tornavis/intern/opensubdiv/internal/evaluator/evaluator_impl.cc

580 lines
22 KiB
C++

/* SPDX-FileCopyrightText: 2018 Blender Foundation
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* Author: Sergey Sharybin. */
#include "internal/evaluator/evaluator_impl.h"
#include <cassert>
#include <cstdio>
#ifdef _MSC_VER
# include <iso646.h>
#endif
#include <opensubdiv/far/patchMap.h>
#include <opensubdiv/far/patchTable.h>
#include <opensubdiv/far/patchTableFactory.h>
#include <opensubdiv/osd/mesh.h>
#include <opensubdiv/osd/types.h>
#include <opensubdiv/version.h>
#include "MEM_guardedalloc.h"
#include "internal/base/type.h"
#include "internal/evaluator/eval_output_cpu.h"
#include "internal/evaluator/eval_output_gpu.h"
#include "internal/evaluator/evaluator_cache_impl.h"
#include "internal/evaluator/patch_map.h"
#include "internal/topology/topology_refiner_impl.h"
#include "opensubdiv_evaluator_capi.hh"
#include "opensubdiv_topology_refiner_capi.hh"
using OpenSubdiv::Far::PatchTable;
using OpenSubdiv::Far::PatchTableFactory;
using OpenSubdiv::Far::StencilTable;
using OpenSubdiv::Far::StencilTableFactory;
using OpenSubdiv::Far::TopologyRefiner;
using OpenSubdiv::Osd::PatchArray;
using OpenSubdiv::Osd::PatchCoord;
namespace blender {
namespace opensubdiv {
namespace {
// Array implementation which stores small data on stack (or, rather, in the class itself).
template<typename T, int kNumMaxElementsOnStack> class StackOrHeapArray {
public:
StackOrHeapArray()
: num_elements_(0), heap_elements_(NULL), num_heap_elements_(0), effective_elements_(NULL)
{
}
explicit StackOrHeapArray(int size) : StackOrHeapArray()
{
resize(size);
}
~StackOrHeapArray()
{
delete[] heap_elements_;
}
int size() const
{
return num_elements_;
};
T *data()
{
return effective_elements_;
}
void resize(int num_elements)
{
const int old_num_elements = num_elements_;
num_elements_ = num_elements;
// Early output if allcoation size did not change, or allocation size is smaller.
// We never re-allocate, sacrificing some memory over performance.
if (old_num_elements >= num_elements) {
return;
}
// Simple case: no previously allocated buffer, can simply do one allocation.
if (effective_elements_ == NULL) {
effective_elements_ = allocate(num_elements);
return;
}
// Make new allocation, and copy elements if needed.
T *old_buffer = effective_elements_;
effective_elements_ = allocate(num_elements);
if (old_buffer != effective_elements_) {
memcpy(effective_elements_, old_buffer, sizeof(T) * min(old_num_elements, num_elements));
}
if (old_buffer != stack_elements_) {
delete[] old_buffer;
}
}
protected:
T *allocate(int num_elements)
{
if (num_elements < kNumMaxElementsOnStack) {
return stack_elements_;
}
heap_elements_ = new T[num_elements];
return heap_elements_;
}
// Number of elements in the buffer.
int num_elements_;
// Elements which are allocated on a stack (or, rather, in the same allocation as the buffer
// itself).
// Is used as long as buffer is smaller than kNumMaxElementsOnStack.
T stack_elements_[kNumMaxElementsOnStack];
// Heap storage for buffer larger than kNumMaxElementsOnStack.
T *heap_elements_;
int num_heap_elements_;
// Depending on the current buffer size points to rither stack_elements_ or heap_elements_.
T *effective_elements_;
};
// 32 is a number of inner vertices along the patch size at subdivision level 6.
typedef StackOrHeapArray<PatchCoord, 32 * 32> StackOrHeapPatchCoordArray;
void convertPatchCoordsToArray(const OpenSubdiv_PatchCoord *patch_coords,
const int num_patch_coords,
const PatchMap *patch_map,
StackOrHeapPatchCoordArray *array)
{
array->resize(num_patch_coords);
for (int i = 0; i < num_patch_coords; ++i) {
const PatchTable::PatchHandle *handle = patch_map->FindPatch(
patch_coords[i].ptex_face, patch_coords[i].u, patch_coords[i].v);
(array->data())[i] = PatchCoord(*handle, patch_coords[i].u, patch_coords[i].v);
}
}
} // namespace
////////////////////////////////////////////////////////////////////////////////
// Evaluator wrapper for anonymous API.
