf == NULL)
return NULL;
if (!ptcache_file_header_begin_read(pf))
error = 1;
if (!error && (pf->type != pid->type || !pid->read_header(pf)))
error = 1;
if (!error) {
pm = MEM_callocN(sizeof(PTCacheMem), "Pointcache mem");
pm->totpoint = pf->totpoint;
pm->data_types = pf->data_types;
pm->frame = pf->frame;
ptcache_data_alloc(pm);
if (pf->flag & PTCACHE_TYPEFLAG_COMPRESS) {
for (i=0; i<BPHYS_TOT_DATA; i++) {
unsigned int out_len = pm->totpoint*ptcache_data_size[i];
if (pf->data_types & (1<<i))
ptcache_file_compressed_read(pf, (unsigned char *)(pm->data[i]), out_len);
}
}
else {
BKE_ptcache_mem_pointers_init(pm);
ptcache_file_pointers_init(pf);
for (i=0; i<pm->totpoint; i++) {
if (!ptcache_file_data_read(pf)) {
error = 1;
break;
}
ptcache_data_copy(pf->cur, pm->cur);
BKE_ptcache_mem_pointers_incr(pm);
}
}
}
if (!error && pf->flag & PTCACHE_TYPEFLAG_EXTRADATA) {
unsigned int extratype = 0;
while (ptcache_file_read(pf, &extratype, 1, sizeof(unsigned int))) {
PTCacheExtra *extra = MEM_callocN(sizeof(PTCacheExtra), "Pointcache extradata");
extra->type = extratype;
ptcache_file_read(pf, &extra->totdata, 1, sizeof(unsigned int));
extra->data = MEM_callocN(extra->totdata * ptcache_extra_datasize[extra->type], "Pointcache extradata->data");
if (pf->flag & PTCACHE_TYPEFLAG_COMPRESS)
ptcache_file_compressed_read(pf, (unsigned char *)(extra->data), extra->totdata*ptcache_extra_datasize[extra->type]);
else
ptcache_file_read(pf, extra->data, extra->totdata, ptcache_extra_datasize[extra->type]);
BLI_addtail(&pm->extradata, extra);
}
}
if (error && pm) {
ptcache_data_free(pm);
ptcache_extra_free(pm);
MEM_freeN(pm);
pm = NULL;
}
ptcache_file_close(pf);
if (error && G.debug & G_DEBUG)
printf("Error reading from disk cache\n");
return pm;
}
static int ptcache_mem_frame_to_disk(PTCacheID *pid, PTCacheMem *pm)
{
PTCacheFile *pf = NULL;
unsigned int i, error = 0;
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_FRAME, pm->frame);
pf = ptcache_file_open(pid, PTCACHE_FILE_WRITE, pm->frame);
if (pf==NULL) {
if (G.debug & G_DEBUG)
printf("Error opening disk cache file for writing\n");
return 0;
}
pf->data_types = pm->data_types;
pf->totpoint = pm->totpoint;
pf->type = pid->type;
pf->flag = 0;
if (pm->extradata.first)
pf->flag |= PTCACHE_TYPEFLAG_EXTRADATA;
if (pid->cache->compression)
pf->flag |= PTCACHE_TYPEFLAG_COMPRESS;
if (!ptcache_file_header_begin_write(pf) || !pid->write_header(pf))
error = 1;
if (!error) {
if (pid->cache->compression) {
for (i=0; i<BPHYS_TOT_DATA; i++) {
if (pm->data[i]) {
unsigned int in_len = pm->totpoint*ptcache_data_size[i];
unsigned char *out = (unsigned char *)MEM_callocN(LZO_OUT_LEN(in_len) * 4, "pointcache_lzo_buffer");
ptcache_file_compressed_write(pf, (unsigned char *)(pm->data[i]), in_len, out, pid->cache->compression);
MEM_freeN(out);
}
}
}
else {
BKE_ptcache_mem_pointers_init(pm);
ptcache_file_pointers_init(pf);
for (i=0; i<pm->totpoint; i++) {
ptcache_data_copy(pm->cur, pf->cur);
if (!ptcache_file_data_write(pf)) {
error = 1;
break;
}
BKE_ptcache_mem_pointers_incr(pm);
}
}
}
if (!error && pm->extradata.first) {
PTCacheExtra *extra = pm->extradata.first;
for (; extra; extra=extra->next) {
if (extra->data == NULL || extra->totdata == 0)
continue;
ptcache_file_write(pf, &extra->type, 1, sizeof(unsigned int));
ptcache_file_write(pf, &extra->totdata, 1, sizeof(unsigned int));
if (pid->cache->compression) {
unsigned int in_len = extra->totdata * ptcache_extra_datasize[extra->type];
unsigned char *out = (unsigned char *)MEM_callocN(LZO_OUT_LEN(in_len) * 4, "pointcache_lzo_buffer");
ptcache_file_compressed_write(pf, (unsigned char *)(extra->data), in_len, out, pid->cache->compression);
MEM_freeN(out);
}
else {
ptcache_file_write(pf, extra->data, extra->totdata, ptcache_extra_datasize[extra->type]);
}
}
}
ptcache_file_close(pf);
if (error && G.debug & G_DEBUG)
printf("Error writing to disk cache\n");
return error==0;
}
static int ptcache_read_stream(PTCacheID *pid, int cfra)
{
PTCacheFile *pf = ptcache_file_open(pid, PTCACHE_FILE_READ, cfra);
int error = 0;
if (pid->read_stream == NULL)
return 0;
if (pf == NULL) {
if (G.debug & G_DEBUG)
printf("Error opening disk cache file for reading\n");
return 0;
}
if (!ptcache_file_header_begin_read(pf)) {
pid->error(pid->calldata, "Failed to read point cache file");
error = 1;
}
else if (pf->type != pid->type) {
pid->error(pid->calldata, "Point cache file has wrong type");
error = 1;
}
else if (!pid->read_header(pf)) {
pid->error(pid->calldata, "Failed to read point cache file header");
error = 1;
}
else if (pf->totpoint != pid->totpoint(pid->calldata, cfra)) {
pid->error(pid->calldata, "Number of points in cache does not match mesh");
error = 1;
}
if (!error) {
ptcache_file_pointers_init(pf);
// we have stream reading here
if (!pid->read_stream(pf, pid->calldata)) {
pid->error(pid->calldata, "Failed to read point cache file data");
error = 1;
}
}
ptcache_file_close(pf);
return error == 0;
}
static int ptcache_read_openvdb_stream(PTCacheID *pid, int cfra)
{
#ifdef WITH_OPENVDB
char filename[FILE_MAX * 2];
/* save blend file before using disk pointcache */
