tornavis/source/blender/blenkernel/intern/anim_sys.cc

4209 lines
143 KiB
C++

/* SPDX-FileCopyrightText: 2009 Blender Authors, Joshua Leung. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#include <cfloat>
#include <cmath>
#include <cstddef>
#include <cstdio>
#include <cstring>
#include "MEM_guardedalloc.h"
#include "BLI_alloca.h"
#include "BLI_blenlib.h"
#include "BLI_dynstr.h"
#include "BLI_listbase.h"
#include "BLI_math_rotation.h"
#include "BLI_math_vector.h"
#include "BLI_string_utils.hh"
#include "BLI_utildefines.h"
#include "BLT_translation.h"
#include "DNA_anim_types.h"
#include "DNA_light_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "DNA_space_types.h"
#include "DNA_texture_types.h"
#include "DNA_world_types.h"
#include "BKE_action.h"
#include "BKE_anim_data.h"
#include "BKE_animsys.h"
#include "BKE_context.hh"
#include "BKE_fcurve.h"
#include "BKE_global.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_main.h"
#include "BKE_material.h"
#include "BKE_nla.h"
#include "BKE_node.h"
#include "BKE_report.h"
#include "BKE_texture.h"
#include "DEG_depsgraph.hh"
#include "DEG_depsgraph_query.hh"
#include "RNA_access.hh"
#include "RNA_path.hh"
#include "RNA_prototypes.h"
#include "BLO_read_write.hh"
#include "nla_private.h"
#include "atomic_ops.h"
#include "CLG_log.h"
static CLG_LogRef LOG = {"bke.anim_sys"};
/* *********************************** */
/* KeyingSet API */
/* Finding Tools --------------------------- */
KS_Path *BKE_keyingset_find_path(KeyingSet *ks,
ID *id,
const char group_name[],
const char rna_path[],
int array_index,
int /*group_mode*/)
{
/* sanity checks */
if (ELEM(nullptr, ks, rna_path, id)) {
return nullptr;
}
/* loop over paths in the current KeyingSet, finding the first one where all settings match
* (i.e. the first one where none of the checks fail and equal 0)
*/
LISTBASE_FOREACH (KS_Path *, ksp, &ks->paths) {
short eq_id = 1, eq_path = 1, eq_index = 1, eq_group = 1;
/* id */
if (id != ksp->id) {
eq_id = 0;
}
/* path */
if ((ksp->rna_path == nullptr) || !STREQ(rna_path, ksp->rna_path)) {
eq_path = 0;
}
/* index - need to compare whole-array setting too... */
if (ksp->array_index != array_index) {
eq_index = 0;
}
/* group */
if (group_name) {
/* FIXME: these checks need to be coded... for now, it's not too important though */
}
/* if all aspects are ok, return */
if (eq_id && eq_path && eq_index && eq_group) {
return ksp;
}
}
/* none found */
return nullptr;
}
/* Defining Tools --------------------------- */
KeyingSet *BKE_keyingset_add(
ListBase *list, const char idname[], const char name[], short flag, short keyingflag)
{
KeyingSet *ks;
/* allocate new KeyingSet */
ks = static_cast<KeyingSet *>(MEM_callocN(sizeof(KeyingSet), "KeyingSet"));
STRNCPY_UTF8(ks->idname, (idname) ? idname : (name) ? name : DATA_("KeyingSet"));
STRNCPY_UTF8(ks->name, (name) ? name : (idname) ? idname : DATA_("Keying Set"));
ks->flag = flag;
ks->keyingflag = keyingflag;
/* NOTE: assume that if one is set one way, the other should be too, so that it'll work */
ks->keyingoverride = keyingflag;
/* add KeyingSet to list */
BLI_addtail(list, ks);
/* Make sure KeyingSet has a unique idname */
BLI_uniquename(
list, ks, DATA_("KeyingSet"), '.', offsetof(KeyingSet, idname), sizeof(ks->idname));
/* Make sure KeyingSet has a unique label (this helps with identification) */
BLI_uniquename(list, ks, DATA_("Keying Set"), '.', offsetof(KeyingSet, name), sizeof(ks->name));
/* return new KeyingSet for further editing */
return ks;
}
KS_Path *BKE_keyingset_add_path(KeyingSet *ks,
ID *id,
const char group_name[],
const char rna_path[],
int array_index,
short flag,
short groupmode)
{
KS_Path *ksp;
/* sanity checks */
if (ELEM(nullptr, ks, rna_path)) {
CLOG_ERROR(&LOG, "no Keying Set and/or RNA Path to add path with");
return nullptr;
}
/* ID is required for all types of KeyingSets */
if (id == nullptr) {
CLOG_ERROR(&LOG, "No ID provided for Keying Set Path");
return nullptr;
}
/* don't add if there is already a matching KS_Path in the KeyingSet */
if (BKE_keyingset_find_path(ks, id, group_name, rna_path, array_index, groupmode)) {
if (G.debug & G_DEBUG) {
CLOG_ERROR(&LOG, "destination already exists in Keying Set");
}
return nullptr;
}
/* allocate a new KeyingSet Path */
ksp = static_cast<KS_Path *>(MEM_callocN(sizeof(KS_Path), "KeyingSet Path"));
/* just store absolute info */
ksp->id = id;
if (group_name) {
STRNCPY(ksp->group, group_name);
}
else {
ksp->group[0] = '\0';
}
/* store additional info for relative paths (just in case user makes the set relative) */
if (id) {
ksp->idtype = GS(id->name);
}
/* just copy path info */
/* TODO: should array index be checked too? */
ksp->rna_path = BLI_strdup(rna_path);
ksp->array_index = array_index;
/* store flags */
ksp->flag = flag;
ksp->groupmode = groupmode;
/* add KeyingSet path to KeyingSet */
BLI_addtail(&ks->paths, ksp);
/* return this path */
return ksp;
}
void BKE_keyingset_free_path(KeyingSet *ks, KS_Path *ksp)
{
/* sanity check */
if (ELEM(nullptr, ks, ksp)) {
return;
}
/* free RNA-path info */
if (ksp->rna_path) {
MEM_freeN(ksp->rna_path);
}
/* free path itself */
BLI_freelinkN(&ks->paths, ksp);
}
void BKE_keyingsets_copy(ListBase *newlist, const ListBase *list)
{
BLI_duplicatelist(newlist, list);
LISTBASE_FOREACH (KeyingSet *, ksn, newlist) {
BLI_duplicatelist(&ksn->paths, &ksn->paths);
LISTBASE_FOREACH (KS_Path *, kspn, &ksn->paths) {
kspn->rna_path = static_cast<char *>(MEM_dupallocN(kspn->rna_path));
}
}
}
void BKE_keyingsets_foreach_id(LibraryForeachIDData *data, const ListBase *keyingsets)
{
LISTBASE_FOREACH (KeyingSet *, ksn, keyingsets) {
LISTBASE_FOREACH (KS_Path *, kspn, &ksn->paths) {
BKE_LIB_FOREACHID_PROCESS_ID(data, kspn->id, IDWALK_CB_NOP);
}
}
}
/* Freeing Tools --------------------------- */
void BKE_keyingset_free_paths(KeyingSet *ks)
{
KS_Path *ksp, *kspn;
/* sanity check */
if (ks == nullptr) {
return;
}
/* free each path as we go to avoid looping twice */
for (ksp = static_cast<KS_Path *>(ks->paths.first); ksp; ksp = kspn) {
kspn = ksp->next;
BKE_keyingset_free_path(ks, ksp);
}
}
void BKE_keyingsets_free(ListBase *list)
{
KeyingSet *ks, *ksn;
/* sanity check */
if (list == nullptr) {
return;
}
/* loop over KeyingSets freeing them
* - BKE_keyingset_free_paths() doesn't free the set itself, but it frees its sub-data
*/
for (ks = static_cast<KeyingSet *>(list->first); ks; ks = ksn) {
ksn = ks->next;
BKE_keyingset_free_paths(ks);
BLI_freelinkN(list, ks);
}
}
void BKE_keyingsets_blend_write(BlendWriter *writer, ListBase *list)
{
LISTBASE_FOREACH (KeyingSet *, ks, list) {
/* KeyingSet */
BLO_write_struct(writer, KeyingSet, ks);
/* Paths */
LISTBASE_FOREACH (KS_Path *, ksp, &ks->paths) {
/* Path */
BLO_write_struct(writer, KS_Path, ksp);
if (ksp->rna_path) {
BLO_write_string(writer, ksp->rna_path);
}
}
}
}
void BKE_keyingsets_blend_read_data(BlendDataReader *reader, ListBase *list)
{
LISTBASE_FOREACH (KeyingSet *, ks, list) {
/* paths */
BLO_read_list(reader, &ks->paths);
LISTBASE_FOREACH (KS_Path *, ksp, &ks->paths) {
/* rna path */
BLO_read_data_address(reader, &ksp->rna_path);
}
}
}
/* ***************************************** */
/* Evaluation Data-Setting Backend */
static bool is_fcurve_evaluatable(FCurve *fcu)
{
if (fcu->flag & (FCURVE_MUTED | FCURVE_DISABLED)) {
return false;
}
if (fcu->grp != nullptr && (fcu->grp->flag & AGRP_MUTED)) {
return false;
}
if (BKE_fcurve_is_empty(fcu)) {
return false;
}
return true;
}
bool BKE_animsys_rna_path_resolve(
PointerRNA *ptr, /* typically 'fcu->rna_path', 'fcu->array_index' */
const char *rna_path,
const int array_index,
PathResolvedRNA *r_result)
{
if (rna_path == nullptr) {
return false;
}
const char *path = rna_path;
if (!RNA_path_resolve_property(ptr, path, &r_result->ptr, &r_result->prop)) {
/* failed to get path */