EvalOutputAPI::EvalOutputAPI(EvalOutput *implementation, PatchMap *patch_map)
: patch_map_(patch_map), implementation_(implementation)
{
}
EvalOutputAPI::~EvalOutputAPI()
{
delete implementation_;
}
void EvalOutputAPI::setSettings(const OpenSubdiv_EvaluatorSettings *settings)
{
implementation_->updateSettings(settings);
}
void EvalOutputAPI::setCoarsePositions(const float *positions,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
implementation_->updateData(positions, start_vertex_index, num_vertices);
}
void EvalOutputAPI::setVaryingData(const float *varying_data,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
implementation_->updateVaryingData(varying_data, start_vertex_index, num_vertices);
}
void EvalOutputAPI::setVertexData(const float *vertex_data,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
implementation_->updateVertexData(vertex_data, start_vertex_index, num_vertices);
}
void EvalOutputAPI::setFaceVaryingData(const int face_varying_channel,
const float *face_varying_data,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
implementation_->updateFaceVaryingData(
face_varying_channel, face_varying_data, start_vertex_index, num_vertices);
}
void EvalOutputAPI::setCoarsePositionsFromBuffer(const void *buffer,
const int start_offset,
const int stride,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
const unsigned char *current_buffer = (unsigned char *)buffer;
current_buffer += start_offset;
for (int i = 0; i < num_vertices; ++i) {
const int current_vertex_index = start_vertex_index + i;
implementation_->updateData(
reinterpret_cast<const float *>(current_buffer), current_vertex_index, 1);
current_buffer += stride;
}
}
void EvalOutputAPI::setVaryingDataFromBuffer(const void *buffer,
const int start_offset,
const int stride,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
const unsigned char *current_buffer = (unsigned char *)buffer;
current_buffer += start_offset;
for (int i = 0; i < num_vertices; ++i) {
const int current_vertex_index = start_vertex_index + i;
implementation_->updateVaryingData(
reinterpret_cast<const float *>(current_buffer), current_vertex_index, 1);
current_buffer += stride;
}
}
void EvalOutputAPI::setFaceVaryingDataFromBuffer(const int face_varying_channel,
const void *buffer,
const int start_offset,
const int stride,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
const unsigned char *current_buffer = (unsigned char *)buffer;
current_buffer += start_offset;
for (int i = 0; i < num_vertices; ++i) {
const int current_vertex_index = start_vertex_index + i;
implementation_->updateFaceVaryingData(face_varying_channel,
reinterpret_cast<const float *>(current_buffer),
current_vertex_index,
1);
current_buffer += stride;
}
}
void EvalOutputAPI::refine()
{
implementation_->refine();
}
void EvalOutputAPI::evaluateLimit(const int ptex_face_index,
float face_u,
float face_v,
float P[3],
float dPdu[3],
float dPdv[3])
{
assert(face_u >= 0.0f);
assert(face_u <= 1.0f);
assert(face_v >= 0.0f);
assert(face_v <= 1.0f);
const PatchTable::PatchHandle *handle = patch_map_->FindPatch(ptex_face_index, face_u, face_v);
PatchCoord patch_coord(*handle, face_u, face_v);
if (dPdu != NULL || dPdv != NULL) {
implementation_->evalPatchesWithDerivatives(&patch_coord, 1, P, dPdu, dPdv);
}
else {
implementation_->evalPatches(&patch_coord, 1, P);
}
}
void EvalOutputAPI::evaluateVarying(const int ptex_face_index,
float face_u,
float face_v,
float varying[3])
{
assert(face_u >= 0.0f);
assert(face_u <= 1.0f);
assert(face_v >= 0.0f);
assert(face_v <= 1.0f);
const PatchTable::PatchHandle *handle = patch_map_->FindPatch(ptex_face_index, face_u, face_v);
PatchCoord patch_coord(*handle, face_u, face_v);
implementation_->evalPatchesVarying(&patch_coord, 1, varying);
