tornavis/intern/cycles/blender/mesh.cpp

1296 lines
46 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include <optional>
#include "blender/attribute_convert.h"
#include "blender/session.h"
#include "blender/sync.h"
#include "blender/util.h"
#include "scene/camera.h"
#include "scene/colorspace.h"
#include "scene/mesh.h"
#include "scene/object.h"
#include "scene/scene.h"
#include "subd/patch.h"
#include "subd/split.h"
#include "util/algorithm.h"
#include "util/color.h"
#include "util/disjoint_set.h"
#include "util/foreach.h"
#include "util/hash.h"
#include "util/log.h"
#include "util/math.h"
#include "mikktspace.hh"
#include "BKE_attribute.hh"
#include "BKE_attribute_math.hh"
#include "BKE_mesh.hh"
CCL_NAMESPACE_BEGIN
/* Tangent Space */
template<bool is_subd> struct MikkMeshWrapper {
MikkMeshWrapper(const ::Mesh &b_mesh,
const char *layer_name,
const Mesh *mesh,
float3 *tangent,
float *tangent_sign)
: mesh(mesh), texface(NULL), orco(NULL), tangent(tangent), tangent_sign(tangent_sign)
{
const AttributeSet &attributes = is_subd ? mesh->subd_attributes : mesh->attributes;
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
vertex_normal = attr_vN->data_float3();
if (layer_name == NULL) {
Attribute *attr_orco = attributes.find(ATTR_STD_GENERATED);
if (attr_orco) {
orco = attr_orco->data_float3();
float3 orco_size;
mesh_texture_space(b_mesh, orco_loc, orco_size);
inv_orco_size = 1.0f / orco_size;
}
}
else {
Attribute *attr_uv = attributes.find(ustring(layer_name));
if (attr_uv != NULL) {
texface = attr_uv->data_float2();
}
}
}
int GetNumFaces()
{
if constexpr (is_subd) {
return mesh->get_num_subd_faces();
}
else {
return mesh->num_triangles();
}
}
int GetNumVerticesOfFace(const int face_num)
{
if constexpr (is_subd) {
return mesh->get_subd_num_corners()[face_num];
}
else {
return 3;
}
}
int CornerIndex(const int face_num, const int vert_num)
{
if constexpr (is_subd) {
const Mesh::SubdFace &face = mesh->get_subd_face(face_num);
return face.start_corner + vert_num;
}
else {
return face_num * 3 + vert_num;
}
}
int VertexIndex(const int face_num, const int vert_num)
{
int corner = CornerIndex(face_num, vert_num);
if constexpr (is_subd) {
return mesh->get_subd_face_corners()[corner];
}
else {
return mesh->get_triangles()[corner];
}
}
mikk::float3 GetPosition(const int face_num, const int vert_num)
{
const float3 vP = mesh->get_verts()[VertexIndex(face_num, vert_num)];
return mikk::float3(vP.x, vP.y, vP.z);
}
mikk::float3 GetTexCoord(const int face_num, const int vert_num)
{
/* TODO: Check whether introducing a template boolean in order to
* turn this into a constexpr is worth it. */
if (texface != NULL) {
const int corner_index = CornerIndex(face_num, vert_num);
float2 tfuv = texface[corner_index];
return mikk::float3(tfuv.x, tfuv.y, 1.0f);
}
else if (orco != NULL) {
const int vertex_index = VertexIndex(face_num, vert_num);
const float2 uv = map_to_sphere((orco[vertex_index] + orco_loc) * inv_orco_size);
return mikk::float3(uv.x, uv.y, 1.0f);
}
else {
return mikk::float3(0.0f, 0.0f, 1.0f);
}
}
mikk::float3 GetNormal(const int face_num, const int vert_num)
{
float3 vN;
if (is_subd) {
const Mesh::SubdFace &face = mesh->get_subd_face(face_num);
if (face.smooth) {
const int vertex_index = VertexIndex(face_num, vert_num);
vN = vertex_normal[vertex_index];
}
else {
vN = face.normal(mesh);
}
}
else {
if (mesh->get_smooth()[face_num]) {
const int vertex_index = VertexIndex(face_num, vert_num);
vN = vertex_normal[vertex_index];
}
else {
const Mesh::Triangle tri = mesh->get_triangle(face_num);
vN = tri.compute_normal(&mesh->get_verts()[0]);
}
}
return mikk::float3(vN.x, vN.y, vN.z);
}
void SetTangentSpace(const int face_num, const int vert_num, mikk::float3 T, bool orientation)
{
const int corner_index = CornerIndex(face_num, vert_num);
tangent[corner_index] = make_float3(T.x, T.y, T.z);
if (tangent_sign != NULL) {
tangent_sign[corner_index] = orientation ? 1.0f : -1.0f;
}
}
const Mesh *mesh;
int num_faces;
float3 *vertex_normal;
float2 *texface;
float3 *orco;
float3 orco_loc, inv_orco_size;
float3 *tangent;
float *tangent_sign;
};
static void mikk_compute_tangents(
const ::Mesh &b_mesh, const char *layer_name, Mesh *mesh, bool need_sign, bool active_render)
{
/* Create tangent attributes. */
const bool is_subd = mesh->get_num_subd_faces();
AttributeSet &attributes = is_subd ? mesh->subd_attributes : mesh->attributes;
Attribute *attr;
ustring name;
if (layer_name != NULL) {
name = ustring((string(layer_name) + ".tangent").c_str());
}
else {
name = ustring("orco.tangent");
}
if (active_render) {
attr = attributes.add(ATTR_STD_UV_TANGENT, name);
}
else {
attr = attributes.add(name, TypeDesc::TypeVector, ATTR_ELEMENT_CORNER);
}