/* XXX don't tag as failed yet though, as there are some legit situations (Action Constraint)
* where some channels will not exist, but shouldn't lock up Action */
if (G.debug & G_DEBUG) {
CLOG_WARN(&LOG,
"Animato: Invalid path. ID = '%s', '%s[%d]'",
(ptr->owner_id) ? (ptr->owner_id->name + 2) : "<No ID>",
path,
array_index);
}
return false;
}
if (ptr->owner_id != nullptr && !RNA_property_animateable(&r_result->ptr, r_result->prop)) {
return false;
}
int array_len = RNA_property_array_length(&r_result->ptr, r_result->prop);
if (array_len && array_index >= array_len) {
if (G.debug & G_DEBUG) {
CLOG_WARN(&LOG,
"Animato: Invalid array index. ID = '%s', '%s[%d]', array length is %d",
(ptr->owner_id) ? (ptr->owner_id->name + 2) : "<No ID>",
path,
array_index,
array_len - 1);
}
return false;
}
r_result->prop_index = array_len ? array_index : -1;
return true;
}
/* less than 1.0 evaluates to false, use epsilon to avoid float error */
#define ANIMSYS_FLOAT_AS_BOOL(value) ((value) > (1.0f - FLT_EPSILON))
bool BKE_animsys_read_from_rna_path(PathResolvedRNA *anim_rna, float *r_value)
{
PropertyRNA *prop = anim_rna->prop;
PointerRNA *ptr = &anim_rna->ptr;
int array_index = anim_rna->prop_index;
float orig_value;
/* caller must ensure this is animatable */
BLI_assert(RNA_property_animateable(ptr, prop) || ptr->owner_id == nullptr);
switch (RNA_property_type(prop)) {
case PROP_BOOLEAN: {
if (array_index != -1) {
const int orig_value_coerce = RNA_property_boolean_get_index(ptr, prop, array_index);
orig_value = float(orig_value_coerce);
}
else {
const int orig_value_coerce = RNA_property_boolean_get(ptr, prop);
orig_value = float(orig_value_coerce);
}
break;
}
case PROP_INT: {
if (array_index != -1) {
const int orig_value_coerce = RNA_property_int_get_index(ptr, prop, array_index);
orig_value = float(orig_value_coerce);
}
else {
const int orig_value_coerce = RNA_property_int_get(ptr, prop);
orig_value = float(orig_value_coerce);
}
break;
}
case PROP_FLOAT: {
if (array_index != -1) {
const float orig_value_coerce = RNA_property_float_get_index(ptr, prop, array_index);
orig_value = float(orig_value_coerce);
}
else {
const float orig_value_coerce = RNA_property_float_get(ptr, prop);
orig_value = float(orig_value_coerce);
}
break;
}
case PROP_ENUM: {
const int orig_value_coerce = RNA_property_enum_get(ptr, prop);
orig_value = float(orig_value_coerce);
break;
}
default: /* nothing can be done here... so it is unsuccessful? */
return false;
}
if (r_value != nullptr) {
*r_value = orig_value;
}
/* successful */
return true;
}
bool BKE_animsys_write_to_rna_path(PathResolvedRNA *anim_rna, const float value)
{
PropertyRNA *prop = anim_rna->prop;
PointerRNA *ptr = &anim_rna->ptr;
int array_index = anim_rna->prop_index;
/* caller must ensure this is animatable */
BLI_assert(RNA_property_animateable(ptr, prop) || ptr->owner_id == nullptr);
/* Check whether value is new. Otherwise we skip all the updates. */
float old_value;
if (!BKE_animsys_read_from_rna_path(anim_rna, &old_value)) {
return false;
}
if (old_value == value) {
return true;
}
switch (RNA_property_type(prop)) {
case PROP_BOOLEAN: {
const int value_coerce = ANIMSYS_FLOAT_AS_BOOL(value);
if (array_index != -1) {
RNA_property_boolean_set_index(ptr, prop, array_index, value_coerce);
}
else {
RNA_property_boolean_set(ptr, prop, value_coerce);
}
break;
}
case PROP_INT: {
int value_coerce = int(value);
RNA_property_int_clamp(ptr, prop, &value_coerce);
if (array_index != -1) {
RNA_property_int_set_index(ptr, prop, array_index, value_coerce);
}
else {
RNA_property_int_set(ptr, prop, value_coerce);
}
break;
}
case PROP_FLOAT: {
float value_coerce = value;
RNA_property_float_clamp(ptr, prop, &value_coerce);
if (array_index != -1) {
RNA_property_float_set_index(ptr, prop, array_index, value_coerce);
}
else {
RNA_property_float_set(ptr, prop, value_coerce);
}
break;
}
case PROP_ENUM: {
const int value_coerce = int(value);
RNA_property_enum_set(ptr, prop, value_coerce);
break;
}
default: /* nothing can be done here... so it is unsuccessful? */
return false;
}
/* successful */
return true;
}
static bool animsys_construct_orig_pointer_rna(const PointerRNA *ptr, PointerRNA *ptr_orig)
{
*ptr_orig = *ptr;
/* NOTE: nlastrip_evaluate_controls() creates PointerRNA with ID of nullptr. Technically, this is
* not a valid pointer, but there are exceptions in various places of this file which handles
* such pointers.
* We do special trickery here as well, to quickly go from evaluated to original NlaStrip. */
if (ptr->owner_id == nullptr) {
if (ptr->type != &RNA_NlaStrip) {
return false;
}
NlaStrip *strip = ((NlaStrip *)ptr_orig->data);
if (strip->orig_strip == nullptr) {
return false;
}
ptr_orig->data = strip->orig_strip;
}
else {
ptr_orig->owner_id = ptr_orig->owner_id->orig_id;
ptr_orig->data = ptr_orig->owner_id;
}
return true;
}
static void animsys_write_orig_anim_rna(PointerRNA *ptr,
const char *rna_path,
int array_index,
float value)
{
PointerRNA ptr_orig;
if (!animsys_construct_orig_pointer_rna(ptr, &ptr_orig)) {
return;
}
PathResolvedRNA orig_anim_rna;
/* TODO(sergey): Should be possible to cache resolved path in dependency graph somehow. */
if (BKE_animsys_rna_path_resolve(&ptr_orig, rna_path, array_index, &orig_anim_rna)) {
BKE_animsys_write_to_rna_path(&orig_anim_rna, value);
}
}
/**
* Evaluate all the F-Curves in the given list
* This performs a set of standard checks. If extra checks are required,
* separate code should be used.
*/
static void animsys_evaluate_fcurves(PointerRNA *ptr,
ListBase *list,
const AnimationEvalContext *anim_eval_context,
bool flush_to_original)
{
/* Calculate then execute each curve. */
LISTBASE_FOREACH (FCurve *, fcu, list) {
if (!is_fcurve_evaluatable(fcu)) {
continue;
}
PathResolvedRNA anim_rna;
if (BKE_animsys_rna_path_resolve(ptr, fcu->rna_path, fcu->array_index, &anim_rna)) {
const float curval = calculate_fcurve(&anim_rna, fcu, anim_eval_context);
BKE_animsys_write_to_rna_path(&anim_rna, curval);
if (flush_to_original) {
animsys_write_orig_anim_rna(ptr, fcu->rna_path, fcu->array_index, curval);
}
}
}
}
/**
* This function assumes that the quaternion keys are sequential. They do not
* have to be in array_index order. If the quaternion is only partially keyed,
* the result is normalized. If it is fully keyed, the result is returned as-is.
*
* \return the number of FCurves used to construct this quaternion. This is so
* that the caller knows how many FCurves can be skipped while iterating over
* them. */
static int animsys_quaternion_evaluate_fcurves(PathResolvedRNA quat_rna,
FCurve *first_fcurve,
const AnimationEvalContext *anim_eval_context,
float r_quaternion[4])
{
FCurve *quat_curve_fcu = first_fcurve;
/* Initialize r_quaternion to the unit quaternion so that half-keyed quaternions at least have
* *some* value in there. */
r_quaternion[0] = 1.0f;
r_quaternion[1] = 0.0f;
r_quaternion[2] = 0.0f;
r_quaternion[3] = 0.0f;
int fcurve_offset = 0;
for (; fcurve_offset < 4 && quat_curve_fcu;
++fcurve_offset, quat_curve_fcu = quat_curve_fcu->next) {
if (!STREQ(quat_curve_fcu->rna_path, first_fcurve->rna_path)) {
/* This should never happen when the quaternion is fully keyed. Some
* people do use half-keyed quaternions, though, so better to check. */
break;
}
const int array_index = quat_curve_fcu->array_index;
quat_rna.prop_index = array_index;
r_quaternion[array_index] = calculate_fcurve(&quat_rna, quat_curve_fcu, anim_eval_context);
}
if (fcurve_offset < 4) {
/* This quaternion was incompletely keyed, so the result is a mixture of the unit quaternion
* and values from FCurves. This means that it's almost certainly no longer of unit length. */
normalize_qt(r_quaternion);
}
return fcurve_offset;
}
/**
* This function assumes that the quaternion keys are sequential. They do not
* have to be in array_index order.