if (!G.relbase_valid && (pid->cache->flag & PTCACHE_EXTERNAL) == 0)
return 0;
ptcache_filename(pid, filename, cfra, 1, 1);
if (!BLI_exists(filename)) {
return 0;
}
struct OpenVDBReader *reader = OpenVDBReader_create();
OpenVDBReader_open(reader, filename);
if (!pid->read_openvdb_stream(reader, pid->calldata)) {
return 0;
}
return 1;
#else
UNUSED_VARS(pid, cfra);
return 0;
#endif
}
static int ptcache_read(PTCacheID *pid, int cfra)
{
PTCacheMem *pm = NULL;
int i;
int *index = &i;
/* get a memory cache to read from */
if (pid->cache->flag & PTCACHE_DISK_CACHE) {
pm = ptcache_disk_frame_to_mem(pid, cfra);
}
else {
pm = pid->cache->mem_cache.first;
while (pm && pm->frame != cfra)
pm = pm->next;
}
/* read the cache */
if (pm) {
int totpoint = pm->totpoint;
if ((pid->data_types & (1<<BPHYS_DATA_INDEX)) == 0) {
int pid_totpoint = pid->totpoint(pid->calldata, cfra);
if (totpoint != pid_totpoint) {
pid->error(pid->calldata, "Number of points in cache does not match mesh");
totpoint = MIN2(totpoint, pid_totpoint);
}
}
BKE_ptcache_mem_pointers_init(pm);
for (i=0; i<totpoint; i++) {
if (pm->data_types & (1<<BPHYS_DATA_INDEX))
index = pm->cur[BPHYS_DATA_INDEX];
pid->read_point(*index, pid->calldata, pm->cur, (float)pm->frame, NULL);
BKE_ptcache_mem_pointers_incr(pm);
}
if (pid->read_extra_data && pm->extradata.first)
pid->read_extra_data(pid->calldata, pm, (float)pm->frame);
/* clean up temporary memory cache */
if (pid->cache->flag & PTCACHE_DISK_CACHE) {
ptcache_data_free(pm);
ptcache_extra_free(pm);
MEM_freeN(pm);
}
}
return 1;
}
static int ptcache_interpolate(PTCacheID *pid, float cfra, int cfra1, int cfra2)
{
PTCacheMem *pm = NULL;
int i;
int *index = &i;
/* get a memory cache to read from */
if (pid->cache->flag & PTCACHE_DISK_CACHE) {
pm = ptcache_disk_frame_to_mem(pid, cfra2);
}
else {
pm = pid->cache->mem_cache.first;
while (pm && pm->frame != cfra2)
pm = pm->next;
}
/* read the cache */
if (pm) {
int totpoint = pm->totpoint;
if ((pid->data_types & (1<<BPHYS_DATA_INDEX)) == 0) {
int pid_totpoint = pid->totpoint(pid->calldata, (int)cfra);
if (totpoint != pid_totpoint) {
pid->error(pid->calldata, "Number of points in cache does not match mesh");
totpoint = MIN2(totpoint, pid_totpoint);
}
}
BKE_ptcache_mem_pointers_init(pm);
for (i=0; i<totpoint; i++) {
if (pm->data_types & (1<<BPHYS_DATA_INDEX))
index = pm->cur[BPHYS_DATA_INDEX];
pid->interpolate_point(*index, pid->calldata, pm->cur, cfra, (float)cfra1, (float)cfra2, NULL);
BKE_ptcache_mem_pointers_incr(pm);
}
if (pid->interpolate_extra_data && pm->extradata.first)
pid->interpolate_extra_data(pid->calldata, pm, cfra, (float)cfra1, (float)cfra2);
/* clean up temporary memory cache */
if (pid->cache->flag & PTCACHE_DISK_CACHE) {
ptcache_data_free(pm);
ptcache_extra_free(pm);
MEM_freeN(pm);
}
}
return 1;
}
/* reads cache from disk or memory */
/* possible to get old or interpolated result */
int BKE_ptcache_read(PTCacheID *pid, float cfra, bool no_extrapolate_old)
{
int cfrai = (int)floor(cfra), cfra1=0, cfra2=0;
int ret = 0;
/* nothing to read to */
if (pid->totpoint(pid->calldata, cfrai) == 0)
return 0;
if (pid->cache->flag & PTCACHE_READ_INFO) {
pid->cache->flag &= ~PTCACHE_READ_INFO;
ptcache_read(pid, 0);
}
/* first check if we have the actual frame cached */
if (cfra == (float)cfrai && BKE_ptcache_id_exist(pid, cfrai))
cfra1 = cfrai;
/* no exact cache frame found so try to find cached frames around cfra */
if (cfra1 == 0)
ptcache_find_frames_around(pid, cfrai, &cfra1, &cfra2);
if (cfra1 == 0 && cfra2 == 0)
return 0;
/* don't read old cache if already simulated past cached frame */
if (no_extrapolate_old) {
if (cfra1 == 0 && cfra2 && cfra2 <= pid->cache->simframe)
return 0;
if (cfra1 && cfra1 == cfra2)
return 0;
}
else {
/* avoid calling interpolate between the same frame values */
if (cfra1 && cfra1 == cfra2)
cfra1 = 0;
}
if (cfra1) {
if (pid->file_type == PTCACHE_FILE_OPENVDB && pid->read_openvdb_stream) {
if (!ptcache_read_openvdb_stream(pid, cfra1)) {
return 0;
}
}
else if (pid->read_stream) {
if (!ptcache_read_stream(pid, cfra1))
return 0;
}
else if (pid->read_point)
ptcache_read(pid, cfra1);
}
if (cfra2) {
if (pid->file_type == PTCACHE_FILE_OPENVDB && pid->read_openvdb_stream) {
if (!ptcache_read_openvdb_stream(pid, cfra2)) {
return 0;
}
}
else if (pid->read_stream) {
if (!ptcache_read_stream(pid, cfra2))
return 0;
}
else if (pid->read_point) {
if (cfra1 && cfra2 && pid->interpolate_point)
ptcache_interpolate(pid, cfra, cfra1, cfra2);
else
ptcache_read(pid, cfra2);
}
}
if (cfra1)
ret = (cfra2 ? PTCACHE_READ_INTERPOLATED : PTCACHE_READ_EXACT);
else if (cfra2) {
ret = PTCACHE_READ_OLD;
pid->cache->simframe = cfra2;
}
cfrai = (int)cfra;
/* clear invalid cache frames so that better stuff can be simulated */
if (pid->cache->flag & PTCACHE_OUTDATED) {
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_AFTER, cfrai);
}
else if (pid->cache->flag & PTCACHE_FRAMES_SKIPPED) {
if (cfra <= pid->cache->last_exact)
pid->cache->flag &= ~PTCACHE_FRAMES_SKIPPED;
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_AFTER, MAX2(cfrai, pid->cache->last_exact));