float3 *tangent = attr->data_float3();
/* Create bitangent sign attribute. */
float *tangent_sign = NULL;
if (need_sign) {
Attribute *attr_sign;
ustring name_sign;
if (layer_name != NULL) {
name_sign = ustring((string(layer_name) + ".tangent_sign").c_str());
}
else {
name_sign = ustring("orco.tangent_sign");
}
if (active_render) {
attr_sign = attributes.add(ATTR_STD_UV_TANGENT_SIGN, name_sign);
}
else {
attr_sign = attributes.add(name_sign, TypeDesc::TypeFloat, ATTR_ELEMENT_CORNER);
}
tangent_sign = attr_sign->data_float();
}
/* Setup userdata. */
if (is_subd) {
MikkMeshWrapper<true> userdata(b_mesh, layer_name, mesh, tangent, tangent_sign);
/* Compute tangents. */
mikk::Mikktspace(userdata).genTangSpace();
}
else {
MikkMeshWrapper<false> userdata(b_mesh, layer_name, mesh, tangent, tangent_sign);
/* Compute tangents. */
mikk::Mikktspace(userdata).genTangSpace();
}
}
static void attr_create_motion(Mesh *mesh,
const blender::Span<blender::float3> b_attr,
const float motion_scale)
{
const int numverts = mesh->get_verts().size();
/* Find or add attribute */
float3 *P = &mesh->get_verts()[0];
Attribute *attr_mP = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (!attr_mP) {
attr_mP = mesh->attributes.add(ATTR_STD_MOTION_VERTEX_POSITION);
}
/* Only export previous and next frame, we don't have any in between data. */
float motion_times[2] = {-1.0f, 1.0f};
for (int step = 0; step < 2; step++) {
const float relative_time = motion_times[step] * 0.5f * motion_scale;
float3 *mP = attr_mP->data_float3() + step * numverts;
for (int i = 0; i < numverts; i++) {
mP[i] = P[i] + make_float3(b_attr[i][0], b_attr[i][1], b_attr[i][2]) * relative_time;
}
}
}
static void attr_create_generic(Scene *scene,
Mesh *mesh,
const ::Mesh &b_mesh,
const bool subdivision,
const bool need_motion,
const float motion_scale)
{
blender::Span<MLoopTri> looptris;
blender::Span<int> looptri_faces;
if (!subdivision) {
looptris = b_mesh.looptris();
looptri_faces = b_mesh.looptri_faces();
}
const blender::bke::AttributeAccessor b_attributes = b_mesh.attributes();
AttributeSet &attributes = (subdivision) ? mesh->subd_attributes : mesh->attributes;
static const ustring u_velocity("velocity");
const ustring default_color_name{BKE_id_attributes_default_color_name(&b_mesh.id)};
b_attributes.for_all([&](const blender::bke::AttributeIDRef &id,
const blender::bke::AttributeMetaData meta_data) {
const ustring name{std::string_view(id.name())};
const bool is_render_color = name == default_color_name;
if (need_motion && name == u_velocity) {
const blender::VArraySpan b_attribute = *b_attributes.lookup<blender::float3>(
id, ATTR_DOMAIN_POINT);
attr_create_motion(mesh, b_attribute, motion_scale);
}
if (!(mesh->need_attribute(scene, name) ||
(is_render_color && mesh->need_attribute(scene, ATTR_STD_VERTEX_COLOR))))
{
return true;
}
if (attributes.find(name)) {
return true;
}
eAttrDomain b_domain = meta_data.domain;
if (b_domain == ATTR_DOMAIN_EDGE) {
/* Blender's attribute API handles edge to vertex attribute domain interpolation. */
b_domain = ATTR_DOMAIN_POINT;
}
const blender::bke::GAttributeReader b_attr = b_attributes.lookup(id, b_domain);
if (b_attr.varray.is_empty()) {
return true;
}
if (b_attr.domain == ATTR_DOMAIN_CORNER && meta_data.data_type == CD_PROP_BYTE_COLOR) {
Attribute *attr = attributes.add(name, TypeRGBA, ATTR_ELEMENT_CORNER_BYTE);
if (is_render_color) {
attr->std = ATTR_STD_VERTEX_COLOR;
}
uchar4 *data = attr->data_uchar4();
const blender::VArraySpan src = b_attr.varray.typed<blender::ColorGeometry4b>();
if (subdivision) {
for (const int i : src.index_range()) {
data[i] = make_uchar4(src[i][0], src[i][1], src[i][2], src[i][3]);
}
}
else {
for (const int i : looptris.index_range()) {
const MLoopTri &lt = looptris[i];
data[i * 3 + 0] = make_uchar4(
src[lt.tri[0]][0], src[lt.tri[0]][1], src[lt.tri[0]][2], src[lt.tri[0]][3]);
data[i * 3 + 1] = make_uchar4(
src[lt.tri[1]][0], src[lt.tri[1]][1], src[lt.tri[1]][2], src[lt.tri[1]][3]);
data[i * 3 + 2] = make_uchar4(
src[lt.tri[2]][0], src[lt.tri[2]][1], src[lt.tri[2]][2], src[lt.tri[2]][3]);
}
}
return true;
}
AttributeElement element = ATTR_ELEMENT_NONE;
switch (b_domain) {
case ATTR_DOMAIN_CORNER:
element = ATTR_ELEMENT_CORNER;
break;
case ATTR_DOMAIN_POINT:
element = ATTR_ELEMENT_VERTEX;
break;
case ATTR_DOMAIN_FACE:
element = ATTR_ELEMENT_FACE;
break;
default:
assert(false);
return true;
}
blender::bke::attribute_math::convert_to_static_type(b_attr.varray.type(), [&](auto dummy) {
using BlenderT = decltype(dummy);
using Converter = typename ccl::AttributeConverter<BlenderT>;
using CyclesT = typename Converter::CyclesT;
if constexpr (!std::is_void_v<CyclesT>) {
Attribute *attr = attributes.add(name, Converter::type_desc, element);