*
* \return the number of FCurves used to construct the quaternion, counting from
* `first_fcurve`. This is so that the caller knows how many FCurves can be
* skipped while iterating over them. */
static int animsys_blend_fcurves_quaternion(PathResolvedRNA *anim_rna,
FCurve *first_fcurve,
const AnimationEvalContext *anim_eval_context,
const float blend_factor)
{
float current_quat[4];
RNA_property_float_get_array(&anim_rna->ptr, anim_rna->prop, current_quat);
float target_quat[4];
const int num_fcurves_read = animsys_quaternion_evaluate_fcurves(
*anim_rna, first_fcurve, anim_eval_context, target_quat);
float blended_quat[4];
interp_qt_qtqt(blended_quat, current_quat, target_quat, blend_factor);
RNA_property_float_set_array(&anim_rna->ptr, anim_rna->prop, blended_quat);
return num_fcurves_read;
}
/* LERP between current value (blend_factor=0.0) and the value from the FCurve (blend_factor=1.0)
*/
static void animsys_blend_in_fcurves(PointerRNA *ptr,
ListBase *fcurves,
const AnimationEvalContext *anim_eval_context,
const float blend_factor)
{
char *channel_to_skip = nullptr;
int num_channels_to_skip = 0;
LISTBASE_FOREACH (FCurve *, fcu, fcurves) {
if (num_channels_to_skip) {
/* For skipping already-handled rotation channels. Rotation channels are handled per group,
* and not per individual channel. */
BLI_assert(channel_to_skip != nullptr);
if (STREQ(channel_to_skip, fcu->rna_path)) {
/* This is indeed the channel we want to skip. */
num_channels_to_skip--;
continue;
}
}
if (!is_fcurve_evaluatable(fcu)) {
continue;
}
PathResolvedRNA anim_rna;
if (!BKE_animsys_rna_path_resolve(ptr, fcu->rna_path, fcu->array_index, &anim_rna)) {
continue;
}
if (STREQ(RNA_property_identifier(anim_rna.prop), "rotation_quaternion")) {
const int num_fcurves_read = animsys_blend_fcurves_quaternion(
&anim_rna, fcu, anim_eval_context, blend_factor);
/* Skip the next three channels, because those have already been handled here. */
MEM_SAFE_FREE(channel_to_skip);
channel_to_skip = BLI_strdup(fcu->rna_path);
num_channels_to_skip = num_fcurves_read - 1;
continue;
}
/* TODO(Sybren): do something similar as above for Euler and Axis/Angle representations. */
const float fcurve_value = calculate_fcurve(&anim_rna, fcu, anim_eval_context);
float current_value;
float value_to_write;
if (BKE_animsys_read_from_rna_path(&anim_rna, &current_value)) {
value_to_write = (1 - blend_factor) * current_value + blend_factor * fcurve_value;
switch (RNA_property_type(anim_rna.prop)) {
case PROP_BOOLEAN: /* Without this, anything less than 1.0 is converted to 'False' by
* ANIMSYS_FLOAT_AS_BOOL(). This is probably not desirable for blends,
* where anything
* above a 50% blend should act more like the FCurve than like the
* current value. */
case PROP_INT:
case PROP_ENUM:
value_to_write = roundf(value_to_write);
break;
/* All other types are just handled as float, and value_to_write is already correct. */
default:
break;
}
}
else {
/* Unable to read the current value for blending, so just apply the FCurve value instead. */
value_to_write = fcurve_value;
}
BKE_animsys_write_to_rna_path(&anim_rna, value_to_write);
}
MEM_SAFE_FREE(channel_to_skip);
}
/* ***************************************** */
/* Driver Evaluation */
AnimationEvalContext BKE_animsys_eval_context_construct(Depsgraph *depsgraph, float eval_time)
{
AnimationEvalContext ctx{};
ctx.depsgraph = depsgraph;
ctx.eval_time = eval_time;
return ctx;
}
AnimationEvalContext BKE_animsys_eval_context_construct_at(
const AnimationEvalContext *anim_eval_context, float eval_time)
{
return BKE_animsys_eval_context_construct(anim_eval_context->depsgraph, eval_time);
}
/* Evaluate Drivers */
static void animsys_evaluate_drivers(PointerRNA *ptr,
AnimData *adt,
const AnimationEvalContext *anim_eval_context)
{
/* drivers are stored as F-Curves, but we cannot use the standard code, as we need to check if
* the depsgraph requested that this driver be evaluated...
*/
LISTBASE_FOREACH (FCurve *, fcu, &adt->drivers) {
ChannelDriver *driver = fcu->driver;
bool ok = false;
/* check if this driver's curve should be skipped */
if ((fcu->flag & (FCURVE_MUTED | FCURVE_DISABLED)) == 0) {
/* check if driver itself is tagged for recalculation */
/* XXX driver recalc flag is not set yet by depsgraph! */
if ((driver) && !(driver->flag & DRIVER_FLAG_INVALID)) {
/* evaluate this using values set already in other places
* NOTE: for 'layering' option later on, we should check if we should remove old value
* before adding new to only be done when drivers only changed. */
PathResolvedRNA anim_rna;
if (BKE_animsys_rna_path_resolve(ptr, fcu->rna_path, fcu->array_index, &anim_rna)) {
const float curval = calculate_fcurve(&anim_rna, fcu, anim_eval_context);
ok = BKE_animsys_write_to_rna_path(&anim_rna, curval);
}
/* set error-flag if evaluation failed */
if (ok == 0) {
driver->flag |= DRIVER_FLAG_INVALID;
}
}
}
}
}
/* ***************************************** */
/* Actions Evaluation */
/* strictly not necessary for actual "evaluation", but it is a useful safety check
* to reduce the amount of times that users end up having to "revive" wrongly-assigned
* actions
*/
static void action_idcode_patch_check(ID *id, bAction *act)
{
int idcode = 0;
/* just in case */
if (ELEM(nullptr, id, act)) {
return;
}
idcode = GS(id->name);
/* the actual checks... hopefully not too much of a performance hit in the long run... */
if (act->idroot == 0) {
/* use the current root if not set already
* (i.e. newly created actions and actions from 2.50-2.57 builds).
* - this has problems if there are 2 users, and the first one encountered is the invalid one
* in which case, the user will need to manually fix this (?)
*/
act->idroot = idcode;
}
else if (act->idroot != idcode) {
/* only report this error if debug mode is enabled (to save performance everywhere else) */
if (G.debug & G_DEBUG) {
printf(
"AnimSys Safety Check Failed: Action '%s' is not meant to be used from ID-Blocks of "
"type %d such as '%s'\n",
act->id.name + 2,
idcode,
id->name);
}
}
}
/* ----------------------------------------- */
void animsys_evaluate_action_group(PointerRNA *ptr,
bAction *act,
bActionGroup *agrp,
const AnimationEvalContext *anim_eval_context)
{
FCurve *fcu;
/* check if mapper is appropriate for use here (we set to nullptr if it's inappropriate) */
if (ELEM(nullptr, act, agrp)) {
return;
}
action_idcode_patch_check(ptr->owner_id, act);
/* if group is muted, don't evaluated any of the F-Curve */
if (agrp->flag & AGRP_MUTED) {
return;
}
/* calculate then execute each curve */
for (fcu = static_cast<FCurve *>(agrp->channels.first); (fcu) && (fcu->grp == agrp);
fcu = fcu->next)
{
/* check if this curve should be skipped */
if ((fcu->flag & (FCURVE_MUTED | FCURVE_DISABLED)) == 0 && !BKE_fcurve_is_empty(fcu)) {
PathResolvedRNA anim_rna;
if (BKE_animsys_rna_path_resolve(ptr, fcu->rna_path, fcu->array_index, &anim_rna)) {
const float curval = calculate_fcurve(&anim_rna, fcu, anim_eval_context);
BKE_animsys_write_to_rna_path(&anim_rna, curval);
}
}
}
}
void animsys_evaluate_action(PointerRNA *ptr,
bAction *act,
const AnimationEvalContext *anim_eval_context,
const bool flush_to_original)
{
/* check if mapper is appropriate for use here (we set to nullptr if it's inappropriate) */
if (act == nullptr) {
return;
}
action_idcode_patch_check(ptr->owner_id, act);
/* calculate then execute each curve */
animsys_evaluate_fcurves(ptr, &act->curves, anim_eval_context, flush_to_original);
}
void animsys_blend_in_action(PointerRNA *ptr,
bAction *act,
const AnimationEvalContext *anim_eval_context,
const float blend_factor)
{
action_idcode_patch_check(ptr->owner_id, act);
animsys_blend_in_fcurves(ptr, &act->curves, anim_eval_context, blend_factor);
}
/* ***************************************** */
/* NLA System - Evaluation */
/* calculate influence of strip based for given frame based on blendin/out values */
static float nlastrip_get_influence(NlaStrip *strip, float cframe)
{
/* sanity checks - normalize the blendin/out values? */
strip->blendin = fabsf(strip->blendin);
strip->blendout = fabsf(strip->blendout);
/* result depends on where frame is in respect to blendin/out values */
if (IS_EQF(strip->blendin, 0.0f) == false && (cframe <= (strip->start + strip->blendin))) {
/* there is some blend-in */
return fabsf(cframe - strip->start) / (strip->blendin);
}
if (IS_EQF(strip->blendout, 0.0f) == false && (cframe >= (strip->end - strip->blendout))) {
/* there is some blend-out */
return fabsf(strip->end - cframe) / (strip->blendout);
}
/* in the middle of the strip, we should be full strength */
return 1.0f;
}
/* evaluate the evaluation time and influence for the strip, storing the results in the strip */
static void nlastrip_evaluate_controls(NlaStrip *strip,
const AnimationEvalContext *anim_eval_context,
const bool flush_to_original)
{
/* now strip's evaluate F-Curves for these settings (if applicable) */
if (strip->fcurves.first) {
/* create RNA-pointer needed to set values */
PointerRNA strip_ptr = RNA_pointer_create(nullptr, &RNA_NlaStrip, strip);
/* execute these settings as per normal */
animsys_evaluate_fcurves(&strip_ptr, &strip->fcurves, anim_eval_context, flush_to_original);
}
/* analytically generate values for influence and time (if applicable)
* - we do this after the F-Curves have been evaluated to override the effects of those
* in case the override has been turned off.
*/
if ((strip->flag & NLASTRIP_FLAG_USR_INFLUENCE) == 0) {
strip->influence = nlastrip_get_influence(strip, anim_eval_context->eval_time);
}
/* Bypass evaluation time computation if time mapping is disabled. */
if ((strip->flag & NLASTRIP_FLAG_NO_TIME_MAP) != 0) {
strip->strip_time = anim_eval_context->eval_time;
return;
}
if ((strip->flag & NLASTRIP_FLAG_USR_TIME) == 0) {
strip->strip_time = nlastrip_get_frame(
strip, anim_eval_context->eval_time, NLATIME_CONVERT_EVAL);
}
/* if user can control the evaluation time (using F-Curves), consider the option which allows
* this time to be clamped to lie within extents of the action-clip, so that a steady changing
* rate of progress through several cycles of the clip can be achieved easily.