}
return ret;
}
static int ptcache_write_stream(PTCacheID *pid, int cfra, int totpoint)
{
PTCacheFile *pf = NULL;
int error = 0;
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_FRAME, cfra);
pf = ptcache_file_open(pid, PTCACHE_FILE_WRITE, cfra);
if (pf==NULL) {
if (G.debug & G_DEBUG)
printf("Error opening disk cache file for writing\n");
return 0;
}
pf->data_types = pid->data_types;
pf->totpoint = totpoint;
pf->type = pid->type;
pf->flag = 0;
if (!error && (!ptcache_file_header_begin_write(pf) || !pid->write_header(pf)))
error = 1;
if (!error && pid->write_stream)
pid->write_stream(pf, pid->calldata);
ptcache_file_close(pf);
if (error && G.debug & G_DEBUG)
printf("Error writing to disk cache\n");
return error == 0;
}
static int ptcache_write_openvdb_stream(PTCacheID *pid, int cfra)
{
#ifdef WITH_OPENVDB
struct OpenVDBWriter *writer = OpenVDBWriter_create();
char filename[FILE_MAX * 2];
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_FRAME, cfra);
ptcache_filename(pid, filename, cfra, 1, 1);
BLI_make_existing_file(filename);
int error = pid->write_openvdb_stream(writer, pid->calldata);
OpenVDBWriter_write(writer, filename);
OpenVDBWriter_free(writer);
return error == 0;
#else
UNUSED_VARS(pid, cfra);
return 0;
#endif
}
static int ptcache_write(PTCacheID *pid, int cfra, int overwrite)
{
PointCache *cache = pid->cache;
PTCacheMem *pm=NULL, *pm2=NULL;
int totpoint = pid->totpoint(pid->calldata, cfra);
int i, error = 0;
pm = MEM_callocN(sizeof(PTCacheMem), "Pointcache mem");
pm->totpoint = pid->totwrite(pid->calldata, cfra);
pm->data_types = cfra ? pid->data_types : pid->info_types;
ptcache_data_alloc(pm);
BKE_ptcache_mem_pointers_init(pm);
if (overwrite) {
if (cache->flag & PTCACHE_DISK_CACHE) {
int fra = cfra-1;
while (fra >= cache->startframe && !BKE_ptcache_id_exist(pid, fra))
fra--;
pm2 = ptcache_disk_frame_to_mem(pid, fra);
}
else
pm2 = cache->mem_cache.last;
}
if (pid->write_point) {
for (i=0; i<totpoint; i++) {
int write = pid->write_point(i, pid->calldata, pm->cur, cfra);
if (write) {
BKE_ptcache_mem_pointers_incr(pm);
/* newly born particles have to be copied to previous cached frame */
if (overwrite && write == 2 && pm2 && BKE_ptcache_mem_pointers_seek(i, pm2))
pid->write_point(i, pid->calldata, pm2->cur, cfra);
}
}
}
if (pid->write_extra_data)
pid->write_extra_data(pid->calldata, pm, cfra);
pm->frame = cfra;
if (cache->flag & PTCACHE_DISK_CACHE) {
error += !ptcache_mem_frame_to_disk(pid, pm);
// if (pm) /* pm is always set */
{
ptcache_data_free(pm);
ptcache_extra_free(pm);
MEM_freeN(pm);
}
if (pm2) {
error += !ptcache_mem_frame_to_disk(pid, pm2);
ptcache_data_free(pm2);
ptcache_extra_free(pm2);
MEM_freeN(pm2);
}
}
else {
BLI_addtail(&cache->mem_cache, pm);
}
return error;
}
static int ptcache_write_needed(PTCacheID *pid, int cfra, int *overwrite)
{
PointCache *cache = pid->cache;
int ofra = 0, efra = cache->endframe;
/* always start from scratch on the first frame */
if (cfra && cfra == cache->startframe) {
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, cfra);
cache->flag &= ~PTCACHE_REDO_NEEDED;
return 1;
}
if (pid->cache->flag & PTCACHE_DISK_CACHE) {
if (cfra==0 && cache->startframe > 0)
return 1;
/* find last cached frame */
while (efra > cache->startframe && !BKE_ptcache_id_exist(pid, efra))
efra--;
/* find second last cached frame */
ofra = efra-1;
while (ofra > cache->startframe && !BKE_ptcache_id_exist(pid, ofra))
ofra--;
}
else {
PTCacheMem *pm = cache->mem_cache.last;
/* don't write info file in memory */
if (cfra == 0)
return 0;
if (pm == NULL)
return 1;
efra = pm->frame;
ofra = (pm->prev ? pm->prev->frame : efra - cache->step);
}
if (efra >= cache->startframe && cfra > efra) {
if (ofra >= cache->startframe && efra - ofra < cache->step) {
/* overwrite previous frame */
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_FRAME, efra);
*overwrite = 1;
}
return 1;
}
return 0;
}
/* writes cache to disk or memory */
int BKE_ptcache_write(PTCacheID *pid, unsigned int cfra)
{
PointCache *cache = pid->cache;
int totpoint = pid->totpoint(pid->calldata, cfra);
int overwrite = 0, error = 0;
if (totpoint == 0 || (cfra ? pid->data_types == 0 : pid->info_types == 0))
return 0;
if (ptcache_write_needed(pid, cfra, &overwrite)==0)
return 0;
if (pid->file_type == PTCACHE_FILE_OPENVDB && pid->write_openvdb_stream) {
ptcache_write_openvdb_stream(pid, cfra);
}
else if (pid->write_stream) {
ptcache_write_stream(pid, cfra, totpoint);
}
else if (pid->write_point) {
error += ptcache_write(pid, cfra, overwrite);
}
/* Mark frames skipped if more than 1 frame forwards since last non-skipped frame. */
if (cfra - cache->last_exact == 1 || cfra == cache->startframe) {
cache->last_exact = cfra;
cache->flag &= ~PTCACHE_FRAMES_SKIPPED;
}
/* Don't mark skipped when writing info file (frame 0) */
else if (cfra)
cache->flag |= PTCACHE_FRAMES_SKIPPED;
/* Update timeline cache display */
if (cfra && cache->cached_frames)
cache->cached_frames[cfra-cache->startframe] = 1;
BKE_ptcache_update_info(pid);
return !error;
}
/* youll need to close yourself after!