if (is_render_color) {
attr->std = ATTR_STD_VERTEX_COLOR;
}
CyclesT *data = reinterpret_cast<CyclesT *>(attr->data());
const blender::VArraySpan src = b_attr.varray.typed<BlenderT>();
switch (b_attr.domain) {
case ATTR_DOMAIN_CORNER: {
if (subdivision) {
for (const int i : src.index_range()) {
data[i] = Converter::convert(src[i]);
}
}
else {
for (const int i : looptris.index_range()) {
const MLoopTri &lt = looptris[i];
data[i * 3 + 0] = Converter::convert(src[lt.tri[0]]);
data[i * 3 + 1] = Converter::convert(src[lt.tri[1]]);
data[i * 3 + 2] = Converter::convert(src[lt.tri[2]]);
}
}
break;
}
case ATTR_DOMAIN_POINT: {
for (const int i : src.index_range()) {
data[i] = Converter::convert(src[i]);
}
break;
}
case ATTR_DOMAIN_FACE: {
if (subdivision) {
for (const int i : src.index_range()) {
data[i] = Converter::convert(src[i]);
}
}
else {
for (const int i : looptris.index_range()) {
data[i] = Converter::convert(src[looptri_faces[i]]);
}
}
break;
}
default: {
assert(false);
break;
}
}
}
});
return true;
});
}
static set<ustring> get_blender_uv_names(const ::Mesh &b_mesh)
{
set<ustring> uv_names;
b_mesh.attributes().for_all([&](const blender::bke::AttributeIDRef &id,
const blender::bke::AttributeMetaData meta_data) {
if (meta_data.domain == ATTR_DOMAIN_CORNER && meta_data.data_type == CD_PROP_FLOAT2) {
if (!id.is_anonymous()) {
uv_names.emplace(std::string_view(id.name()));
}
}
return true;
});
return uv_names;
}
/* Create uv map attributes. */
static void attr_create_uv_map(Scene *scene,
Mesh *mesh,
const ::Mesh &b_mesh,
const set<ustring> &blender_uv_names)
{
const blender::Span<MLoopTri> looptris = b_mesh.looptris();
const blender::bke::AttributeAccessor b_attributes = b_mesh.attributes();
const ustring render_name(CustomData_get_render_layer_name(&b_mesh.loop_data, CD_PROP_FLOAT2));
if (!blender_uv_names.empty()) {
for (const ustring &uv_name : blender_uv_names) {
const bool active_render = uv_name == render_name;
AttributeStandard uv_std = (active_render) ? ATTR_STD_UV : ATTR_STD_NONE;
AttributeStandard tangent_std = (active_render) ? ATTR_STD_UV_TANGENT : ATTR_STD_NONE;
ustring tangent_name = ustring((string(uv_name) + ".tangent").c_str());
/* Denotes whether UV map was requested directly. */
const bool need_uv = mesh->need_attribute(scene, uv_name) ||
mesh->need_attribute(scene, uv_std);
/* Denotes whether tangent was requested directly. */
const bool need_tangent = mesh->need_attribute(scene, tangent_name) ||
(active_render && mesh->need_attribute(scene, tangent_std));
/* UV map */
/* NOTE: We create temporary UV layer if its needed for tangent but
* wasn't requested by other nodes in shaders.
*/
Attribute *uv_attr = NULL;
if (need_uv || need_tangent) {
if (active_render) {
uv_attr = mesh->attributes.add(uv_std, uv_name);
}
else {
uv_attr = mesh->attributes.add(uv_name, TypeFloat2, ATTR_ELEMENT_CORNER);
}
const blender::VArraySpan b_uv_map = *b_attributes.lookup<blender::float2>(
uv_name.c_str(), ATTR_DOMAIN_CORNER);
float2 *fdata = uv_attr->data_float2();
for (const int i : looptris.index_range()) {
const MLoopTri &lt = looptris[i];
fdata[i * 3 + 0] = make_float2(b_uv_map[lt.tri[0]][0], b_uv_map[lt.tri[0]][1]);
fdata[i * 3 + 1] = make_float2(b_uv_map[lt.tri[1]][0], b_uv_map[lt.tri[1]][1]);
fdata[i * 3 + 2] = make_float2(b_uv_map[lt.tri[2]][0], b_uv_map[lt.tri[2]][1]);
}
}
/* UV tangent */
if (need_tangent) {
AttributeStandard sign_std = (active_render) ? ATTR_STD_UV_TANGENT_SIGN : ATTR_STD_NONE;
ustring sign_name = ustring((string(uv_name) + ".tangent_sign").c_str());
bool need_sign = (mesh->need_attribute(scene, sign_name) ||
mesh->need_attribute(scene, sign_std));
mikk_compute_tangents(b_mesh, uv_name.c_str(), mesh, need_sign, active_render);
}
/* Remove temporarily created UV attribute. */
if (!need_uv && uv_attr != NULL) {
mesh->attributes.remove(uv_attr);
}
}
}
else if (mesh->need_attribute(scene, ATTR_STD_UV_TANGENT)) {
bool need_sign = mesh->need_attribute(scene, ATTR_STD_UV_TANGENT_SIGN);
mikk_compute_tangents(b_mesh, NULL, mesh, need_sign, true);
if (!mesh->need_attribute(scene, ATTR_STD_GENERATED)) {
mesh->attributes.remove(ATTR_STD_GENERATED);
}
}
}
static void attr_create_subd_uv_map(Scene *scene,
Mesh *mesh,
const ::Mesh &b_mesh,
bool subdivide_uvs,
const set<ustring> &blender_uv_names)
{
const blender::OffsetIndices faces = b_mesh.faces();
if (faces.is_empty()) {
return;
}
if (!blender_uv_names.empty()) {
const blender::bke::AttributeAccessor b_attributes = b_mesh.attributes();
const ustring render_name(CustomData_get_render_layer_name(&b_mesh.loop_data, CD_PROP_FLOAT2));
for (const ustring &uv_name : blender_uv_names) {
const bool active_render = uv_name == render_name;
AttributeStandard uv_std = (active_render) ? ATTR_STD_UV : ATTR_STD_NONE;