*/
/* NOTE: if we add any more of these special cases, we better group them up nicely... */
if ((strip->flag & NLASTRIP_FLAG_USR_TIME) && (strip->flag & NLASTRIP_FLAG_USR_TIME_CYCLIC)) {
strip->strip_time = fmod(strip->strip_time - strip->actstart, strip->actend - strip->actstart);
}
}
NlaEvalStrip *nlastrips_ctime_get_strip(ListBase *list,
ListBase *strips,
short index,
const AnimationEvalContext *anim_eval_context,
const bool flush_to_original)
{
NlaStrip *estrip = nullptr;
NlaEvalStrip *nes;
short side = 0;
float ctime = anim_eval_context->eval_time;
/* loop over strips, checking if they fall within the range */
LISTBASE_FOREACH (NlaStrip *, strip, strips) {
/* Check if current time occurs within this strip. */
/* This block leads to the Action Track and non-time-remapped tweak strip evaluation to respect
* the extrapolation modes. If in_range, these two tracks will always output NES_TIME_WITHIN so
* fcurve extrapolation isn't clamped to the keyframe bounds. */
bool in_range = IN_RANGE_INCL(ctime, strip->start, strip->end);
if (strip->flag & NLASTRIP_FLAG_NO_TIME_MAP) {
switch (strip->extendmode) {
case NLASTRIP_EXTEND_HOLD:
in_range = true;
break;
case NLASTRIP_EXTEND_HOLD_FORWARD:
in_range = ctime >= strip->start;
break;
}
}
if (in_range) {
/* this strip is active, so try to use it */
estrip = strip;
side = NES_TIME_WITHIN;
break;
}
/* if time occurred before current strip... */
if (ctime < strip->start) {
if (strip == strips->first) {
/* before first strip - only try to use it if it extends backwards in time too */
if (strip->extendmode == NLASTRIP_EXTEND_HOLD) {
estrip = strip;
}
/* side is 'before' regardless of whether there's a useful strip */
side = NES_TIME_BEFORE;
}
else {
/* before next strip - previous strip has ended, but next hasn't begun,
* so blending mode depends on whether strip is being held or not...
* - only occurs when no transition strip added, otherwise the transition would have
* been picked up above...
*/
strip = strip->prev;
if (strip->extendmode != NLASTRIP_EXTEND_NOTHING) {
estrip = strip;
}
side = NES_TIME_AFTER;
}
break;
}
/* if time occurred after current strip... */
if (ctime > strip->end) {
/* only if this is the last strip should we do anything, and only if that is being held */
if (strip == strips->last) {
if (strip->extendmode != NLASTRIP_EXTEND_NOTHING) {
estrip = strip;
}
side = NES_TIME_AFTER;
break;
}
/* otherwise, skip... as the 'before' case will catch it more elegantly! */
}
}
/* check if a valid strip was found
* - must not be muted (i.e. will have contribution
*/
if ((estrip == nullptr) || (estrip->flag & NLASTRIP_FLAG_MUTED)) {
return nullptr;
}
/* if ctime was not within the boundaries of the strip, clamp! */
switch (side) {
case NES_TIME_BEFORE: /* extend first frame only */
ctime = estrip->start;
break;
case NES_TIME_AFTER: /* extend last frame only */
ctime = estrip->end;
break;
}
/* evaluate strip's evaluation controls
* - skip if no influence (i.e. same effect as muting the strip)
* - negative influence is not supported yet... how would that be defined?
*/
/* TODO: this sounds a bit hacky having a few isolated F-Curves
* stuck on some data it operates on... */
AnimationEvalContext clamped_eval_context = BKE_animsys_eval_context_construct_at(
anim_eval_context, ctime);
nlastrip_evaluate_controls(estrip, &clamped_eval_context, flush_to_original);
if (estrip->influence <= 0.0f) {
return nullptr;
}
/* check if strip has valid data to evaluate,
* and/or perform any additional type-specific actions
*/
switch (estrip->type) {
case NLASTRIP_TYPE_CLIP: /* clip must have some action to evaluate */
if (estrip->act == nullptr) {
return nullptr;
}
break;
/* There must be strips to transition from and to (i.e. `prev` and `next` required). */
case NLASTRIP_TYPE_TRANSITION:
if (ELEM(nullptr, estrip->prev, estrip->next)) {
return nullptr;
}
/* evaluate controls for the relevant extents of the bordering strips... */
AnimationEvalContext start_eval_context = BKE_animsys_eval_context_construct_at(
anim_eval_context, estrip->start);
AnimationEvalContext end_eval_context = BKE_animsys_eval_context_construct_at(
anim_eval_context, estrip->end);
nlastrip_evaluate_controls(estrip->prev, &start_eval_context, flush_to_original);
nlastrip_evaluate_controls(estrip->next, &end_eval_context, flush_to_original);
break;
}
/* add to list of strips we need to evaluate */
nes = static_cast<NlaEvalStrip *>(MEM_callocN(sizeof(NlaEvalStrip), "NlaEvalStrip"));
nes->strip = estrip;
nes->strip_mode = side;
nes->track_index = index;
nes->strip_time = estrip->strip_time;
if (list) {
BLI_addtail(list, nes);
}
return nes;
}
static NlaEvalStrip *nlastrips_ctime_get_strip_single(
ListBase *dst_list,
NlaStrip *single_strip,
const AnimationEvalContext *anim_eval_context,
const bool flush_to_original)
{
ListBase single_tracks_list;
single_tracks_list.first = single_tracks_list.last = single_strip;
return nlastrips_ctime_get_strip(
dst_list, &single_tracks_list, -1, anim_eval_context, flush_to_original);
}
/* ---------------------- */
/* Initialize a valid mask, allocating memory if necessary. */
static void nlavalidmask_init(NlaValidMask *mask, int bits)
{
if (BLI_BITMAP_SIZE(bits) > sizeof(mask->buffer)) {
mask->ptr = BLI_BITMAP_NEW(bits, "NlaValidMask");
}
else {
mask->ptr = mask->buffer;
}
}
/* Free allocated memory for the mask. */
static void nlavalidmask_free(NlaValidMask *mask)
{
if (mask->ptr != mask->buffer) {
MEM_freeN(mask->ptr);
}
}
/* ---------------------- */
/* Hashing functions for NlaEvalChannelKey. */
static uint nlaevalchan_keyhash(const void *ptr)
{
const NlaEvalChannelKey *key = static_cast<const NlaEvalChannelKey *>(ptr);
uint hash = BLI_ghashutil_ptrhash(key->ptr.data);
return hash ^ BLI_ghashutil_ptrhash(key->prop);
}
static bool nlaevalchan_keycmp(const void *a, const void *b)
{
const NlaEvalChannelKey *A = static_cast<const NlaEvalChannelKey *>(a);
const NlaEvalChannelKey *B = static_cast<const NlaEvalChannelKey *>(b);
return ((A->ptr.data != B->ptr.data) || (A->prop != B->prop));
}
/* ---------------------- */
/* Allocate a new blending value snapshot for the channel. */
static NlaEvalChannelSnapshot *nlaevalchan_snapshot_new(NlaEvalChannel *nec)
{
int length = nec->base_snapshot.length;
size_t byte_size = sizeof(NlaEvalChannelSnapshot) + sizeof(float) * length;
NlaEvalChannelSnapshot *nec_snapshot = static_cast<NlaEvalChannelSnapshot *>(
MEM_callocN(byte_size, "NlaEvalChannelSnapshot"));
nec_snapshot->channel = nec;
nec_snapshot->length = length;
nlavalidmask_init(&nec_snapshot->blend_domain, length);
nlavalidmask_init(&nec_snapshot->remap_domain, length);
return nec_snapshot;
}
/* Free a channel's blending value snapshot. */
static void nlaevalchan_snapshot_free(NlaEvalChannelSnapshot *nec_snapshot)
{
BLI_assert(!nec_snapshot->is_base);
nlavalidmask_free(&nec_snapshot->blend_domain);
nlavalidmask_free(&nec_snapshot->remap_domain);
MEM_freeN(nec_snapshot);
}
/* Copy all data in the snapshot. */
static void nlaevalchan_snapshot_copy(NlaEvalChannelSnapshot *dst,
const NlaEvalChannelSnapshot *src)
{
BLI_assert(dst->channel == src->channel);
memcpy(dst->values, src->values, sizeof(float) * dst->length);
}
/* ---------------------- */
/* Initialize a blending state snapshot structure. */
static void nlaeval_snapshot_init(NlaEvalSnapshot *snapshot,
NlaEvalData *nlaeval,
NlaEvalSnapshot *base)
{
snapshot->base = base;
snapshot->size = std::max(16, nlaeval->num_channels);
snapshot->channels = static_cast<NlaEvalChannelSnapshot **>(
MEM_callocN(sizeof(*snapshot->channels) * snapshot->size, "NlaEvalSnapshot::channels"));
}
/* Retrieve the individual channel snapshot. */
static NlaEvalChannelSnapshot *nlaeval_snapshot_get(NlaEvalSnapshot *snapshot, int index)
{
return (index < snapshot->size) ? snapshot->channels[index] : nullptr;
}
/* Ensure at least this number of slots exists. */
static void nlaeval_snapshot_ensure_size(NlaEvalSnapshot *snapshot, int size)
{
if (size > snapshot->size) {
snapshot->size *= 2;
CLAMP_MIN(snapshot->size, size);
CLAMP_MIN(snapshot->size, 16);
size_t byte_size = sizeof(*snapshot->channels) * snapshot->size;
snapshot->channels = static_cast<NlaEvalChannelSnapshot **>(
MEM_recallocN_id(snapshot->channels, byte_size, "NlaEvalSnapshot::channels"));
}
}
/* Retrieve the address of a slot in the blending state snapshot for this channel (may realloc). */
static NlaEvalChannelSnapshot **nlaeval_snapshot_ensure_slot(NlaEvalSnapshot *snapshot,
NlaEvalChannel *nec)
{
nlaeval_snapshot_ensure_size(snapshot, nec->owner->num_channels);
return &snapshot->channels[nec->index];
}
/* Retrieve the blending snapshot for the specified channel, with fallback to base. */
static NlaEvalChannelSnapshot *nlaeval_snapshot_find_channel(NlaEvalSnapshot *snapshot,
NlaEvalChannel *nec)
{
while (snapshot != nullptr) {
NlaEvalChannelSnapshot *nec_snapshot = nlaeval_snapshot_get(snapshot, nec->index);
if (nec_snapshot != nullptr) {