}
void EvalOutputAPI::evaluateVertexData(const int ptex_face_index,
float face_u,
float face_v,
float vertex_data[])
{
assert(face_u >= 0.0f);
assert(face_u <= 1.0f);
assert(face_v >= 0.0f);
assert(face_v <= 1.0f);
const PatchTable::PatchHandle *handle = patch_map_->FindPatch(ptex_face_index, face_u, face_v);
PatchCoord patch_coord(*handle, face_u, face_v);
implementation_->evalPatchesVertexData(&patch_coord, 1, vertex_data);
}
void EvalOutputAPI::evaluateFaceVarying(const int face_varying_channel,
const int ptex_face_index,
float face_u,
float face_v,
float face_varying[2])
{
assert(face_u >= 0.0f);
assert(face_u <= 1.0f);
assert(face_v >= 0.0f);
assert(face_v <= 1.0f);
const PatchTable::PatchHandle *handle = patch_map_->FindPatch(ptex_face_index, face_u, face_v);
PatchCoord patch_coord(*handle, face_u, face_v);
implementation_->evalPatchesFaceVarying(face_varying_channel, &patch_coord, 1, face_varying);
}
void EvalOutputAPI::evaluatePatchesLimit(const OpenSubdiv_PatchCoord *patch_coords,
const int num_patch_coords,
float *P,
float *dPdu,
float *dPdv)
{
StackOrHeapPatchCoordArray patch_coords_array;
convertPatchCoordsToArray(patch_coords, num_patch_coords, patch_map_, &patch_coords_array);
if (dPdu != NULL || dPdv != NULL) {
implementation_->evalPatchesWithDerivatives(
patch_coords_array.data(), num_patch_coords, P, dPdu, dPdv);
}
else {
implementation_->evalPatches(patch_coords_array.data(), num_patch_coords, P);
}
}
void EvalOutputAPI::getPatchMap(OpenSubdiv_Buffer *patch_map_handles,
OpenSubdiv_Buffer *patch_map_quadtree,
int *min_patch_face,
int *max_patch_face,
int *max_depth,
int *patches_are_triangular)
{
*min_patch_face = patch_map_->getMinPatchFace();
*max_patch_face = patch_map_->getMaxPatchFace();
*max_depth = patch_map_->getMaxDepth();
*patches_are_triangular = patch_map_->getPatchesAreTriangular();
const std::vector<PatchTable::PatchHandle> &handles = patch_map_->getHandles();
PatchTable::PatchHandle *buffer_handles = static_cast<PatchTable::PatchHandle *>(
patch_map_handles->alloc(patch_map_handles, handles.size()));
memcpy(buffer_handles, &handles[0], sizeof(PatchTable::PatchHandle) * handles.size());
const std::vector<PatchMap::QuadNode> &quadtree = patch_map_->nodes();
PatchMap::QuadNode *buffer_nodes = static_cast<PatchMap::QuadNode *>(
patch_map_quadtree->alloc(patch_map_quadtree, quadtree.size()));
memcpy(buffer_nodes, &quadtree[0], sizeof(PatchMap::QuadNode) * quadtree.size());
}
void EvalOutputAPI::fillPatchArraysBuffer(OpenSubdiv_Buffer *patch_arrays_buffer)
{
implementation_->fillPatchArraysBuffer(patch_arrays_buffer);
}
void EvalOutputAPI::wrapPatchIndexBuffer(OpenSubdiv_Buffer *patch_index_buffer)
{
implementation_->wrapPatchIndexBuffer(patch_index_buffer);
}
void EvalOutputAPI::wrapPatchParamBuffer(OpenSubdiv_Buffer *patch_param_buffer)
{
implementation_->wrapPatchParamBuffer(patch_param_buffer);
}
void EvalOutputAPI::wrapSrcBuffer(OpenSubdiv_Buffer *src_buffer)
{
implementation_->wrapSrcBuffer(src_buffer);
}
void EvalOutputAPI::wrapSrcVertexDataBuffer(OpenSubdiv_Buffer *src_buffer)
{
implementation_->wrapSrcVertexDataBuffer(src_buffer);
}
void EvalOutputAPI::fillFVarPatchArraysBuffer(const int face_varying_channel,
OpenSubdiv_Buffer *patch_arrays_buffer)
{
implementation_->fillFVarPatchArraysBuffer(face_varying_channel, patch_arrays_buffer);
}
void EvalOutputAPI::wrapFVarPatchIndexBuffer(const int face_varying_channel,
OpenSubdiv_Buffer *patch_index_buffer)
{
implementation_->wrapFVarPatchIndexBuffer(face_varying_channel, patch_index_buffer);
}
void EvalOutputAPI::wrapFVarPatchParamBuffer(const int face_varying_channel,
OpenSubdiv_Buffer *patch_param_buffer)
{
implementation_->wrapFVarPatchParamBuffer(face_varying_channel, patch_param_buffer);