AttributeStandard tangent_std = (active_render) ? ATTR_STD_UV_TANGENT : ATTR_STD_NONE;
ustring tangent_name = ustring((string(uv_name) + ".tangent").c_str());
/* Denotes whether UV map was requested directly. */
const bool need_uv = mesh->need_attribute(scene, uv_name) ||
mesh->need_attribute(scene, uv_std);
/* Denotes whether tangent was requested directly. */
const bool need_tangent = mesh->need_attribute(scene, tangent_name) ||
(active_render && mesh->need_attribute(scene, tangent_std));
Attribute *uv_attr = NULL;
/* UV map */
if (need_uv || need_tangent) {
if (active_render) {
uv_attr = mesh->subd_attributes.add(uv_std, uv_name);
}
else {
uv_attr = mesh->subd_attributes.add(uv_name, TypeFloat2, ATTR_ELEMENT_CORNER);
}
if (subdivide_uvs) {
uv_attr->flags |= ATTR_SUBDIVIDED;
}
const blender::VArraySpan b_uv_map = *b_attributes.lookup<blender::float2>(
uv_name.c_str(), ATTR_DOMAIN_CORNER);
float2 *fdata = uv_attr->data_float2();
for (const int i : faces.index_range()) {
const blender::IndexRange face = faces[i];
for (const int corner : face) {
*(fdata++) = make_float2(b_uv_map[corner][0], b_uv_map[corner][1]);
}
}
}
/* UV tangent */
if (need_tangent) {
AttributeStandard sign_std = (active_render) ? ATTR_STD_UV_TANGENT_SIGN : ATTR_STD_NONE;
ustring sign_name = ustring((string(uv_name) + ".tangent_sign").c_str());
bool need_sign = (mesh->need_attribute(scene, sign_name) ||
mesh->need_attribute(scene, sign_std));
mikk_compute_tangents(b_mesh, uv_name.c_str(), mesh, need_sign, active_render);
}
/* Remove temporarily created UV attribute. */
if (!need_uv && uv_attr != NULL) {
mesh->subd_attributes.remove(uv_attr);
}
}
}
else if (mesh->need_attribute(scene, ATTR_STD_UV_TANGENT)) {
bool need_sign = mesh->need_attribute(scene, ATTR_STD_UV_TANGENT_SIGN);
mikk_compute_tangents(b_mesh, NULL, mesh, need_sign, true);
if (!mesh->need_attribute(scene, ATTR_STD_GENERATED)) {
mesh->subd_attributes.remove(ATTR_STD_GENERATED);
}
}
}
/* Create vertex pointiness attributes. */
/* Compare vertices by sum of their coordinates. */
class VertexAverageComparator {
public:
VertexAverageComparator(const array<float3> &verts) : verts_(verts) {}
bool operator()(const int &vert_idx_a, const int &vert_idx_b)
{
const float3 &vert_a = verts_[vert_idx_a];
const float3 &vert_b = verts_[vert_idx_b];
if (vert_a == vert_b) {
/* Special case for doubles, so we ensure ordering. */
return vert_idx_a > vert_idx_b;
}
const float x1 = vert_a.x + vert_a.y + vert_a.z;
const float x2 = vert_b.x + vert_b.y + vert_b.z;
return x1 < x2;
}
protected:
const array<float3> &verts_;
};
static void attr_create_pointiness(Mesh *mesh,
const blender::Span<blender::float3> positions,
const blender::Span<blender::float3> b_vert_normals,
const blender::Span<blender::int2> edges,
bool subdivision)
{
const int num_verts = positions.size();
if (positions.is_empty()) {
return;
}
/* STEP 1: Find out duplicated vertices and point duplicates to a single
* original vertex.
*/
vector<int> sorted_vert_indeices(num_verts);
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
sorted_vert_indeices[vert_index] = vert_index;
}
VertexAverageComparator compare(mesh->get_verts());
sort(sorted_vert_indeices.begin(), sorted_vert_indeices.end(), compare);
/* This array stores index of the original vertex for the given vertex
* index.
*/
vector<int> vert_orig_index(num_verts);
for (int sorted_vert_index = 0; sorted_vert_index < num_verts; ++sorted_vert_index) {
const int vert_index = sorted_vert_indeices[sorted_vert_index];
const float3 &vert_co = mesh->get_verts()[vert_index];
bool found = false;
for (int other_sorted_vert_index = sorted_vert_index + 1; other_sorted_vert_index < num_verts;
++other_sorted_vert_index)
{
const int other_vert_index = sorted_vert_indeices[other_sorted_vert_index];
const float3 &other_vert_co = mesh->get_verts()[other_vert_index];
/* We are too far away now, we wouldn't have duplicate. */
if ((other_vert_co.x + other_vert_co.y + other_vert_co.z) -
(vert_co.x + vert_co.y + vert_co.z) >
3 * FLT_EPSILON)
{
break;
}
/* Found duplicate. */
if (len_squared(other_vert_co - vert_co) < FLT_EPSILON) {
found = true;
vert_orig_index[vert_index] = other_vert_index;
break;
}
}
if (!found) {
vert_orig_index[vert_index] = vert_index;
}
}
/* Make sure we always points to the very first orig vertex. */
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
int orig_index = vert_orig_index[vert_index];
while (orig_index != vert_orig_index[orig_index]) {
orig_index = vert_orig_index[orig_index];
}
vert_orig_index[vert_index] = orig_index;
}
sorted_vert_indeices.free_memory();
/* STEP 2: Calculate vertex normals taking into account their possible
* duplicates which gets "welded" together.