* mode - PTCACHE_CLEAR_ALL,
*/
/* Clears & resets */
void BKE_ptcache_id_clear(PTCacheID *pid, int mode, unsigned int cfra)
{
unsigned int len; /* store the length of the string */
unsigned int sta, end;
/* mode is same as fopen's modes */
DIR *dir;
struct dirent *de;
char path[MAX_PTCACHE_PATH];
char filename[MAX_PTCACHE_FILE];
char path_full[MAX_PTCACHE_FILE];
char ext[MAX_PTCACHE_PATH];
if (!pid || !pid->cache || pid->cache->flag & PTCACHE_BAKED)
return;
if (pid->cache->flag & PTCACHE_IGNORE_CLEAR)
return;
sta = pid->cache->startframe;
end = pid->cache->endframe;
#ifndef DURIAN_POINTCACHE_LIB_OK
/* don't allow clearing for linked objects */
if (pid->ob->id.lib)
return;
#endif
/*if (!G.relbase_valid) return; *//* save blend file before using pointcache */
const char *fext = ptcache_file_extension(pid);
/* clear all files in the temp dir with the prefix of the ID and the ".bphys" suffix */
switch (mode) {
case PTCACHE_CLEAR_ALL:
case PTCACHE_CLEAR_BEFORE:
case PTCACHE_CLEAR_AFTER:
if (pid->cache->flag & PTCACHE_DISK_CACHE) {
ptcache_path(pid, path);
dir = opendir(path);
if (dir==NULL)
return;
len = ptcache_filename(pid, filename, cfra, 0, 0); /* no path */
/* append underscore terminator to ensure we don't match similar names
* from objects whose names start with the same prefix
*/
if (len < sizeof(filename) - 2) {
BLI_strncpy(filename + len, "_", sizeof(filename) - 2 - len);
len += 1;
}
BLI_snprintf(ext, sizeof(ext), "_%02u%s", pid->stack_index, fext);
while ((de = readdir(dir)) != NULL) {
if (strstr(de->d_name, ext)) { /* do we have the right extension?*/
if (STREQLEN(filename, de->d_name, len)) { /* do we have the right prefix */
if (mode == PTCACHE_CLEAR_ALL) {
pid->cache->last_exact = MIN2(pid->cache->startframe, 0);
BLI_join_dirfile(path_full, sizeof(path_full), path, de->d_name);
BLI_delete(path_full, false, false);
}
else {
/* read the number of the file */
const int frame = ptcache_frame_from_filename(de->d_name, ext);
if (frame != -1) {
if ((mode == PTCACHE_CLEAR_BEFORE && frame < cfra) ||
(mode == PTCACHE_CLEAR_AFTER && frame > cfra))
{
BLI_join_dirfile(path_full, sizeof(path_full), path, de->d_name);
BLI_delete(path_full, false, false);
if (pid->cache->cached_frames && frame >=sta && frame <= end)
pid->cache->cached_frames[frame-sta] = 0;
}
}
}
}
}
}
closedir(dir);
if (mode == PTCACHE_CLEAR_ALL && pid->cache->cached_frames)
memset(pid->cache->cached_frames, 0, MEM_allocN_len(pid->cache->cached_frames));
}
else {
PTCacheMem *pm= pid->cache->mem_cache.first;
PTCacheMem *link= NULL;
if (mode == PTCACHE_CLEAR_ALL) {
/*we want startframe if the cache starts before zero*/
pid->cache->last_exact = MIN2(pid->cache->startframe, 0);
for (; pm; pm=pm->next) {
ptcache_data_free(pm);
ptcache_extra_free(pm);
}
BLI_freelistN(&pid->cache->mem_cache);
if (pid->cache->cached_frames)
memset(pid->cache->cached_frames, 0, MEM_allocN_len(pid->cache->cached_frames));
}
else {
while (pm) {
if ((mode == PTCACHE_CLEAR_BEFORE && pm->frame < cfra) ||
(mode == PTCACHE_CLEAR_AFTER && pm->frame > cfra))
{
link = pm;
if (pid->cache->cached_frames && pm->frame >=sta && pm->frame <= end)
pid->cache->cached_frames[pm->frame-sta] = 0;
ptcache_data_free(pm);
ptcache_extra_free(pm);
pm = pm->next;
BLI_freelinkN(&pid->cache->mem_cache, link);
}
else
pm = pm->next;
}
}
}
break;
case PTCACHE_CLEAR_FRAME:
if (pid->cache->flag & PTCACHE_DISK_CACHE) {
if (BKE_ptcache_id_exist(pid, cfra)) {
ptcache_filename(pid, filename, cfra, 1, 1); /* no path */
BLI_delete(filename, false, false);
}
}
else {
PTCacheMem *pm = pid->cache->mem_cache.first;
for (; pm; pm=pm->next) {
if (pm->frame == cfra) {
ptcache_data_free(pm);
ptcache_extra_free(pm);
BLI_freelinkN(&pid->cache->mem_cache, pm);
break;
}
}
}
if (pid->cache->cached_frames && cfra >= sta && cfra <= end)
pid->cache->cached_frames[cfra-sta] = 0;
break;
}
BKE_ptcache_update_info(pid);
}
int BKE_ptcache_id_exist(PTCacheID *pid, int cfra)
{
if (!pid->cache)
return 0;
if (cfra<pid->cache->startframe || cfra > pid->cache->endframe)
return 0;
if (pid->cache->cached_frames && pid->cache->cached_frames[cfra-pid->cache->startframe]==0)
return 0;
if (pid->cache->flag & PTCACHE_DISK_CACHE) {
char filename[MAX_PTCACHE_FILE];
ptcache_filename(pid, filename, cfra, 1, 1);
return BLI_exists(filename);
}
else {
PTCacheMem *pm = pid->cache->mem_cache.first;
for (; pm; pm=pm->next) {
if (pm->frame==cfra)
return 1;
}
return 0;
}
}
void BKE_ptcache_id_time(PTCacheID *pid, Scene *scene, float cfra, int *startframe, int *endframe, float *timescale)
{
/* Object *ob; */ /* UNUSED */
PointCache *cache;
/* float offset; unused for now */
float time, nexttime;
/* TODO: this has to be sorted out once bsystem_time gets redone, */
/* now caches can handle interpolating etc. too - jahka */
/* time handling for point cache:
* - simulation time is scaled by result of bsystem_time
* - for offsetting time only time offset is taken into account, since
* that's always the same and can't be animated. a timeoffset which
* varies over time is not simple to support.
* - field and motion blur offsets are currently ignored, proper solution
* is probably to interpolate results from two frames for that ..