}
void EvalOutputAPI::wrapFVarSrcBuffer(const int face_varying_channel,
OpenSubdiv_Buffer *src_buffer)
{
implementation_->wrapFVarSrcBuffer(face_varying_channel, src_buffer);
}
bool EvalOutputAPI::hasVertexData() const
{
return implementation_->hasVertexData();
}
} // namespace opensubdiv
} // namespace blender
OpenSubdiv_EvaluatorImpl::OpenSubdiv_EvaluatorImpl()
: eval_output(NULL), patch_map(NULL), patch_table(NULL)
{
}
OpenSubdiv_EvaluatorImpl::~OpenSubdiv_EvaluatorImpl()
{
delete eval_output;
delete patch_map;
delete patch_table;
}
OpenSubdiv_EvaluatorImpl *openSubdiv_createEvaluatorInternal(
OpenSubdiv_TopologyRefiner *topology_refiner,
eOpenSubdivEvaluator evaluator_type,
OpenSubdiv_EvaluatorCacheImpl *evaluator_cache_descr)
{
using blender::opensubdiv::vector;
TopologyRefiner *refiner = topology_refiner->impl->topology_refiner;
if (refiner == NULL) {
// Happens on bad topology.
return NULL;
}
// TODO(sergey): Base this on actual topology.
const bool has_varying_data = false;
const int num_face_varying_channels = refiner->GetNumFVarChannels();
const bool has_face_varying_data = (num_face_varying_channels != 0);
const int level = topology_refiner->getSubdivisionLevel(topology_refiner);
const bool is_adaptive = topology_refiner->getIsAdaptive(topology_refiner);
// Common settings for stencils and patches.
const bool stencil_generate_intermediate_levels = is_adaptive;
const bool stencil_generate_offsets = true;
const bool use_inf_sharp_patch = true;
// Refine the topology with given settings.
// TODO(sergey): What if topology is already refined?
if (is_adaptive) {
TopologyRefiner::AdaptiveOptions options(level);
options.considerFVarChannels = has_face_varying_data;
options.useInfSharpPatch = use_inf_sharp_patch;
refiner->RefineAdaptive(options);
}
else {
TopologyRefiner::UniformOptions options(level);
refiner->RefineUniform(options);
}
// Generate stencil table to update the bi-cubic patches control vertices
// after they have been re-posed (both for vertex & varying interpolation).
//
// Vertex stencils.
StencilTableFactory::Options vertex_stencil_options;
vertex_stencil_options.generateOffsets = stencil_generate_offsets;
vertex_stencil_options.generateIntermediateLevels = stencil_generate_intermediate_levels;
const StencilTable *vertex_stencils = StencilTableFactory::Create(*refiner,
vertex_stencil_options);
// Varying stencils.
//
// TODO(sergey): Seems currently varying stencils are always required in
// OpenSubdiv itself.
const StencilTable *varying_stencils = NULL;
if (has_varying_data) {
StencilTableFactory::Options varying_stencil_options;
varying_stencil_options.generateOffsets = stencil_generate_offsets;
varying_stencil_options.generateIntermediateLevels = stencil_generate_intermediate_levels;
varying_stencil_options.interpolationMode = StencilTableFactory::INTERPOLATE_VARYING;
varying_stencils = StencilTableFactory::Create(*refiner, varying_stencil_options);
}
// Face warying stencil.
vector<const StencilTable *> all_face_varying_stencils;
all_face_varying_stencils.reserve(num_face_varying_channels);
for (int face_varying_channel = 0; face_varying_channel < num_face_varying_channels;
++face_varying_channel)
{
StencilTableFactory::Options face_varying_stencil_options;
face_varying_stencil_options.generateOffsets = stencil_generate_offsets;
face_varying_stencil_options.generateIntermediateLevels = stencil_generate_intermediate_levels;
face_varying_stencil_options.interpolationMode = StencilTableFactory::INTERPOLATE_FACE_VARYING;
face_varying_stencil_options.fvarChannel = face_varying_channel;
all_face_varying_stencils.push_back(
StencilTableFactory::Create(*refiner, face_varying_stencil_options));
}
// Generate bi-cubic patch table for the limit surface.