*/
vector<float3> vert_normal(num_verts, zero_float3());
/* First we accumulate all vertex normals in the original index. */
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
const float *b_vert_normal = b_vert_normals[vert_index];
const int orig_index = vert_orig_index[vert_index];
vert_normal[orig_index] += make_float3(b_vert_normal[0], b_vert_normal[1], b_vert_normal[2]);
}
/* Then we normalize the accumulated result and flush it to all duplicates
* as well.
*/
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
const int orig_index = vert_orig_index[vert_index];
vert_normal[vert_index] = normalize(vert_normal[orig_index]);
}
/* STEP 3: Calculate pointiness using single ring neighborhood. */
vector<int> counter(num_verts, 0);
vector<float> raw_data(num_verts, 0.0f);
vector<float3> edge_accum(num_verts, zero_float3());
EdgeMap visited_edges;
memset(&counter[0], 0, sizeof(int) * counter.size());
for (const int i : edges.index_range()) {
const blender::int2 b_edge = edges[i];
const int v0 = vert_orig_index[b_edge[0]];
const int v1 = vert_orig_index[b_edge[1]];
if (visited_edges.exists(v0, v1)) {
continue;
}
visited_edges.insert(v0, v1);
float3 co0 = make_float3(positions[v0][0], positions[v0][1], positions[v0][2]);
float3 co1 = make_float3(positions[v1][0], positions[v1][1], positions[v1][2]);
float3 edge = normalize(co1 - co0);
edge_accum[v0] += edge;
edge_accum[v1] += -edge;
++counter[v0];
++counter[v1];
}
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
const int orig_index = vert_orig_index[vert_index];
if (orig_index != vert_index) {
/* Skip duplicates, they'll be overwritten later on. */
continue;
}
if (counter[vert_index] > 0) {
const float3 normal = vert_normal[vert_index];
const float angle = safe_acosf(dot(normal, edge_accum[vert_index] / counter[vert_index]));
raw_data[vert_index] = angle * M_1_PI_F;
}
else {
raw_data[vert_index] = 0.0f;
}
}
/* STEP 3: Blur vertices to approximate 2 ring neighborhood. */
AttributeSet &attributes = (subdivision) ? mesh->subd_attributes : mesh->attributes;
Attribute *attr = attributes.add(ATTR_STD_POINTINESS);
float *data = attr->data_float();
memcpy(data, &raw_data[0], sizeof(float) * raw_data.size());
memset(&counter[0], 0, sizeof(int) * counter.size());
visited_edges.clear();
for (const int i : edges.index_range()) {
const blender::int2 b_edge = edges[i];
const int v0 = vert_orig_index[b_edge[0]];
const int v1 = vert_orig_index[b_edge[1]];
if (visited_edges.exists(v0, v1)) {
continue;
}
visited_edges.insert(v0, v1);
data[v0] += raw_data[v1];
data[v1] += raw_data[v0];
++counter[v0];
++counter[v1];
}
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
data[vert_index] /= counter[vert_index] + 1;
}
/* STEP 4: Copy attribute to the duplicated vertices. */
for (int vert_index = 0; vert_index < num_verts; ++vert_index) {
const int orig_index = vert_orig_index[vert_index];
data[vert_index] = data[orig_index];
}
}
/* The Random Per Island attribute is a random float associated with each
* connected component (island) of the mesh. The attribute is computed by
* first classifying the vertices into different sets using a Disjoint Set
* data structure. Then the index of the root of each vertex (Which is the
* representative of the set the vertex belongs to) is hashed and stored.
*
* We are using a face attribute to avoid interpolation during rendering,
* allowing the user to safely hash the output further. Had we used vertex
* attribute, the interpolation will introduce very slight variations,
* making the output unsafe to hash. */
static void attr_create_random_per_island(Scene *scene,
Mesh *mesh,
const ::Mesh &b_mesh,
bool subdivision)
{
if (!mesh->need_attribute(scene, ATTR_STD_RANDOM_PER_ISLAND)) {
return;
}
if (b_mesh.totvert == 0) {
return;
}
DisjointSet vertices_sets(b_mesh.totvert);
const blender::Span<blender::int2> edges = b_mesh.edges();
const blender::Span<int> corner_verts = b_mesh.corner_verts();
for (const int i : edges.index_range()) {
vertices_sets.join(edges[i][0], edges[i][1]);
}
AttributeSet &attributes = (subdivision) ? mesh->subd_attributes : mesh->attributes;
Attribute *attribute = attributes.add(ATTR_STD_RANDOM_PER_ISLAND);
float *data = attribute->data_float();
if (!subdivision) {
const blender::Span<MLoopTri> looptris = b_mesh.looptris();
if (!looptris.is_empty()) {
for (const int i : looptris.index_range()) {
const int vert = corner_verts[looptris[i].tri[0]];
data[i] = hash_uint_to_float(vertices_sets.find(vert));
}
}
}
else {
const blender::OffsetIndices<int> faces = b_mesh.faces();
if (!faces.is_empty()) {
for (const int i : faces.index_range()) {
const int vert = corner_verts[faces[i].start()];
data[i] = hash_uint_to_float(vertices_sets.find(vert));
}
}
}
}
/* Create Mesh */
static void create_mesh(Scene *scene,
Mesh *mesh,
const ::Mesh &b_mesh,
const array<Node *> &used_shaders,
const bool need_motion,
const float motion_scale,
const bool subdivision = false,
const bool subdivide_uvs = true)
{
const blender::Span<blender::float3> positions = b_mesh.vert_positions();
const blender::OffsetIndices faces = b_mesh.faces();
const blender::Span<int> corner_verts = b_mesh.corner_verts();
const blender::bke::AttributeAccessor b_attributes = b_mesh.attributes();
const blender::bke::MeshNormalDomain normals_domain = b_mesh.normals_domain();
int numfaces = (!subdivision) ? b_mesh.looptris().size() : faces.size();
bool use_loop_normals = normals_domain == blender::bke::MeshNormalDomain::Corner &&
(mesh->get_subdivision_type() != Mesh::SUBDIVISION_CATMULL_CLARK);
/* If no faces, create empty mesh. */
