tornavis/intern/cycles/kernel/film/adaptive_sampling.h

165 lines
6.3 KiB
C

/* SPDX-FileCopyrightText: 2019-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#pragma once
#include "kernel/film/write.h"
CCL_NAMESPACE_BEGIN
/* Check whether the pixel has converged and should not be sampled anymore. */
ccl_device_forceinline bool film_need_sample_pixel(KernelGlobals kg,
ConstIntegratorState state,
ccl_global float *render_buffer)
{
if (kernel_data.film.pass_adaptive_aux_buffer == PASS_UNUSED) {
return true;
}
const uint32_t render_pixel_index = INTEGRATOR_STATE(state, path, render_pixel_index);
const uint64_t render_buffer_offset = (uint64_t)render_pixel_index *
kernel_data.film.pass_stride;
ccl_global float *buffer = render_buffer + render_buffer_offset;
const uint aux_w_offset = kernel_data.film.pass_adaptive_aux_buffer + 3;
return buffer[aux_w_offset] == 0.0f;
}
/* Determines whether to continue sampling a given pixel or if it has sufficiently converged. */
ccl_device bool film_adaptive_sampling_convergence_check(KernelGlobals kg,
ccl_global float *render_buffer,
int x,
int y,
float threshold,
int reset,
int offset,
int stride)
{
kernel_assert(kernel_data.film.pass_adaptive_aux_buffer != PASS_UNUSED);
kernel_assert(kernel_data.film.pass_sample_count != PASS_UNUSED);
const int render_pixel_index = offset + x + y * stride;
ccl_global float *buffer = render_buffer +
(uint64_t)render_pixel_index * kernel_data.film.pass_stride;
/* TODO(Stefan): Is this better in linear, sRGB or something else? */
const float4 A = kernel_read_pass_float4(buffer + kernel_data.film.pass_adaptive_aux_buffer);
if (!reset && A.w != 0.0f) {
/* If the pixel was considered converged, its state will not change in this kernel. Early
* output before doing any math.
*
* TODO(sergey): On a GPU it might be better to keep thread alive for better coherency? */
return true;
}
const float4 I = kernel_read_pass_float4(buffer + kernel_data.film.pass_combined);
const float sample = __float_as_uint(buffer[kernel_data.film.pass_sample_count]);
const float intensity_scale = kernel_data.film.exposure / sample;
/* The per pixel error as seen in section 2.1 of
* "A hierarchical automatic stopping condition for Monte Carlo global illumination" */
const float error_difference = (fabsf(I.x - A.x) + fabsf(I.y - A.y) + fabsf(I.z - A.z)) *
intensity_scale;
const float intensity = (I.x + I.y + I.z) * intensity_scale;
/* Anything with R+G+B > 1 is highly exposed - even in sRGB it's a range that
* some displays aren't even able to display without significant losses in
* detalization. Everything with R+G+B > 3 is overexposed and should receive
* even less samples. Filmic-like curves need maximum sampling rate at
* intensity near 0.1-0.2, so threshold of 1 for R+G+B leaves an additional
* fstop in case it is needed for compositing.
*/
float error_normalize;
if (intensity < 1.0f) {
error_normalize = sqrtf(intensity);
}
else {
error_normalize = intensity;
}
/* A small epsilon is added to the divisor to prevent division by zero. */
const float error = error_difference / (0.0001f + error_normalize);
const bool did_converge = (error < threshold);
const uint aux_w_offset = kernel_data.film.pass_adaptive_aux_buffer + 3;
buffer[aux_w_offset] = did_converge;
return did_converge;
}
/* This is a simple box filter in two passes.
* When a pixel demands more adaptive samples, let its neighboring pixels draw more samples too. */
ccl_device void film_adaptive_sampling_filter_x(KernelGlobals kg,
ccl_global float *render_buffer,
int y,
int start_x,
int width,
int offset,
int stride)
{
kernel_assert(kernel_data.film.pass_adaptive_aux_buffer != PASS_UNUSED);
bool prev = false;
for (int x = start_x; x < start_x + width; ++x) {
int index = offset + x + y * stride;
ccl_global float *buffer = render_buffer + (uint64_t)index * kernel_data.film.pass_stride;
const uint aux_w_offset = kernel_data.film.pass_adaptive_aux_buffer + 3;
if (buffer[aux_w_offset] == 0.0f) {
if (x > start_x && !prev) {
index = index - 1;
buffer = render_buffer + (uint64_t)index * kernel_data.film.pass_stride;
buffer[aux_w_offset] = 0.0f;
}
prev = true;
}
else {
if (prev) {
buffer[aux_w_offset] = 0.0f;
}
prev = false;
}
}
}
ccl_device void film_adaptive_sampling_filter_y(KernelGlobals kg,
ccl_global float *render_buffer,
int x,
int start_y,
int height,
int offset,
int stride)
{
kernel_assert(kernel_data.film.pass_adaptive_aux_buffer != PASS_UNUSED);
bool prev = false;
for (int y = start_y; y < start_y + height; ++y) {
int index = offset + x + y * stride;
ccl_global float *buffer = render_buffer + (uint64_t)index * kernel_data.film.pass_stride;
const uint aux_w_offset = kernel_data.film.pass_adaptive_aux_buffer + 3;
if (buffer[aux_w_offset] == 0.0f) {
if (y > start_y && !prev) {
index = index - stride;
buffer = render_buffer + (uint64_t)index * kernel_data.film.pass_stride;
buffer[aux_w_offset] = 0.0f;
}
prev = true;
}
else {
if (prev) {
buffer[aux_w_offset] = 0.0f;
}
prev = false;
}
}
}
CCL_NAMESPACE_END