*/
/* ob= pid->ob; */ /* UNUSED */
cache= pid->cache;
if (timescale) {
time= BKE_scene_frame_get(scene);
nexttime = BKE_scene_frame_get_from_ctime(scene, CFRA + 1.0f);
*timescale= MAX2(nexttime - time, 0.0f);
}
if (startframe && endframe) {
*startframe= cache->startframe;
*endframe= cache->endframe;
/* TODO: time handling with object offsets and simulated vs. cached
* particles isn't particularly easy, so for now what you see is what
* you get. In the future point cache could handle the whole particle
* system timing. */
#if 0
if ((ob->partype & PARSLOW)==0) {
offset= ob->sf;
*startframe += (int)(offset+0.5f);
*endframe += (int)(offset+0.5f);
}
#endif
}
/* verify cached_frames array is up to date */
if (cache->cached_frames) {
if (MEM_allocN_len(cache->cached_frames) != sizeof(char) * (cache->endframe-cache->startframe+1)) {
MEM_freeN(cache->cached_frames);
cache->cached_frames = NULL;
}
}
if (cache->cached_frames==NULL && cache->endframe > cache->startframe) {
unsigned int sta=cache->startframe;
unsigned int end=cache->endframe;
cache->cached_frames = MEM_callocN(sizeof(char) * (cache->endframe-cache->startframe+1), "cached frames array");
if (pid->cache->flag & PTCACHE_DISK_CACHE) {
/* mode is same as fopen's modes */
DIR *dir;
struct dirent *de;
char path[MAX_PTCACHE_PATH];
char filename[MAX_PTCACHE_FILE];
char ext[MAX_PTCACHE_PATH];
unsigned int len; /* store the length of the string */
ptcache_path(pid, path);
len = ptcache_filename(pid, filename, (int)cfra, 0, 0); /* no path */
dir = opendir(path);
if (dir==NULL)
return;
const char *fext = ptcache_file_extension(pid);
BLI_snprintf(ext, sizeof(ext), "_%02u%s", pid->stack_index, fext);
while ((de = readdir(dir)) != NULL) {
if (strstr(de->d_name, ext)) { /* do we have the right extension?*/
if (STREQLEN(filename, de->d_name, len)) { /* do we have the right prefix */
/* read the number of the file */
const int frame = ptcache_frame_from_filename(de->d_name, ext);
if ((frame != -1) && (frame >= sta && frame <= end)) {
cache->cached_frames[frame-sta] = 1;
}
}
}
}
closedir(dir);
}
else {
PTCacheMem *pm= pid->cache->mem_cache.first;
while (pm) {
if (pm->frame >= sta && pm->frame <= end)
cache->cached_frames[pm->frame-sta] = 1;
pm = pm->next;
}
}
}
}
int BKE_ptcache_id_reset(Scene *scene, PTCacheID *pid, int mode)
{
PointCache *cache;
int reset, clear, after;
if (!pid->cache)
return 0;
cache= pid->cache;
reset= 0;
clear= 0;
after= 0;
if (mode == PTCACHE_RESET_DEPSGRAPH) {
if (!(cache->flag & PTCACHE_BAKED)) {
after= 1;
}
cache->flag |= PTCACHE_OUTDATED;
}
else if (mode == PTCACHE_RESET_BAKED) {
cache->flag |= PTCACHE_OUTDATED;
}
else if (mode == PTCACHE_RESET_OUTDATED) {
reset = 1;
if (cache->flag & PTCACHE_OUTDATED && !(cache->flag & PTCACHE_BAKED)) {
clear= 1;
cache->flag &= ~PTCACHE_OUTDATED;
}
}
if (reset) {
BKE_ptcache_invalidate(cache);
cache->flag &= ~PTCACHE_REDO_NEEDED;
if (pid->type == PTCACHE_TYPE_CLOTH)
cloth_free_modifier(pid->calldata);
else if (pid->type == PTCACHE_TYPE_SOFTBODY)
sbFreeSimulation(pid->calldata);
else if (pid->type == PTCACHE_TYPE_PARTICLES)
psys_reset(pid->calldata, PSYS_RESET_DEPSGRAPH);
#if 0
else if (pid->type == PTCACHE_TYPE_SMOKE_DOMAIN)
smokeModifier_reset(pid->calldata);
else if (pid->type == PTCACHE_TYPE_SMOKE_HIGHRES)
smokeModifier_reset_turbulence(pid->calldata);
#endif
else if (pid->type == PTCACHE_TYPE_DYNAMICPAINT)
dynamicPaint_clearSurface(scene, (DynamicPaintSurface*)pid->calldata);
}
if (clear)
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
else if (after)
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_AFTER, CFRA);
return (reset || clear || after);
}
int BKE_ptcache_object_reset(Scene *scene, Object *ob, int mode)
{
PTCacheID pid;
ParticleSystem *psys;
ModifierData *md;
int reset, skip;
reset= 0;
skip= 0;
if (ob->soft) {
BKE_ptcache_id_from_softbody(&pid, ob, ob->soft);
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
}
for (psys=ob->particlesystem.first; psys; psys=psys->next) {
/* children or just redo can be calculated without resetting anything */
if (psys->recalc & PSYS_RECALC_REDO || psys->recalc & PSYS_RECALC_CHILD)
skip = 1;
/* Baked cloth hair has to be checked too, because we don't want to reset */
/* particles or cloth in that case -jahka */
else if (psys->clmd) {
BKE_ptcache_id_from_cloth(&pid, ob, psys->clmd);
if (mode == PSYS_RESET_ALL || !(psys->part->type == PART_HAIR && (pid.cache->flag & PTCACHE_BAKED)))
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
else
skip = 1;
}
if (skip == 0 && psys->part) {
BKE_ptcache_id_from_particles(&pid, ob, psys);
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
}
}
for (md=ob->modifiers.first; md; md=md->next) {
if (md->type == eModifierType_Cloth) {
BKE_ptcache_id_from_cloth(&pid, ob, (ClothModifierData*)md);
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
}
if (md->type == eModifierType_Smoke) {
SmokeModifierData *smd = (SmokeModifierData *)md;
if (smd->type & MOD_SMOKE_TYPE_DOMAIN) {
BKE_ptcache_id_from_smoke(&pid, ob, (SmokeModifierData*)md);
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
}
}
if (md->type == eModifierType_DynamicPaint) {
DynamicPaintModifierData *pmd = (DynamicPaintModifierData *)md;
if (pmd->canvas) {
DynamicPaintSurface *surface = pmd->canvas->surfaces.first;
for (; surface; surface=surface->next) {
BKE_ptcache_id_from_dynamicpaint(&pid, ob, surface);
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
}
}
}
}
if (scene->rigidbody_world && (ob->rigidbody_object || ob->rigidbody_constraint)) {
if (ob->rigidbody_object)
ob->rigidbody_object->flag |= RBO_FLAG_NEEDS_RESHAPE;
BKE_ptcache_id_from_rigidbody(&pid, ob, scene->rigidbody_world);
/* only flag as outdated, resetting should happen on start frame */
pid.cache->flag |= PTCACHE_OUTDATED;
}
if (ob->type == OB_ARMATURE)
BIK_clear_cache(ob->pose);
return reset;
}
/* Use this when quitting blender, with unsaved files */