if (faces.is_empty()) {
return;
}
const blender::VArraySpan material_indices = *b_attributes.lookup<int>("material_index",
ATTR_DOMAIN_FACE);
const blender::VArraySpan sharp_faces = *b_attributes.lookup<bool>("sharp_face",
ATTR_DOMAIN_FACE);
blender::Span<blender::float3> corner_normals;
if (use_loop_normals) {
corner_normals = b_mesh.corner_normals();
}
int numngons = 0;
int numtris = 0;
if (!subdivision) {
numtris = numfaces;
}
else {
const blender::OffsetIndices faces = b_mesh.faces();
for (const int i : faces.index_range()) {
numngons += (faces[i].size() == 4) ? 0 : 1;
}
}
/* allocate memory */
if (subdivision) {
mesh->resize_subd_faces(numfaces, numngons, corner_verts.size());
}
mesh->resize_mesh(positions.size(), numtris);
float3 *verts = mesh->get_verts().data();
for (const int i : positions.index_range()) {
verts[i] = make_float3(positions[i][0], positions[i][1], positions[i][2]);
}
AttributeSet &attributes = (subdivision) ? mesh->subd_attributes : mesh->attributes;
Attribute *attr_N = attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *N = attr_N->data_float3();
if (subdivision || !(use_loop_normals && !corner_normals.is_empty())) {
const blender::Span<blender::float3> vert_normals = b_mesh.vert_normals();
for (const int i : vert_normals.index_range()) {
N[i] = make_float3(vert_normals[i][0], vert_normals[i][1], vert_normals[i][2]);
}
}
const set<ustring> blender_uv_names = get_blender_uv_names(b_mesh);
/* create generated coordinates from undeformed coordinates */
const bool need_default_tangent = (subdivision == false) && (blender_uv_names.empty()) &&
(mesh->need_attribute(scene, ATTR_STD_UV_TANGENT));
if (mesh->need_attribute(scene, ATTR_STD_GENERATED) || need_default_tangent) {
const float(*orco)[3] = static_cast<const float(*)[3]>(
CustomData_get_layer(&b_mesh.vert_data, CD_ORCO));
Attribute *attr = attributes.add(ATTR_STD_GENERATED);
attr->flags |= ATTR_SUBDIVIDED;
float3 loc, size;
mesh_texture_space(b_mesh, loc, size);
float texspace_location[3], texspace_size[3];
BKE_mesh_texspace_get(const_cast<::Mesh *>(b_mesh.texcomesh ? b_mesh.texcomesh : &b_mesh),
texspace_location,
texspace_size);
float3 *generated = attr->data_float3();
for (const int i : positions.index_range()) {
blender::float3 value;
if (orco) {
madd_v3_v3v3v3(value, texspace_location, orco[i], texspace_size);
}
else {
value = positions[i];
}
generated[i] = make_float3(value[0], value[1], value[2]) * size - loc;
}
}
auto clamp_material_index = [&](const int material_index) -> int {
return clamp(material_index, 0, used_shaders.size() - 1);
};
/* create faces */
if (!subdivision) {
int *triangles = mesh->get_triangles().data();
bool *smooth = mesh->get_smooth().data();
int *shader = mesh->get_shader().data();
const blender::Span<MLoopTri> looptris = b_mesh.looptris();
for (const int i : looptris.index_range()) {
const MLoopTri &lt = looptris[i];
triangles[i * 3 + 0] = corner_verts[lt.tri[0]];
triangles[i * 3 + 1] = corner_verts[lt.tri[1]];
triangles[i * 3 + 2] = corner_verts[lt.tri[2]];
}
if (!material_indices.is_empty()) {
const blender::Span<int> looptri_faces = b_mesh.looptri_faces();
for (const int i : looptris.index_range()) {
shader[i] = clamp_material_index(material_indices[looptri_faces[i]]);
}
}
else {
std::fill(shader, shader + numtris, 0);
}
if (!sharp_faces.is_empty() && !(use_loop_normals && !corner_normals.is_empty())) {
const blender::Span<int> looptri_faces = b_mesh.looptri_faces();
for (const int i : looptris.index_range()) {
smooth[i] = !sharp_faces[looptri_faces[i]];
}
}
else {
/* If only face normals are needed, all faces are sharp. */
std::fill(smooth, smooth + numtris, normals_domain != blender::bke::MeshNormalDomain::Face);
}
if (use_loop_normals && !corner_normals.is_empty()) {
for (const int i : looptris.index_range()) {
const MLoopTri &lt = looptris[i];
for (int i = 0; i < 3; i++) {
const int corner = lt.tri[i];
const int vert = corner_verts[corner];
const float *normal = corner_normals[corner];
N[vert] = make_float3(normal[0], normal[1], normal[2]);
}
}
}
mesh->tag_triangles_modified();
mesh->tag_shader_modified();
mesh->tag_smooth_modified();
}
else {
int *subd_start_corner = mesh->get_subd_start_corner().data();
int *subd_num_corners = mesh->get_subd_num_corners().data();
int *subd_shader = mesh->get_subd_shader().data();
bool *subd_smooth = mesh->get_subd_smooth().data();
int *subd_ptex_offset = mesh->get_subd_ptex_offset().data();
int *subd_face_corners = mesh->get_subd_face_corners().data();
if (!sharp_faces.is_empty() && !use_loop_normals) {
for (int i = 0; i < numfaces; i++) {
subd_smooth[i] = !sharp_faces[i];
}
}
else {
std::fill(subd_smooth, subd_smooth + numfaces, true);
}
if (!material_indices.is_empty()) {
for (int i = 0; i < numfaces; i++) {
subd_shader[i] = clamp_material_index(material_indices[i]);
}
}
else {
std::fill(subd_shader, subd_shader + numfaces, 0);
}
std::copy(corner_verts.data(), corner_verts.data() + corner_verts.size(), subd_face_corners);
const blender::OffsetIndices faces = b_mesh.faces();
int ptex_offset = 0;
for (const int i : faces.index_range()) {
const blender::IndexRange face = faces[i];
subd_start_corner[i] = face.start();
subd_num_corners[i] = face.size();
subd_ptex_offset[i] = ptex_offset;
const int num_ptex = (face.size() == 4) ? 1 : face.size();
ptex_offset += num_ptex;
}
mesh->tag_subd_face_corners_modified();
mesh->tag_subd_start_corner_modified();
mesh->tag_subd_num_corners_modified();
mesh->tag_subd_shader_modified();
mesh->tag_subd_smooth_modified();
mesh->tag_subd_ptex_offset_modified();
}
/* Create all needed attributes.