PatchTableFactory::Options patch_options(level);
patch_options.SetEndCapType(PatchTableFactory::Options::ENDCAP_GREGORY_BASIS);
patch_options.useInfSharpPatch = use_inf_sharp_patch;
patch_options.generateFVarTables = has_face_varying_data;
patch_options.generateFVarLegacyLinearPatches = false;
const PatchTable *patch_table = PatchTableFactory::Create(*refiner, patch_options);
// Append local points stencils.
// Point stencils.
const StencilTable *local_point_stencil_table = patch_table->GetLocalPointStencilTable();
if (local_point_stencil_table != NULL) {
const StencilTable *table = StencilTableFactory::AppendLocalPointStencilTable(
*refiner, vertex_stencils, local_point_stencil_table);
delete vertex_stencils;
vertex_stencils = table;
}
// Varying stencils.
if (has_varying_data) {
const StencilTable *local_point_varying_stencil_table =
patch_table->GetLocalPointVaryingStencilTable();
if (local_point_varying_stencil_table != NULL) {
const StencilTable *table = StencilTableFactory::AppendLocalPointStencilTable(
*refiner, varying_stencils, local_point_varying_stencil_table);
delete varying_stencils;
varying_stencils = table;
}
}
for (int face_varying_channel = 0; face_varying_channel < num_face_varying_channels;
++face_varying_channel)
{
const StencilTable *table = StencilTableFactory::AppendLocalPointStencilTableFaceVarying(
*refiner,
all_face_varying_stencils[face_varying_channel],
patch_table->GetLocalPointFaceVaryingStencilTable(face_varying_channel),
face_varying_channel);
if (table != NULL) {
delete all_face_varying_stencils[face_varying_channel];
all_face_varying_stencils[face_varying_channel] = table;
}
}
// Create OpenSubdiv's CPU side evaluator.
blender::opensubdiv::EvalOutputAPI::EvalOutput *eval_output = nullptr;
const bool use_gpu_evaluator = evaluator_type == OPENSUBDIV_EVALUATOR_GPU;
if (use_gpu_evaluator) {
blender::opensubdiv::GpuEvalOutput::EvaluatorCache *evaluator_cache = nullptr;
if (evaluator_cache_descr) {
evaluator_cache = static_cast<blender::opensubdiv::GpuEvalOutput::EvaluatorCache *>(
evaluator_cache_descr->eval_cache);
}
eval_output = new blender::opensubdiv::GpuEvalOutput(vertex_stencils,
varying_stencils,
all_face_varying_stencils,
2,
patch_table,
evaluator_cache);
}
else {
eval_output = new blender::opensubdiv::CpuEvalOutput(
vertex_stencils, varying_stencils, all_face_varying_stencils, 2, patch_table);
}
blender::opensubdiv::PatchMap *patch_map = new blender::opensubdiv::PatchMap(*patch_table);
// Wrap everything we need into an object which we control from our side.
OpenSubdiv_EvaluatorImpl *evaluator_descr;
evaluator_descr = new OpenSubdiv_EvaluatorImpl();
evaluator_descr->eval_output = new blender::opensubdiv::EvalOutputAPI(eval_output, patch_map);
evaluator_descr->patch_map = patch_map;
evaluator_descr->patch_table = patch_table;
// TODO(sergey): Look into whether we've got duplicated stencils arrays.
delete vertex_stencils;
delete varying_stencils;
for (const StencilTable *table : all_face_varying_stencils) {
delete table;
}
return evaluator_descr;
}
void openSubdiv_deleteEvaluatorInternal(OpenSubdiv_EvaluatorImpl *evaluator)
{
delete evaluator;
}