return nec_snapshot;
}
snapshot = snapshot->base;
}
return &nec->base_snapshot;
}
/* Retrieve or create the channel value snapshot, copying from the other snapshot
* (or default values) */
static NlaEvalChannelSnapshot *nlaeval_snapshot_ensure_channel(NlaEvalSnapshot *snapshot,
NlaEvalChannel *nec)
{
NlaEvalChannelSnapshot **slot = nlaeval_snapshot_ensure_slot(snapshot, nec);
if (*slot == nullptr) {
NlaEvalChannelSnapshot *base_snapshot, *nec_snapshot;
nec_snapshot = nlaevalchan_snapshot_new(nec);
base_snapshot = nlaeval_snapshot_find_channel(snapshot->base, nec);
nlaevalchan_snapshot_copy(nec_snapshot, base_snapshot);
*slot = nec_snapshot;
}
return *slot;
}
/* Free all memory owned by this blending snapshot structure. */
static void nlaeval_snapshot_free_data(NlaEvalSnapshot *snapshot)
{
if (snapshot->channels != nullptr) {
for (int i = 0; i < snapshot->size; i++) {
NlaEvalChannelSnapshot *nec_snapshot = snapshot->channels[i];
if (nec_snapshot != nullptr) {
nlaevalchan_snapshot_free(nec_snapshot);
}
}
MEM_freeN(snapshot->channels);
}
snapshot->base = nullptr;
snapshot->size = 0;
snapshot->channels = nullptr;
}
/* ---------------------- */
/* Free memory owned by this evaluation channel. */
static void nlaevalchan_free_data(NlaEvalChannel *nec)
{
nlavalidmask_free(&nec->domain);
}
/* Initialize a full NLA evaluation state structure. */
static void nlaeval_init(NlaEvalData *nlaeval)
{
memset(nlaeval, 0, sizeof(*nlaeval));
nlaeval->path_hash = BLI_ghash_str_new("NlaEvalData::path_hash");
nlaeval->key_hash = BLI_ghash_new(
nlaevalchan_keyhash, nlaevalchan_keycmp, "NlaEvalData::key_hash");
}
static void nlaeval_free(NlaEvalData *nlaeval)
{
/* Delete base snapshot - its channels are part of NlaEvalChannel and shouldn't be freed. */
MEM_SAFE_FREE(nlaeval->base_snapshot.channels);
/* Delete result snapshot. */
nlaeval_snapshot_free_data(&nlaeval->eval_snapshot);
/* Delete channels. */
LISTBASE_FOREACH (NlaEvalChannel *, nec, &nlaeval->channels) {
nlaevalchan_free_data(nec);
}
BLI_freelistN(&nlaeval->channels);
BLI_ghash_free(nlaeval->path_hash, nullptr, nullptr);
BLI_ghash_free(nlaeval->key_hash, nullptr, nullptr);
}
/* ---------------------- */
static int nlaevalchan_validate_index(const NlaEvalChannel *nec, int index)
{
if (nec->is_array) {
if (index >= 0 && index < nec->base_snapshot.length) {
return index;
}
return -1;
}
return 0;
}
static bool nlaevalchan_validate_index_ex(const NlaEvalChannel *nec, const int array_index)
{
/** Although array_index comes from fcurve, that doesn't necessarily mean the property has that
* many elements. */
const int index = nlaevalchan_validate_index(nec, array_index);
if (index < 0) {
if (G.debug & G_DEBUG) {
ID *id = nec->key.ptr.owner_id;
CLOG_WARN(&LOG,
"Animation: Invalid array index. ID = '%s', '%s[%d]', array length is %d",
id ? (id->name + 2) : "<No ID>",
nec->rna_path,
array_index,
nec->base_snapshot.length);
}
return false;
}
return true;
}
/* Initialize default values for NlaEvalChannel from the property data. */
static void nlaevalchan_get_default_values(NlaEvalChannel *nec, float *r_values)
{
PointerRNA *ptr = &nec->key.ptr;
PropertyRNA *prop = nec->key.prop;
int length = nec->base_snapshot.length;
/* Use unit quaternion for quaternion properties. */
if (nec->mix_mode == NEC_MIX_QUATERNION) {
unit_qt(r_values);
return;
}
/* Use all zero for Axis-Angle properties. */
if (nec->mix_mode == NEC_MIX_AXIS_ANGLE) {
zero_v4(r_values);
return;
}
/* NOTE: while this doesn't work for all RNA properties as default values aren't in fact
* set properly for most of them, at least the common ones (which also happen to get used
* in NLA strips a lot, e.g. scale) are set correctly.
*/
if (RNA_property_array_check(prop)) {
BLI_assert(length == RNA_property_array_length(ptr, prop));
bool *tmp_bool;
int *tmp_int;
switch (RNA_property_type(prop)) {
case PROP_BOOLEAN:
tmp_bool = static_cast<bool *>(MEM_malloc_arrayN(length, sizeof(*tmp_bool), __func__));
RNA_property_boolean_get_default_array(ptr, prop, tmp_bool);
for (int i = 0; i < length; i++) {
r_values[i] = float(tmp_bool[i]);
}
MEM_freeN(tmp_bool);
break;
case PROP_INT:
tmp_int = static_cast<int *>(MEM_malloc_arrayN(length, sizeof(*tmp_int), __func__));
RNA_property_int_get_default_array(ptr, prop, tmp_int);
for (int i = 0; i < length; i++) {
r_values[i] = float(tmp_int[i]);
}
MEM_freeN(tmp_int);
break;
case PROP_FLOAT:
RNA_property_float_get_default_array(ptr, prop, r_values);
break;
default:
memset(r_values, 0, sizeof(float) * length);
}
}
else {
BLI_assert(length == 1);
switch (RNA_property_type(prop)) {
case PROP_BOOLEAN:
*r_values = float(RNA_property_boolean_get_default(ptr, prop));
break;
case PROP_INT:
*r_values = float(RNA_property_int_get_default(ptr, prop));
break;
case PROP_FLOAT:
*r_values = RNA_property_float_get_default(ptr, prop);
break;
case PROP_ENUM:
*r_values = float(RNA_property_enum_get_default(ptr, prop));
break;
default:
*r_values = 0.0f;
}
}
/* Ensure multiplicative properties aren't reset to 0. */
if (nec->mix_mode == NEC_MIX_MULTIPLY) {
for (int i = 0; i < length; i++) {
if (r_values[i] == 0.0f) {
r_values[i] = 1.0f;
}
}
}
}
static char nlaevalchan_detect_mix_mode(NlaEvalChannelKey *key, int length)
{
PropertySubType subtype = RNA_property_subtype(key->prop);
if (subtype == PROP_QUATERNION && length == 4) {
return NEC_MIX_QUATERNION;
}
if (subtype == PROP_AXISANGLE && length == 4) {
return NEC_MIX_AXIS_ANGLE;
}
if (RNA_property_flag(key->prop) & PROP_PROPORTIONAL) {
return NEC_MIX_MULTIPLY;
}
return NEC_MIX_ADD;
}
/* Verify that an appropriate NlaEvalChannel for this property exists. */
static NlaEvalChannel *nlaevalchan_verify_key(NlaEvalData *nlaeval,
const char *path,
NlaEvalChannelKey *key)
{
/* Look it up in the key hash. */
NlaEvalChannel **p_key_nec;
NlaEvalChannelKey **p_key;
bool found_key = BLI_ghash_ensure_p_ex(
nlaeval->key_hash, key, (void ***)&p_key, (void ***)&p_key_nec);
if (found_key) {
return *p_key_nec;
}
/* Create the channel. */
bool is_array = RNA_property_array_check(key->prop);
int length = is_array ? RNA_property_array_length(&key->ptr, key->prop) : 1;
NlaEvalChannel *nec = static_cast<NlaEvalChannel *>(
MEM_callocN(sizeof(NlaEvalChannel) + sizeof(float) * length, "NlaEvalChannel"));
/* Initialize the channel. */
nec->rna_path = path;
nec->key = *key;
nec->owner = nlaeval;
nec->index = nlaeval->num_channels++;
nec->is_array = is_array;
nec->mix_mode = nlaevalchan_detect_mix_mode(key, length);
nlavalidmask_init(&nec->domain, length);
nec->base_snapshot.channel = nec;
nec->base_snapshot.length = length;
nec->base_snapshot.is_base = true;
nlaevalchan_get_default_values(nec, nec->base_snapshot.values);
/* Store channel in data structures. */
BLI_addtail(&nlaeval->channels, nec);
*nlaeval_snapshot_ensure_slot(&nlaeval->base_snapshot, nec) = &nec->base_snapshot;
*p_key_nec = nec;
*p_key = &nec->key;
return nec;
}
/* Verify that an appropriate NlaEvalChannel for this path exists. */
static NlaEvalChannel *nlaevalchan_verify(PointerRNA *ptr, NlaEvalData *nlaeval, const char *path)
{
if (path == nullptr) {
return nullptr;
}
/* Lookup the path in the path based hash. */
NlaEvalChannel **p_path_nec;
bool found_path = BLI_ghash_ensure_p(nlaeval->path_hash, (void *)path, (void ***)&p_path_nec);
if (found_path) {
return *p_path_nec;
}
/* Cache nullptr result for now. */
*p_path_nec = nullptr;
/* Resolve the property and look it up in the key hash. */
NlaEvalChannelKey key;
if (!RNA_path_resolve_property(ptr, path, &key.ptr, &key.prop)) {
/* Report failure to resolve the path. */
if (G.debug & G_DEBUG) {
CLOG_WARN(&LOG,
"Animato: Invalid path. ID = '%s', '%s'",
(ptr->owner_id) ? (ptr->owner_id->name + 2) : "<No ID>",
path);
}
return nullptr;
}
/* Check that the property can be animated. */
if (ptr->owner_id != nullptr && !RNA_property_animateable(&key.ptr, key.prop)) {
return nullptr;
}
NlaEvalChannel *nec = nlaevalchan_verify_key(nlaeval, path, &key);
if (nec->rna_path == nullptr) {
nec->rna_path = path;
}
return *p_path_nec = nec;
}
/* ---------------------- */
/** \returns true if a solution exists and the output was written to. */
static bool nla_blend_get_inverted_lower_value(const int blendmode,
const float strip_value,
const float blended_value,
const float influence,
float *r_lower_value)
{
if (IS_EQF(influence, 0.0f)) {
*r_lower_value = blended_value;
return true;
}
switch (blendmode) {
case NLASTRIP_MODE_ADD: /* Simply subtract the scaled value on to the stack. */
*r_lower_value = blended_value - (strip_value * influence);
return true;
case NLASTRIP_MODE_SUBTRACT: /* Simply add the scaled value from the stack. */
*r_lower_value = blended_value + (strip_value * influence);
return true;
case NLASTRIP_MODE_MULTIPLY: {
/* Check for division by zero. */
const float denominator = (influence * strip_value + (1.0f - influence));
if (IS_EQF(denominator, 0.0f)) {
/* For 0/0, any r_lower_value is a solution. We'll just choose 1.