* The calculate functions will check whether they're needed or not.
*/
if (mesh->need_attribute(scene, ATTR_STD_POINTINESS)) {
attr_create_pointiness(mesh, positions, b_mesh.vert_normals(), b_mesh.edges(), subdivision);
}
attr_create_random_per_island(scene, mesh, b_mesh, subdivision);
attr_create_generic(scene, mesh, b_mesh, subdivision, need_motion, motion_scale);
if (subdivision) {
attr_create_subd_uv_map(scene, mesh, b_mesh, subdivide_uvs, blender_uv_names);
}
else {
attr_create_uv_map(scene, mesh, b_mesh, blender_uv_names);
}
/* For volume objects, create a matrix to transform from object space to
* mesh texture space. this does not work with deformations but that can
* probably only be done well with a volume grid mapping of coordinates. */
if (mesh->need_attribute(scene, ATTR_STD_GENERATED_TRANSFORM)) {
Attribute *attr = mesh->attributes.add(ATTR_STD_GENERATED_TRANSFORM);
Transform *tfm = attr->data_transform();
float3 loc, size;
mesh_texture_space(b_mesh, loc, size);
*tfm = transform_translate(-loc) * transform_scale(size);
}
}
static void create_subd_mesh(Scene *scene,
Mesh *mesh,
BObjectInfo &b_ob_info,
const ::Mesh &b_mesh,
const array<Node *> &used_shaders,
const bool need_motion,
const float motion_scale,
float dicing_rate,
int max_subdivisions)
{
BL::Object b_ob = b_ob_info.real_object;
BL::SubsurfModifier subsurf_mod(b_ob.modifiers[b_ob.modifiers.length() - 1]);
bool subdivide_uvs = subsurf_mod.uv_smooth() != BL::SubsurfModifier::uv_smooth_NONE;
create_mesh(scene, mesh, b_mesh, used_shaders, need_motion, motion_scale, true, subdivide_uvs);
const blender::VArraySpan creases = *b_mesh.attributes().lookup<float>("crease_edge",
ATTR_DOMAIN_EDGE);
if (!creases.is_empty()) {
size_t num_creases = 0;
for (const int i : creases.index_range()) {
if (creases[i] != 0.0f) {
num_creases++;
}
}
mesh->reserve_subd_creases(num_creases);
const blender::Span<blender::int2> edges = b_mesh.edges();
for (const int i : edges.index_range()) {
const float crease = creases[i];
if (crease != 0.0f) {
const blender::int2 &b_edge = edges[i];
mesh->add_edge_crease(b_edge[0], b_edge[1], crease);
}
}
}
const blender::VArraySpan vert_creases = *b_mesh.attributes().lookup<float>("crease_vert",
ATTR_DOMAIN_POINT);
if (!vert_creases.is_empty()) {
for (const int i : vert_creases.index_range()) {
if (vert_creases[i] != 0.0f) {
mesh->add_vertex_crease(i, vert_creases[i]);
}
}
}
/* set subd params */
PointerRNA cobj = RNA_pointer_get(&b_ob.ptr, "cycles");
float subd_dicing_rate = max(0.1f, RNA_float_get(&cobj, "dicing_rate") * dicing_rate);
mesh->set_subd_dicing_rate(subd_dicing_rate);
mesh->set_subd_max_level(max_subdivisions);
mesh->set_subd_objecttoworld(get_transform(b_ob.matrix_world()));
}
/* Sync */
void BlenderSync::sync_mesh(BL::Depsgraph b_depsgraph, BObjectInfo &b_ob_info, Mesh *mesh)
{
/* make a copy of the shaders as the caller in the main thread still need them for syncing the
* attributes */
array<Node *> used_shaders = mesh->get_used_shaders();
Mesh new_mesh;
new_mesh.set_used_shaders(used_shaders);
if (view_layer.use_surfaces) {
/* Adaptive subdivision setup. Not for baking since that requires
* exact mapping to the Blender mesh. */
if (!scene->bake_manager->get_baking()) {
new_mesh.set_subdivision_type(
object_subdivision_type(b_ob_info.real_object, preview, experimental));
}
/* For some reason, meshes do not need this... */
bool need_undeformed = new_mesh.need_attribute(scene, ATTR_STD_GENERATED);
BL::Mesh b_mesh = object_to_mesh(
b_data, b_ob_info, b_depsgraph, need_undeformed, new_mesh.get_subdivision_type());
if (b_mesh) {
/* Motion blur attribute is relative to seconds, we need it relative to frames. */
const bool need_motion = object_need_motion_attribute(b_ob_info, scene);
const float motion_scale = (need_motion) ?