void BKE_ptcache_remove(void)
{
char path[MAX_PTCACHE_PATH];
char path_full[MAX_PTCACHE_PATH];
int rmdir = 1;
ptcache_path(NULL, path);
if (BLI_exists(path)) {
/* The pointcache dir exists? - remove all pointcache */
DIR *dir;
struct dirent *de;
dir = opendir(path);
if (dir==NULL)
return;
while ((de = readdir(dir)) != NULL) {
if (FILENAME_IS_CURRPAR(de->d_name)) {
/* do nothing */
}
else if (strstr(de->d_name, PTCACHE_EXT)) { /* do we have the right extension?*/
BLI_join_dirfile(path_full, sizeof(path_full), path, de->d_name);
BLI_delete(path_full, false, false);
}
else {
rmdir = 0; /* unknown file, don't remove the dir */
}
}
closedir(dir);
}
else {
rmdir = 0; /* path dosnt exist */
}
if (rmdir) {
BLI_delete(path, true, false);
}
}
/* Point Cache handling */
PointCache *BKE_ptcache_add(ListBase *ptcaches)
{
PointCache *cache;
cache= MEM_callocN(sizeof(PointCache), "PointCache");
cache->startframe= 1;
cache->endframe= 250;
cache->step = 1;
cache->index = -1;
BLI_addtail(ptcaches, cache);
return cache;
}
void BKE_ptcache_free_mem(ListBase *mem_cache)
{
PTCacheMem *pm = mem_cache->first;
if (pm) {
for (; pm; pm=pm->next) {
ptcache_data_free(pm);
ptcache_extra_free(pm);
}
BLI_freelistN(mem_cache);
}
}
void BKE_ptcache_free(PointCache *cache)
{
BKE_ptcache_free_mem(&cache->mem_cache);
if (cache->edit && cache->free_edit)
cache->free_edit(cache->edit);
if (cache->cached_frames)
MEM_freeN(cache->cached_frames);
MEM_freeN(cache);
}
void BKE_ptcache_free_list(ListBase *ptcaches)
{
PointCache *cache;
while ((cache = BLI_pophead(ptcaches))) {
BKE_ptcache_free(cache);
}
}
static PointCache *ptcache_copy(PointCache *cache, const bool copy_data)
{
PointCache *ncache;
ncache= MEM_dupallocN(cache);
BLI_listbase_clear(&ncache->mem_cache);
if (copy_data == false) {
ncache->cached_frames = NULL;
/* flag is a mix of user settings and simulator/baking state */
ncache->flag= ncache->flag & (PTCACHE_DISK_CACHE|PTCACHE_EXTERNAL|PTCACHE_IGNORE_LIBPATH);
ncache->simframe= 0;
}
else {
PTCacheMem *pm;
for (pm = cache->mem_cache.first; pm; pm = pm->next) {
PTCacheMem *pmn = MEM_dupallocN(pm);
int i;
for (i = 0; i < BPHYS_TOT_DATA; i++) {
if (pmn->data[i])
pmn->data[i] = MEM_dupallocN(pm->data[i]);
}
BKE_ptcache_mem_pointers_init(pm);
BLI_addtail(&ncache->mem_cache, pmn);
}
if (ncache->cached_frames)
ncache->cached_frames = MEM_dupallocN(cache->cached_frames);
}
/* hmm, should these be copied over instead? */
ncache->edit = NULL;
return ncache;
}
/* returns first point cache */
PointCache *BKE_ptcache_copy_list(ListBase *ptcaches_new, const ListBase *ptcaches_old, const int flag)
{
PointCache *cache = ptcaches_old->first;
BLI_listbase_clear(ptcaches_new);
for (; cache; cache=cache->next) {
BLI_addtail(ptcaches_new, ptcache_copy(cache, (flag & LIB_ID_COPY_CACHES) != 0));
}
return ptcaches_new->first;
}
/* Disabled this code; this is being called on scene_update_tagged, and that in turn gets called on
* every user action changing stuff, and then it runs a complete bake??? (ton) */
/* Baking */
void BKE_ptcache_quick_cache_all(Main *bmain, Scene *scene)
{
PTCacheBaker baker;
memset(&baker, 0, sizeof(baker));
baker.main = bmain;
baker.scene = scene;
baker.bake = 0;
baker.render = 0;
baker.anim_init = 0;
baker.quick_step = scene->physics_settings.quick_cache_step;
BKE_ptcache_bake(&baker);
}
static void ptcache_dt_to_str(char *str, double dtime)
{
if (dtime > 60.0) {
if (dtime > 3600.0)
sprintf(str, "%ih %im %is", (int)(dtime/3600), ((int)(dtime/60))%60, ((int)dtime) % 60);
else
sprintf(str, "%im %is", ((int)(dtime/60))%60, ((int)dtime) % 60);
}
else
sprintf(str, "%is", ((int)dtime) % 60);
}
/* if bake is not given run simulations to current frame */
void BKE_ptcache_bake(PTCacheBaker *baker)
{
Main *bmain = baker->main;
Scene *scene = baker->scene;
Scene *sce_iter; /* SETLOOPER macro only */
Base *base;
ListBase pidlist;
PTCacheID *pid = &baker->pid;
PointCache *cache = NULL;
float frameleno = scene->r.framelen;
int cfrao = CFRA;
int startframe = MAXFRAME, endframe = baker->anim_init ? scene->r.sfra : CFRA;
int bake = baker->bake;
int render = baker->render;
G.is_break = false;
/* set caches to baking mode and figure out start frame */
if (pid->ob) {
/* cache/bake a single object */
cache = pid->cache;
if ((cache->flag & PTCACHE_BAKED)==0) {
if (pid->type==PTCACHE_TYPE_PARTICLES) {
ParticleSystem *psys= pid->calldata;
/* a bit confusing, could make this work better in the UI */
if (psys->part->type == PART_EMITTER)
psys_get_pointcache_start_end(scene, pid->calldata, &cache->startframe, &cache->endframe);
}
else if (pid->type == PTCACHE_TYPE_SMOKE_HIGHRES) {
/* get all pids from the object and search for smoke low res */
ListBase pidlist2;
PTCacheID *pid2;
BKE_ptcache_ids_from_object(&pidlist2, pid->ob, scene, MAX_DUPLI_RECUR);
for (pid2=pidlist2.first; pid2; pid2=pid2->next) {
if (pid2->type == PTCACHE_TYPE_SMOKE_DOMAIN) {
if (pid2->cache && !(pid2->cache->flag & PTCACHE_BAKED)) {
if (bake || pid2->cache->flag & PTCACHE_REDO_NEEDED)
BKE_ptcache_id_clear(pid2, PTCACHE_CLEAR_ALL, 0);
if (bake) {
pid2->cache->flag |= PTCACHE_BAKING;
pid2->cache->flag &= ~PTCACHE_BAKED;
}
}
}
}
BLI_freelistN(&pidlist2);
}
if (bake || cache->flag & PTCACHE_REDO_NEEDED)
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
startframe = MAX2(cache->last_exact, cache->startframe);
if (bake) {
endframe = cache->endframe;
cache->flag |= PTCACHE_BAKING;
}
else {
endframe = MIN2(endframe, cache->endframe);
}
cache->flag &= ~PTCACHE_BAKED;
}
}
else {
for (SETLOOPER(scene, sce_iter, base)) {
/* cache/bake everything in the scene */
BKE_ptcache_ids_from_object(&pidlist, base->object, scene, MAX_DUPLI_RECUR);
for (pid=pidlist.first; pid; pid=pid->next) {
cache = pid->cache;
if ((cache->flag & PTCACHE_BAKED)==0) {
if (pid->type==PTCACHE_TYPE_PARTICLES) {
ParticleSystem *psys = (ParticleSystem*)pid->calldata;
/* skip hair & keyed particles */