*
* Any r_lower_value is a solution. In this case, ideally we would insert redundant
* keyframes, those that don't change the fcurve's shape. Otherwise, we're likely messing
* up interpolation for the animator, requiring further cleanup on their part.
*/
if (IS_EQF(blended_value, 0.0f)) {
/* When denominator==0:
*
* denominator = (inf * strip_value + (1.0f - inf))
* 0 = inf * strip_value + (1-inf)
* -inf * strip_value = 1 - inf
* -strip_value = (1 - inf) / inf
* strip_value = (inf - 1) / inf
* strip_value = 1 - (1/inf)
*
* For blending, nla_blend_value(), this results in:
*
* blended_value = inf * (lower_value * strip_value) + (1 - inf) * lower_value;
* = inf * (lower_value * (1 - (1/inf))) + ...
* = inf * (1 - (1/inf)) * lower_value + ...
* = (inf - (inf/inf)) * lower_value + ...
* = -(inf - 1) * lower_value + (1 - inf) * lower_value;
* blended_value = 0
*
* Effectively, blended_value will equal 0 no matter what lower_value is. Put another
* way, when (blended_value==0 and denominator==0), then lower_value can be any value and
* blending will give us back blended_value=0. We have infinite solutions for this case.
*/
*r_lower_value = 1;
return true;
}
/* No solution for division by zero. */
return false;
}
/* Math:
* blended_value = inf * (lower_value * strip_value) + (1 - inf) * lower_value
* = lower_value * (inf * strip_value + (1-inf))
* lower_value = blended_value / (inf * strip_value + (1-inf))
* lower_value = blended_value / denominator
*/
*r_lower_value = blended_value / denominator;
return true;
}
case NLASTRIP_MODE_COMBINE:
BLI_assert_msg(0, "Use nla_combine_get_inverted_lower_value()");
return false;
case NLASTRIP_MODE_REPLACE:
/* No solution if lower strip has 0 influence. */
if (IS_EQF(influence, 1.0f)) {
return false;
}
/* Math:
*
* blended_value = lower_value * (1.0f - inf) + (strip_value * inf)
* blended_value - (strip_value * inf) = lower_value * (1.0f - inf)
* blended_value - (strip_value * inf) / (1.0f - inf) = lower_value
*
* lower_value = blended_value - (strip_value * inf) / (1.0f - inf)
*/
*r_lower_value = (blended_value - (strip_value * influence)) / (1.0f - influence);
return true;
}
BLI_assert_msg(0, "invalid blend mode");
return false;
}
/** \returns true if solution exists and output written to. */
static bool nla_combine_get_inverted_lower_value(const int mix_mode,
float base_value,
const float strip_value,
const float blended_value,
const float influence,
float *r_lower_value)
{
if (IS_EQF(influence, 0.0f)) {
*r_lower_value = blended_value;
return true;
}
/* Perform blending. */
switch (mix_mode) {
case NEC_MIX_ADD:
case NEC_MIX_AXIS_ANGLE:
*r_lower_value = blended_value - (strip_value - base_value) * influence;
return true;
case NEC_MIX_MULTIPLY: /* Division by zero. */
if (IS_EQF(strip_value, 0.0f)) {
/* Resolve 0/0 to 1.
*
* Any r_lower_value is a solution. In this case, ideally we would insert redundant
* keyframes, those that don't change the fcurve's shape. Otherwise, we're likely messing
* up interpolation for the animator, requiring further cleanup on their part.
*/
if (IS_EQF(blended_value, 0.0f)) {
/* For blending, nla_combine_value(), when `strip_value == 0`:
* \code{.cc}
* blended_value = lower_value * powf(strip_value / base_value, infl);
* blended_value = lower_value * powf(0, infl);
* blended_value = lower_value * 0;
* blended_value = 0;
* \endcode
*
* Effectively, blended_value will equal 0 no matter what lower_value is. Put another
* way, when (blended_value==0 and strip_value==0), then lower_value can be any value and
* blending will give us back blended_value=0. We have infinite solutions for this case.
*/
*r_lower_value = 1.0f;
return true;
}
/* No solution. */
return false;
}
if (IS_EQF(base_value, 0.0f)) {
base_value = 1.0f;
}
*r_lower_value = blended_value / powf(strip_value / base_value, influence);
return true;
case NEC_MIX_QUATERNION:
BLI_assert_msg(0, "Use nla_combine_quaternion_get_inverted_lower_values()");
return false;
}
BLI_assert_msg(0, "Mixmode not implemented");
return false;
}
static void nla_combine_quaternion_get_inverted_lower_values(const float strip_values[4],
const float blended_values[4],
const float influence,
float r_lower_value[4])
{
if (IS_EQF(influence, 0.0f)) {
normalize_qt_qt(r_lower_value, blended_values);
return;
}
/* blended_value = lower_values @ strip_values^infl
* blended_value @ inv(strip_values^inf) = lower_values
*
* Returns: lower_values = blended_value @ inv(strip_values^inf) */
float tmp_strip_values[4], tmp_blended[4];
normalize_qt_qt(tmp_strip_values, strip_values);
normalize_qt_qt(tmp_blended, blended_values);
pow_qt_fl_normalized(tmp_strip_values, influence);
invert_qt_normalized(tmp_strip_values);
mul_qt_qtqt(r_lower_value, tmp_blended, tmp_strip_values);
}
/* Blend the lower nla stack value and upper strip value of a channel according to mode and
* influence. */
static float nla_blend_value(const int blendmode,
const float lower_value,
const float strip_value,
const float influence)
{
/* Optimization: no need to try applying if there is no influence. */
if (IS_EQF(influence, 0.0f)) {
return lower_value;
}
/* Perform blending. */
switch (blendmode) {
case NLASTRIP_MODE_ADD: /* Simply add the scaled value on to the stack. */
return lower_value + (strip_value * influence);
case NLASTRIP_MODE_SUBTRACT: /* Simply subtract the scaled value from the stack. */
return lower_value - (strip_value * influence);
case NLASTRIP_MODE_MULTIPLY: /* Multiply the scaled value with the stack. */
return influence * (lower_value * strip_value) + (1 - influence) * lower_value;
case NLASTRIP_MODE_COMBINE:
BLI_assert_msg(0, "combine mode");
ATTR_FALLTHROUGH;
default: /* TODO: Do we really want to blend by default? it seems more uses might prefer add...