scene->motion_shutter_time() /
(b_scene.render().fps() / b_scene.render().fps_base()) :
0.0f;
/* Sync mesh itself. */
if (new_mesh.get_subdivision_type() != Mesh::SUBDIVISION_NONE) {
create_subd_mesh(scene,
&new_mesh,
b_ob_info,
*static_cast<const ::Mesh *>(b_mesh.ptr.data),
new_mesh.get_used_shaders(),
need_motion,
motion_scale,
dicing_rate,
max_subdivisions);
}
else {
create_mesh(scene,
&new_mesh,
*static_cast<const ::Mesh *>(b_mesh.ptr.data),
new_mesh.get_used_shaders(),
need_motion,
motion_scale,
false);
}
free_object_to_mesh(b_data, b_ob_info, b_mesh);
}
}
/* update original sockets */
mesh->clear_non_sockets();
for (const SocketType &socket : new_mesh.type->inputs) {
/* Those sockets are updated in sync_object, so do not modify them. */
if (socket.name == "use_motion_blur" || socket.name == "motion_steps" ||
socket.name == "used_shaders")
{
continue;
}
mesh->set_value(socket, new_mesh, socket);
}
mesh->attributes.update(std::move(new_mesh.attributes));
mesh->subd_attributes.update(std::move(new_mesh.subd_attributes));
mesh->set_num_subd_faces(new_mesh.get_num_subd_faces());
/* tag update */
bool rebuild = (mesh->triangles_is_modified()) || (mesh->subd_num_corners_is_modified()) ||
(mesh->subd_shader_is_modified()) || (mesh->subd_smooth_is_modified()) ||
(mesh->subd_ptex_offset_is_modified()) ||
(mesh->subd_start_corner_is_modified()) ||
(mesh->subd_face_corners_is_modified());
mesh->tag_update(scene, rebuild);
}
void BlenderSync::sync_mesh_motion(BL::Depsgraph b_depsgraph,
BObjectInfo &b_ob_info,
Mesh *mesh,
int motion_step)
{
/* Skip if no vertices were exported. */
size_t numverts = mesh->get_verts().size();
if (numverts == 0) {
return;
}
/* Skip objects without deforming modifiers. this is not totally reliable,
* would need a more extensive check to see which objects are animated. */
BL::Mesh b_mesh_rna(PointerRNA_NULL);
if (ccl::BKE_object_is_deform_modified(b_ob_info, b_scene, preview)) {
/* get derived mesh */
b_mesh_rna = object_to_mesh(b_data, b_ob_info, b_depsgraph, false, Mesh::SUBDIVISION_NONE);
}
const std::string ob_name = b_ob_info.real_object.name();
/* TODO(sergey): Perform preliminary check for number of vertices. */
if (b_mesh_rna) {
const ::Mesh &b_mesh = *static_cast<const ::Mesh *>(b_mesh_rna.ptr.data);
const int b_verts_num = b_mesh.totvert;
const blender::Span<blender::float3> positions = b_mesh.vert_positions();
if (positions.is_empty()) {
free_object_to_mesh(b_data, b_ob_info, b_mesh_rna);
return;
}
/* Export deformed coordinates. */
/* Find attributes. */
Attribute *attr_mP = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
Attribute *attr_mN = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
Attribute *attr_N = mesh->attributes.find(ATTR_STD_VERTEX_NORMAL);
bool new_attribute = false;
/* Add new attributes if they don't exist already. */
if (!attr_mP) {
attr_mP = mesh->attributes.add(ATTR_STD_MOTION_VERTEX_POSITION);
if (attr_N) {
attr_mN = mesh->attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
}
new_attribute = true;
}
/* Load vertex data from mesh. */
float3 *mP = attr_mP->data_float3() + motion_step * numverts;
float3 *mN = (attr_mN) ? attr_mN->data_float3() + motion_step * numverts : NULL;
/* NOTE: We don't copy more that existing amount of vertices to prevent
* possible memory corruption.
*/
for (int i = 0; i < std::min<size_t>(b_verts_num, numverts); i++) {
mP[i] = make_float3(positions[i][0], positions[i][1], positions[i][2]);
}
if (mN) {
const blender::Span<blender::float3> b_vert_normals = b_mesh.vert_normals();
for (int i = 0; i < std::min<size_t>(b_verts_num, numverts); i++) {
mN[i] = make_float3(b_vert_normals[i][0], b_vert_normals[i][1], b_vert_normals[i][2]);
}
}
if (new_attribute) {
/* In case of new attribute, we verify if there really was any motion. */
if (b_verts_num != numverts ||
memcmp(mP, &mesh->get_verts()[0], sizeof(float3) * numverts) == 0) {
/* no motion, remove attributes again */
if (b_verts_num != numverts) {
VLOG_WARNING << "Topology differs, disabling motion blur for object " << ob_name;
}
else {
VLOG_DEBUG << "No actual deformation motion for object " << ob_name;
}
mesh->attributes.remove(ATTR_STD_MOTION_VERTEX_POSITION);
if (attr_mN) {
mesh->attributes.remove(ATTR_STD_MOTION_VERTEX_NORMAL);
}
}
else if (motion_step > 0) {
VLOG_DEBUG << "Filling deformation motion for object " << ob_name;
/* motion, fill up previous steps that we might have skipped because
* they had no motion, but we need them anyway now */
float3 *P = &mesh->get_verts()[0];
float3 *N = (attr_N) ? attr_N->data_float3() : NULL;
for (int step = 0; step < motion_step; step++) {
memcpy(attr_mP->data_float3() + step * numverts, P, sizeof(float3) * numverts);
if (attr_mN) {
memcpy(attr_mN->data_float3() + step * numverts, N, sizeof(float3) * numverts);
}
}
}
}
else {
if (b_verts_num != numverts) {
VLOG_WARNING << "Topology differs, discarding motion blur for object " << ob_name
<< " at time " << motion_step;
memcpy(mP, &mesh->get_verts()[0], sizeof(float3) * numverts);
if (mN != NULL) {
memcpy(mN, attr_N->data_float3(), sizeof(float3) * numverts);
}
}
}
free_object_to_mesh(b_data, b_ob_info, b_mesh_rna);
return;
}
/* No deformation on this frame, copy coordinates if other frames did have it. */
mesh->copy_center_to_motion_step(motion_step);
}
CCL_NAMESPACE_END