if (psys->part->type == PART_HAIR || psys->part->phystype == PART_PHYS_KEYED)
continue;
psys_get_pointcache_start_end(scene, pid->calldata, &cache->startframe, &cache->endframe);
}
// XXX workaround for regression inroduced in ee3fadd, needs looking into
if (pid->type == PTCACHE_TYPE_RIGIDBODY) {
if ((cache->flag & PTCACHE_REDO_NEEDED || (cache->flag & PTCACHE_SIMULATION_VALID)==0) && (render || bake)) {
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
}
}
else if (((cache->flag & PTCACHE_BAKED) == 0) && (render || bake)) {
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
}
startframe = MIN2(startframe, cache->startframe);
if (bake || render) {
cache->flag |= PTCACHE_BAKING;
if (bake)
endframe = MAX2(endframe, cache->endframe);
}
cache->flag &= ~PTCACHE_BAKED;
}
}
BLI_freelistN(&pidlist);
}
}
CFRA = startframe;
scene->r.framelen = 1.0;
/* bake */
bool use_timer = false;
double stime, ptime, ctime, fetd;
char run[32], cur[32], etd[32];
int cancel = 0;
stime = ptime = PIL_check_seconds_timer();
for (int fr = CFRA; fr <= endframe; fr += baker->quick_step, CFRA = fr) {
BKE_scene_update_for_newframe(G.main->eval_ctx, bmain, scene, scene->lay);
if (baker->update_progress) {
float progress = ((float)(CFRA - startframe)/(float)(endframe - startframe));
baker->update_progress(baker->bake_job, progress, &cancel);
}
if (G.background) {
printf("bake: frame %d :: %d\n", CFRA, endframe);
}
else {
ctime = PIL_check_seconds_timer();
fetd = (ctime - ptime) * (endframe - CFRA) / baker->quick_step;
if (use_timer || fetd > 60.0) {
use_timer = true;
ptcache_dt_to_str(cur, ctime - ptime);
ptcache_dt_to_str(run, ctime - stime);
ptcache_dt_to_str(etd, fetd);
printf("Baked for %s, current frame: %i/%i (%.3fs), ETC: %s\r",
run, CFRA - startframe + 1, endframe - startframe + 1, ctime - ptime, etd);
}
ptime = ctime;
}
/* NOTE: breaking baking should leave calculated frames in cache, not clear it */
if ((cancel || G.is_break)) {
break;
}
CFRA += 1;
}
if (use_timer) {
/* start with newline because of \r above */
ptcache_dt_to_str(run, PIL_check_seconds_timer()-stime);
printf("\nBake %s %s (%i frames simulated).\n", (cancel ? "canceled after" : "finished in"), run, CFRA - startframe);
}
/* clear baking flag */
if (pid) {
cache->flag &= ~(PTCACHE_BAKING|PTCACHE_REDO_NEEDED);
cache->flag |= PTCACHE_SIMULATION_VALID;
if (bake) {
cache->flag |= PTCACHE_BAKED;
/* write info file */
if (cache->flag & PTCACHE_DISK_CACHE)
BKE_ptcache_write(pid, 0);
}
}
else {
for (SETLOOPER(scene, sce_iter, base)) {
BKE_ptcache_ids_from_object(&pidlist, base->object, scene, MAX_DUPLI_RECUR);
for (pid=pidlist.first; pid; pid=pid->next) {
/* skip hair particles */
if (pid->type==PTCACHE_TYPE_PARTICLES && ((ParticleSystem*)pid->calldata)->part->type == PART_HAIR)
continue;
cache = pid->cache;
if (baker->quick_step > 1)
cache->flag &= ~(PTCACHE_BAKING|PTCACHE_OUTDATED);
else
cache->flag &= ~(PTCACHE_BAKING|PTCACHE_REDO_NEEDED);
cache->flag |= PTCACHE_SIMULATION_VALID;
if (bake) {
cache->flag |= PTCACHE_BAKED;
if (cache->flag & PTCACHE_DISK_CACHE)
BKE_ptcache_write(pid, 0);
}
}
BLI_freelistN(&pidlist);
}
}
scene->r.framelen = frameleno;
CFRA = cfrao;
if (bake) { /* already on cfra unless baking */
BKE_scene_update_for_newframe(bmain->eval_ctx, bmain, scene, scene->lay);
}
/* TODO: call redraw all windows somehow */
}
/* Helpers */
void BKE_ptcache_disk_to_mem(PTCacheID *pid)
{
PointCache *cache = pid->cache;
PTCacheMem *pm = NULL;
int baked = cache->flag & PTCACHE_BAKED;
int cfra, sfra = cache->startframe, efra = cache->endframe;
/* Remove possible bake flag to allow clear */
cache->flag &= ~PTCACHE_BAKED;
/* PTCACHE_DISK_CACHE flag was cleared already */
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
/* restore possible bake flag */
cache->flag |= baked;
for (cfra=sfra; cfra <= efra; cfra++) {
pm = ptcache_disk_frame_to_mem(pid, cfra);
if (pm)
BLI_addtail(&pid->cache->mem_cache, pm);
}
}
void BKE_ptcache_mem_to_disk(PTCacheID *pid)
{
PointCache *cache = pid->cache;
PTCacheMem *pm = cache->mem_cache.first;
int baked = cache->flag & PTCACHE_BAKED;
/* Remove possible bake flag to allow clear */
cache->flag &= ~PTCACHE_BAKED;
/* PTCACHE_DISK_CACHE flag was set already */
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
/* restore possible bake flag */
cache->flag |= baked;
for (; pm; pm=pm->next) {
if (ptcache_mem_frame_to_disk(pid, pm)==0) {
cache->flag &= ~PTCACHE_DISK_CACHE;
break;
}
}
/* write info file */
if (cache->flag & PTCACHE_BAKED)
BKE_ptcache_write(pid, 0);
}
void BKE_ptcache_toggle_disk_cache(PTCacheID *pid)
{
PointCache *cache = pid->cache;
int last_exact = cache->last_exact;
if (!G.relbase_valid) {
cache->flag &= ~PTCACHE_DISK_CACHE;
if (G.debug & G_DEBUG)
printf("File must be saved before using disk cache!\n");
return;
}
if (cache->cached_frames) {
MEM_freeN(cache->cached_frames);
cache->cached_frames=NULL;
}
if (cache->flag & PTCACHE_DISK_CACHE)
BKE_ptcache_mem_to_disk(pid);
else
BKE_ptcache_disk_to_mem(pid);
cache->flag ^= PTCACHE_DISK_CACHE;
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
cache->flag ^= PTCACHE_DISK_CACHE;
cache->last_exact = last_exact;
BKE_ptcache_id_time(pid, NULL, 0.0f, NULL, NULL, NULL);
BKE_ptcache_update_info(pid);
if ((cache->flag & PTCACHE_DISK_CACHE) == 0) {
if (cache->index) {
BKE_object_delete_ptcache(pid->ob, cache->index);
cache->index = -1;
}
}
}
void BKE_ptcache_disk_cache_rename(PTCacheID *pid, const char *name_src, const char *name_dst)
{
char old_name[80];
int len; /* store the length of the string */
/* mode is same as fopen's modes */
DIR *dir;
struct dirent *de;
char path[MAX_PTCACHE_PATH];
char old_filename[MAX_PTCACHE_FILE];
char new_path_full[MAX_PTCACHE_FILE];
char old_path_full[MAX_PTCACHE_FILE];
char ext[MAX_PTCACHE_PATH];
/* save old name */
BLI_strncpy(old_name, pid->cache->name, sizeof(old_name));
/* get "from" filename */