*/
/* Do linear interpolation. The influence of the accumulated data
* (elsewhere, that is called `dstwegiht`) is 1 - influence,
* since the strip's influence is `srcweight`. */
return lower_value * (1.0f - influence) + (strip_value * influence);
}
}
/* Blend the lower nla stack value and upper strip value of a channel according to mode and
* influence. */
static float nla_combine_value(const int mix_mode,
float base_value,
const float lower_value,
const float strip_value,
const float influence)
{
/* Optimization: No need to try applying if there is no influence. */
if (IS_EQF(influence, 0.0f)) {
return lower_value;
}
/* Perform blending */
switch (mix_mode) {
case NEC_MIX_ADD:
case NEC_MIX_AXIS_ANGLE:
return lower_value + (strip_value - base_value) * influence;
case NEC_MIX_MULTIPLY:
if (IS_EQF(base_value, 0.0f)) {
base_value = 1.0f;
}
return lower_value * powf(strip_value / base_value, influence);
default:
BLI_assert_msg(0, "invalid mix mode");
return lower_value;
}
}
/** \returns true if solution exists and output is written to. */
static bool nla_blend_get_inverted_strip_value(const int blendmode,
const float lower_value,
const float blended_value,
const float influence,
float *r_strip_value)
{
/** No solution if strip had 0 influence. */
if (IS_EQF(influence, 0.0f)) {
return false;
}
switch (blendmode) {
case NLASTRIP_MODE_ADD:
*r_strip_value = (blended_value - lower_value) / influence;
return true;
case NLASTRIP_MODE_SUBTRACT:
*r_strip_value = (lower_value - blended_value) / influence;
return true;
case NLASTRIP_MODE_MULTIPLY:
if (IS_EQF(lower_value, 0.0f)) {
/* Resolve 0/0 to 1. */
if (IS_EQF(blended_value, 0.0f)) {
*r_strip_value = 1.0f;
return true;
}
/* Division by zero. */
return false;
}
/** Math:
*
* blended_value = inf * (lower_value * strip_value) + (1 - inf) * lower_value
* blended_value - (1 - inf) * lower_value = inf * (lower_value * strip_value)
* (blended_value - (1 - inf) * lower_value) / (inf * lower_value) = strip_value
* (blended_value - lower_value + inf * lower_value) / (inf * lower_value) = strip_value
* ((blended_value - lower_value) / (inf * lower_value)) + 1 = strip_value
*
* strip_value = ((blended_value - lower_value) / (inf * lower_value)) + 1
*/
*r_strip_value = ((blended_value - lower_value) / (influence * lower_value)) + 1.0f;
return true;
case NLASTRIP_MODE_COMBINE:
BLI_assert_msg(0, "combine mode");
ATTR_FALLTHROUGH;
default:
/** Math:
*
* blended_value = lower_value * (1.0f - inf) + (strip_value * inf)
* blended_value - lower_value * (1.0f - inf) = (strip_value * inf)
* (blended_value - lower_value * (1.0f - inf)) / inf = strip_value
*
* strip_value = (blended_value - lower_value * (1.0f - inf)) / inf
*/
*r_strip_value = (blended_value - lower_value * (1.0f - influence)) / influence;
return true;
}
}
/** \returns true if solution exists and output is written to. */
static bool nla_combine_get_inverted_strip_value(const int mix_mode,
float base_value,
const float lower_value,
const float blended_value,
const float influence,
float *r_strip_value)
{
/* No solution if strip had no influence. */
if (IS_EQF(influence, 0.0f)) {
return false;
}
switch (mix_mode) {
case NEC_MIX_ADD:
case NEC_MIX_AXIS_ANGLE:
*r_strip_value = base_value + (blended_value - lower_value) / influence;
return true;
case NEC_MIX_MULTIPLY:
if (IS_EQF(base_value, 0.0f)) {
base_value = 1.0f;
}
/* Division by zero. */
if (IS_EQF(lower_value, 0.0f)) {
/* Resolve 0/0 to 1. */
if (IS_EQF(blended_value, 0.0f)) {
*r_strip_value = base_value;
return true;
}
/* Division by zero. */
return false;
}
*r_strip_value = base_value * powf(blended_value / lower_value, 1.0f / influence);
return true;
default:
BLI_assert_msg(0, "invalid mix mode");
return false;
}
}
/**
* Accumulate quaternion channels for Combine mode according to influence.
* \returns `blended_value = lower_values @ strip_values^infl`
*/
static void nla_combine_quaternion(const float lower_values[4],
const float strip_values[4],
const float influence,
float r_blended_value[4])
{
float tmp_lower[4], tmp_strip_values[4];
normalize_qt_qt(tmp_lower, lower_values);
normalize_qt_qt(tmp_strip_values, strip_values);
pow_qt_fl_normalized(tmp_strip_values, influence);
mul_qt_qtqt(r_blended_value, tmp_lower, tmp_strip_values);
}
/** \returns true if solution exists and output written to. */
static bool nla_combine_quaternion_get_inverted_strip_values(const float lower_values[4],
const float blended_values[4],
const float influence,
float r_strip_values[4])
{
/* blended_value = lower_values @ r_strip_values^infl
* inv(lower_values) @ blended_value = r_strip_values^infl
* (inv(lower_values) @ blended_value) ^ (1/inf) = r_strip_values
*
* Returns: r_strip_values = (inv(lower_values) @ blended_value) ^ (1/inf) */
if (IS_EQF(influence, 0.0f)) {
return false;
}
float tmp_lower[4], tmp_blended[4];
normalize_qt_qt(tmp_lower, lower_values);
normalize_qt_qt(tmp_blended, blended_values);
invert_qt_normalized(tmp_lower);
mul_qt_qtqt(r_strip_values, tmp_lower, tmp_blended);
pow_qt_fl_normalized(r_strip_values, 1.0f / influence);
return true;
}
/* ---------------------- */
/* Assert necs and necs->channel is nonNull. */
static void nlaevalchan_assert_nonNull(NlaEvalChannelSnapshot *necs)
{
UNUSED_VARS_NDEBUG(necs);
BLI_assert(necs != nullptr && necs->channel != nullptr);
}
/* Assert that the channels given can be blended or combined together. */
static void nlaevalchan_assert_blendOrcombine_compatible(NlaEvalChannelSnapshot *lower_necs,
NlaEvalChannelSnapshot *upper_necs,
NlaEvalChannelSnapshot *blended_necs)
{
UNUSED_VARS_NDEBUG(lower_necs, upper_necs, blended_necs);
BLI_assert(!ELEM(nullptr, lower_necs, blended_necs));
BLI_assert(upper_necs == nullptr || lower_necs->length == upper_necs->length);
BLI_assert(lower_necs->length == blended_necs->length);
}
/**
* Check each remap domain of blended values individually in case animator had a non-combine NLA
* strip with a subset of quaternion channels and remapping through any of them failed and thus
* potentially has undefined values.
*
* \returns true if case occurred and handled. Returns false if case didn't occur.
*/
static bool nlaevalchan_combine_quaternion_handle_undefined_blend_values(
NlaEvalChannelSnapshot *blended_necs, NlaEvalChannelSnapshot *upper_or_lower_necs)
{
for (int j = 0; j < 4; j++) {
if (!BLI_BITMAP_TEST_BOOL(blended_necs->remap_domain.ptr, j)) {
BLI_bitmap_set_all(upper_or_lower_necs->remap_domain.ptr, false, 4);
return true;
}
}
return false;
}
/* Assert that the channels given can be blended or combined together as a quaternion. */
static void nlaevalchan_assert_blendOrcombine_compatible_quaternion(
NlaEvalChannelSnapshot *lower_necs,
NlaEvalChannelSnapshot *upper_necs,
NlaEvalChannelSnapshot *blended_necs)
{
nlaevalchan_assert_blendOrcombine_compatible(lower_necs, upper_necs, blended_necs);
BLI_assert(lower_necs->length == 4);
}
static void nlaevalchan_copy_values(NlaEvalChannelSnapshot *dst, NlaEvalChannelSnapshot *src)
{
memcpy(dst->values, src->values, src->length * sizeof(float));
}
/**
* Copies from lower necs to blended necs if upper necs is nullptr or has zero influence.
* \return true if copied.
*/
static bool nlaevalchan_blendOrcombine_try_copy_from_lower(NlaEvalChannelSnapshot *lower_necs,
NlaEvalChannelSnapshot *upper_necs,
const float upper_influence,
NlaEvalChannelSnapshot *r_blended_necs)
{
const bool has_influence = !IS_EQF(upper_influence, 0.0f);
if (upper_necs != nullptr && has_influence) {
return false;
}
nlaevalchan_copy_values(r_blended_necs, lower_necs);
return true;
}
/**
* Copies to lower necs from blended necs if upper necs is nullptr or has zero influence. If
* successful, copies blended_necs remap domains to lower_necs.
*
* Does not check upper value blend domains.
*
* \return true if copied.
*/
static bool nlaevalchan_blendOrcombine_try_copy_to_lower(NlaEvalChannelSnapshot *blended_necs,
NlaEvalChannelSnapshot *upper_necs,
const float upper_influence,
NlaEvalChannelSnapshot *r_lower_necs)
{
const bool has_influence = !IS_EQF(upper_influence, 0.0f);
if (upper_necs != nullptr && has_influence) {
return false;
}
nlaevalchan_copy_values(r_lower_necs, blended_necs);
/* Must copy remap domain to handle case where some blended values are out of domain. */
BLI_bitmap_copy_all(
r_lower_necs->remap_domain.ptr, blended_necs->remap_domain.ptr, r_lower_necs->length);
return true;
}
/**
* Based on blendmode, blend lower necs with upper necs into blended necs.
*
* Each upper value's blend domain determines whether to blend or to copy directly
* from lower.
*/
static void nlaevalchan_blend_value(NlaEvalChannelSnapshot *lower_necs,
NlaEvalChannelSnapshot *upper_necs,
const int upper_blendmode,
const float upper_influence,
NlaEvalChannelSnapshot *r_blended_necs)
{
nlaevalchan_assert_blendOrcombine_compatible(lower_necs, upper_necs, r_blended_necs);
if (nlaevalchan_blendOrcombine_try_copy_from_lower(
lower_necs, upper_necs, upper_influence, r_blended_necs))
{
return;
}
const int length = lower_necs->length;
for (int j = 0; j < length; j++) {
if (!BLI_BITMAP_TEST_BOOL(upper_necs->blend_domain.ptr, j)) {
r_blended_necs->values[j] = lower_necs->values[j];
continue;
}
r_blended_necs->values[j] = nla_blend_value(
upper_blendmode, lower_necs->values[j], upper_necs->values[j], upper_influence);
}
}
/**
* Based on mix-mode, provided by one the necs,
* combines lower necs with upper necs into blended necs.
*
* Each upper value's blend domain determines whether to blend or to copy directly from lower.
*/
static void nlaevalchan_combine_value(NlaEvalChannelSnapshot *lower_necs,
NlaEvalChannelSnapshot *upper_necs,
const float upper_influence,
NlaEvalChannelSnapshot *r_blended_necs)
{
nlaevalchan_assert_blendOrcombine_compatible(lower_necs, upper_necs, r_blended_necs);
if (nlaevalchan_blendOrcombine_try_copy_from_lower(
lower_necs, upper_necs, upper_influence, r_blended_necs))
{
return;
}
/* Assumes every base is the same. */
float *base_values = lower_necs->channel->base_snapshot.values;
const int length = lower_necs->length;
const char mix_mode = lower_necs->channel->mix_mode;
for (int j = 0; j < length; j++) {
if (!BLI_BITMAP_TEST_BOOL(upper_necs->blend_domain.ptr, j)) {
r_blended_necs->values[j] = lower_necs->values[j];
continue;
}
r_blended_necs->values[j] = nla_combine_value(
mix_mode, base_values[j], lower_necs->values[j], upper_necs->values[j], upper_influence);
}
}
/**
* Quaternion combines lower necs with upper necs into blended necs.
*
* Each upper value's blend domain determines whether to blend or to copy directly
* from lower.