BLI_strncpy(pid->cache->name, name_src, sizeof(pid->cache->name));
len = ptcache_filename(pid, old_filename, 0, 0, 0); /* no path */
ptcache_path(pid, path);
dir = opendir(path);
if (dir==NULL) {
BLI_strncpy(pid->cache->name, old_name, sizeof(pid->cache->name));
return;
}
const char *fext = ptcache_file_extension(pid);
BLI_snprintf(ext, sizeof(ext), "_%02u%s", pid->stack_index, fext);
/* put new name into cache */
BLI_strncpy(pid->cache->name, name_dst, sizeof(pid->cache->name));
while ((de = readdir(dir)) != NULL) {
if (strstr(de->d_name, ext)) { /* do we have the right extension?*/
if (STREQLEN(old_filename, de->d_name, len)) { /* do we have the right prefix */
/* read the number of the file */
const int frame = ptcache_frame_from_filename(de->d_name, ext);
if (frame != -1) {
BLI_join_dirfile(old_path_full, sizeof(old_path_full), path, de->d_name);
ptcache_filename(pid, new_path_full, frame, 1, 1);
BLI_rename(old_path_full, new_path_full);
}
}
}
}
closedir(dir);
BLI_strncpy(pid->cache->name, old_name, sizeof(pid->cache->name));
}
void BKE_ptcache_load_external(PTCacheID *pid)
{
/*todo*/
PointCache *cache = pid->cache;
int len; /* store the length of the string */
int info = 0;
int start = MAXFRAME;
int end = -1;
/* mode is same as fopen's modes */
DIR *dir;
struct dirent *de;
char path[MAX_PTCACHE_PATH];
char filename[MAX_PTCACHE_FILE];
char ext[MAX_PTCACHE_PATH];
if (!cache)
return;
ptcache_path(pid, path);
len = ptcache_filename(pid, filename, 1, 0, 0); /* no path */
dir = opendir(path);
if (dir==NULL)
return;
const char *fext = ptcache_file_extension(pid);
if (cache->index >= 0)
BLI_snprintf(ext, sizeof(ext), "_%02d%s", cache->index, fext);
else
BLI_strncpy(ext, fext, sizeof(ext));
while ((de = readdir(dir)) != NULL) {
if (strstr(de->d_name, ext)) { /* do we have the right extension?*/
if (STREQLEN(filename, de->d_name, len)) { /* do we have the right prefix */
/* read the number of the file */
const int frame = ptcache_frame_from_filename(de->d_name, ext);
if (frame != -1) {
if (frame) {
start = MIN2(start, frame);
end = MAX2(end, frame);
}
else
info = 1;
}
}
}
}
closedir(dir);
if (start != MAXFRAME) {
PTCacheFile *pf;
cache->startframe = start;
cache->endframe = end;
cache->totpoint = 0;
if (pid->type == PTCACHE_TYPE_SMOKE_DOMAIN) {
/* necessary info in every file */
}
/* read totpoint from info file (frame 0) */
else if (info) {
pf= ptcache_file_open(pid, PTCACHE_FILE_READ, 0);
if (pf) {
if (ptcache_file_header_begin_read(pf)) {
if (pf->type == pid->type && pid->read_header(pf)) {
cache->totpoint = pf->totpoint;
cache->flag |= PTCACHE_READ_INFO;
}
else {
cache->totpoint = 0;
}
}
ptcache_file_close(pf);
}
}
/* or from any old format cache file */
else {
float old_data[14];
int elemsize = ptcache_old_elemsize(pid);
pf= ptcache_file_open(pid, PTCACHE_FILE_READ, cache->startframe);
if (pf) {
while (ptcache_file_read(pf, old_data, 1, elemsize))
cache->totpoint++;
ptcache_file_close(pf);
}
}
cache->flag |= (PTCACHE_BAKED|PTCACHE_DISK_CACHE|PTCACHE_SIMULATION_VALID);
cache->flag &= ~(PTCACHE_OUTDATED|PTCACHE_FRAMES_SKIPPED);
}
/* make sure all new frames are loaded */
if (cache->cached_frames) {
MEM_freeN(cache->cached_frames);
cache->cached_frames=NULL;
}
BKE_ptcache_update_info(pid);
}
void BKE_ptcache_update_info(PTCacheID *pid)
{
PointCache *cache = pid->cache;
PTCacheExtra *extra = NULL;
int totframes = 0;
char mem_info[64];
if (cache->flag & PTCACHE_EXTERNAL) {
int cfra = cache->startframe;
for (; cfra <= cache->endframe; cfra++) {
if (BKE_ptcache_id_exist(pid, cfra))
totframes++;
}
/* smoke doesn't use frame 0 as info frame so can't check based on totpoint */
if (pid->type == PTCACHE_TYPE_SMOKE_DOMAIN && totframes)
BLI_snprintf(cache->info, sizeof(cache->info), IFACE_("%i frames found!"), totframes);
else if (totframes && cache->totpoint)
BLI_snprintf(cache->info, sizeof(cache->info), IFACE_("%i points found!"), cache->totpoint);
else
BLI_strncpy(cache->info, IFACE_("No valid data to read!"), sizeof(cache->info));
return;
}
if (cache->flag & PTCACHE_DISK_CACHE) {
if (pid->type == PTCACHE_TYPE_SMOKE_DOMAIN) {
int totpoint = pid->totpoint(pid->calldata, 0);
if (cache->totpoint > totpoint)
BLI_snprintf(mem_info, sizeof(mem_info), IFACE_("%i cells + High Resolution cached"), totpoint);
else
BLI_snprintf(mem_info, sizeof(mem_info), IFACE_("%i cells cached"), totpoint);
}
else {
int cfra = cache->startframe;
for (; cfra <= cache->endframe; cfra++) {
if (BKE_ptcache_id_exist(pid, cfra))
totframes++;
}
BLI_snprintf(mem_info, sizeof(mem_info), IFACE_("%i frames on disk"), totframes);
}
}
else {
PTCacheMem *pm = cache->mem_cache.first;
char formatted_tot[16];
char formatted_mem[15];
long long int bytes = 0.0f;
int i;
for (; pm; pm=pm->next) {
for (i=0; i<BPHYS_TOT_DATA; i++)
bytes += MEM_allocN_len(pm->data[i]);
for (extra=pm->extradata.first; extra; extra=extra->next) {
bytes += MEM_allocN_len(extra->data);
bytes += sizeof(PTCacheExtra);
}
bytes += sizeof(PTCacheMem);
totframes++;
}
BLI_str_format_int_grouped(formatted_tot, totframes);
BLI_str_format_byte_unit(formatted_mem, bytes, true);
BLI_snprintf(mem_info, sizeof(mem_info), IFACE_("%s frames in memory (%s)"), formatted_tot, formatted_mem);
}
if (cache->flag & PTCACHE_OUTDATED) {
BLI_snprintf(cache->info, sizeof(cache->info), IFACE_("%s, cache is outdated!"), mem_info);
}
else if (cache->flag & PTCACHE_FRAMES_SKIPPED) {
BLI_snprintf(cache->info, sizeof(cache->info), IFACE_("%s, not exact since frame %i"),
mem_info, cache->last_exact);
}
else {
BLI_snprintf(cache->info, sizeof(cache->info), "%s.", mem_info);
}
}
void BKE_ptcache_validate(PointCache *cache, int framenr)
{
if (cache) {
cache->flag |= PTCACHE_SIMULATION_VALID;
cache->simframe = framenr;
}
}
void BKE_ptcache_invalidate(PointCache *cache)
{
if (cache) {
cache->flag &= ~PTCACHE_SIMULATION_VALID;
cache->simframe = 0;
cache->last_exact = MIN2(cache->startframe, 0);
}
}