*/
static void nlaevalchan_combine_quaternion(NlaEvalChannelSnapshot *lower_necs,
NlaEvalChannelSnapshot *upper_necs,
const float upper_influence,
NlaEvalChannelSnapshot *r_blended_necs)
{
nlaevalchan_assert_blendOrcombine_compatible_quaternion(lower_necs, upper_necs, r_blended_necs);
if (nlaevalchan_blendOrcombine_try_copy_from_lower(
lower_necs, upper_necs, upper_influence, r_blended_necs))
{
return;
}
/** No need to check per index. We limit to all or nothing combining for quaternions. */
if (!BLI_BITMAP_TEST_BOOL(upper_necs->blend_domain.ptr, 0)) {
nlaevalchan_copy_values(r_blended_necs, lower_necs);
return;
}
nla_combine_quaternion(
lower_necs->values, upper_necs->values, upper_influence, r_blended_necs->values);
}
/**
* Based on blend-mode and mix-mode, blend lower necs with upper necs into blended necs.
*
* Each upper value's blend domain determines whether to blend or to copy directly
* from lower.
*
* \param lower_necs: Never nullptr.
* \param upper_necs: Can be nullptr.
* \param upper_blendmode: Enum value in eNlaStrip_Blend_Mode.
* \param upper_influence: Value in range [0, 1].
* \param upper_necs: Never nullptr.
*/
static void nlaevalchan_blendOrcombine(NlaEvalChannelSnapshot *lower_necs,
NlaEvalChannelSnapshot *upper_necs,
const int upper_blendmode,
const float upper_influence,
NlaEvalChannelSnapshot *r_blended_necs)
{
nlaevalchan_assert_nonNull(r_blended_necs);
switch (upper_blendmode) {
case NLASTRIP_MODE_COMBINE: {
switch (r_blended_necs->channel->mix_mode) {
case NEC_MIX_QUATERNION: {
nlaevalchan_combine_quaternion(lower_necs, upper_necs, upper_influence, r_blended_necs);
return;
}
case NEC_MIX_ADD:
case NEC_MIX_AXIS_ANGLE:
case NEC_MIX_MULTIPLY: {
nlaevalchan_combine_value(lower_necs, upper_necs, upper_influence, r_blended_necs);
return;
}
default:
BLI_assert_msg(0, "Mix mode should've been handled");
}
return;
}
case NLASTRIP_MODE_ADD:
case NLASTRIP_MODE_SUBTRACT:
case NLASTRIP_MODE_MULTIPLY:
case NLASTRIP_MODE_REPLACE: {
nlaevalchan_blend_value(
lower_necs, upper_necs, upper_blendmode, upper_influence, r_blended_necs);
return;
}
default:
BLI_assert_msg(0, "Blend mode should've been handled");
}
}
/**
* Based on blend-mode, solve for the upper values such that when lower blended with upper then we
* get blended values as a result.
*
* Only processes blended values in the remap domain. Successfully remapped upper values are placed
* in the remap domain so caller knows which values are usable.
*/
static void nlaevalchan_blend_value_get_inverted_upper_evalchan(
NlaEvalChannelSnapshot *lower_necs,
NlaEvalChannelSnapshot *blended_necs,
const int upper_blendmode,
const float upper_influence,
NlaEvalChannelSnapshot *r_upper_necs)
{
nlaevalchan_assert_nonNull(r_upper_necs);
nlaevalchan_assert_blendOrcombine_compatible(lower_necs, r_upper_necs, blended_necs);
const int length = lower_necs->length;
for (int j = 0; j < length; j++) {
if (!BLI_BITMAP_TEST_BOOL(blended_necs->remap_domain.ptr, j)) {
BLI_BITMAP_DISABLE(r_upper_necs->remap_domain.ptr, j);
continue;
}
const bool success = nla_blend_get_inverted_strip_value(upper_blendmode,
lower_necs->values[j],
blended_necs->values[j],
upper_influence,
&r_upper_necs->values[j]);
BLI_BITMAP_SET(r_upper_necs->remap_domain.ptr, j, success);
}
}
/**
* Based on mix-mode, solve for the upper values such that when lower combined with upper then we
* get blended values as a result.
*
* Only processes blended values in the remap domain. Successfully remapped upper values are placed
* in the remap domain so caller knows which values are usable.
*/
static void nlaevalchan_combine_value_get_inverted_upper_evalchan(
NlaEvalChannelSnapshot *lower_necs,
NlaEvalChannelSnapshot *blended_necs,
const float upper_influence,
NlaEvalChannelSnapshot *r_upper_necs)
{
nlaevalchan_assert_nonNull(r_upper_necs);
nlaevalchan_assert_blendOrcombine_compatible(lower_necs, r_upper_necs, blended_necs);
/* Assumes every channel's base is the same. */
float *base_values = lower_necs->channel->base_snapshot.values;
const int length = lower_necs->length;
const char mix_mode = lower_necs->channel->mix_mode;
for (int j = 0; j < length; j++) {
if (!BLI_BITMAP_TEST_BOOL(blended_necs->remap_domain.ptr, j)) {
BLI_BITMAP_DISABLE(r_upper_necs->remap_domain.ptr, j);
continue;
}
const bool success = nla_combine_get_inverted_strip_value(mix_mode,
base_values[j],
lower_necs->values[j],
blended_necs->values[j],
upper_influence,
&r_upper_necs->values[j]);
BLI_BITMAP_SET(r_upper_necs->remap_domain.ptr, j, success);
}
}
/**
* Solve for the upper values such that when lower quaternion combined with upper then we get
* blended values as a result.
*
* All blended values must be in the remap domain. If successfully remapped, then all upper values
* are placed in the remap domain so caller knows the result is usable.
*/
static void nlaevalchan_combine_quaternion_get_inverted_upper_evalchan(
NlaEvalChannelSnapshot *lower_necs,
NlaEvalChannelSnapshot *blended_necs,
const float upper_influence,
NlaEvalChannelSnapshot *r_upper_necs)
{
nlaevalchan_assert_nonNull(r_upper_necs);
nlaevalchan_assert_blendOrcombine_compatible_quaternion(lower_necs, r_upper_necs, blended_necs);
if (nlaevalchan_combine_quaternion_handle_undefined_blend_values(blended_necs, r_upper_necs)) {
return;
}
const bool success = nla_combine_quaternion_get_inverted_strip_values(
lower_necs->values, blended_necs->values, upper_influence, r_upper_necs->values);
BLI_bitmap_set_all(r_upper_necs->remap_domain.ptr, success, 4);
}
/**
* Based on blend-mode and mix mode, solve for the upper values such that when lower blended or
* combined with upper then we get blended values as a result.
*
* Only processes blended values in the remap domain. Successfully remapped upper values are placed
* in the remap domain so caller knows which values are usable.
*
* \param lower_necs: Never nullptr.
* \param blended_necs: Never nullptr.
* \param upper_blendmode: Enum value in eNlaStrip_Blend_Mode.
* \param upper_influence: Value in range [0, 1].
* \param r_upper_necs: Never nullptr.
*/
static void nlaevalchan_blendOrcombine_get_inverted_upper_evalchan(
NlaEvalChannelSnapshot *lower_necs,
NlaEvalChannelSnapshot *blended_necs,
const int upper_blendmode,
const float upper_influence,
NlaEvalChannelSnapshot *r_upper_necs)
{
nlaevalchan_assert_nonNull(r_upper_necs);
if (IS_EQF(upper_influence, 0.0f)) {
BLI_bitmap_set_all(r_upper_necs->remap_domain.ptr, false, r_upper_necs->length);
return;
}
switch (upper_blendmode) {
case NLASTRIP_MODE_COMBINE: {
switch (r_upper_necs->channel->mix_mode) {
case NEC_MIX_QUATERNION: {
nlaevalchan_combine_quaternion_get_inverted_upper_evalchan(
lower_necs, blended_necs, upper_influence, r_upper_necs);
return;
}
case NEC_MIX_ADD:
case NEC_MIX_AXIS_ANGLE:
case NEC_MIX_MULTIPLY: {
nlaevalchan_combine_value_get_inverted_upper_evalchan(
lower_necs, blended_necs, upper_influence, r_upper_necs);
return;
}
default:
BLI_assert_msg(0, "Mix mode should've been handled");
}
return;
}
case NLASTRIP_MODE_ADD:
case NLASTRIP_MODE_SUBTRACT:
case NLASTRIP_MODE_MULTIPLY:
case NLASTRIP_MODE_REPLACE: {
nlaevalchan_blend_value_get_inverted_upper_evalchan(
lower_necs, blended_necs, upper_blendmode, upper_influence, r_upper_necs);
return;
}
default:
BLI_assert_msg(0, "Blend mode should've been handled");
}
}
static void nlaevalchan_blend_value_get_inverted_lower_evalchan(
NlaEvalChannelSnapshot *blended_necs,
NlaEvalChannelSnapshot *upper_necs,
const int upper_blendmode,
const float upper_influence,
NlaEvalChannelSnapshot *r_lower_necs)
{
nlaevalchan_assert_blendOrcombine_compatible(r_lower_necs, upper_necs, blended_necs);
if (nlaevalchan_blendOrcombine_try_copy_to_lower(
blended_necs, upper_necs, upper_influence, r_lower_necs))
{
return;
}
const int length = r_lower_necs->length;
for (int j = 0; j < length; j++) {
if (!BLI_BITMAP_TEST_BOOL(blended_necs->remap_domain.ptr, j)) {
BLI_BITMAP_DISABLE(r_lower_necs->remap_domain.ptr, j);
continue;
}
/* If upper value was not blended, then the blended value was directly copied from the lower
* value. */
if (!BLI_BITMAP_TEST_BOOL(upper_necs->blend_domain.ptr, j)) {
r_lower_necs->values[j] = blended_necs->values[j];
BLI_BITMAP_ENABLE(r_lower_necs->remap_domain.ptr, j);
continue;
}
const bool success = nla_blend_get_inverted_lower_value(upper_blendmode,
upper_necs->values[j],
blended_necs->values[j],
upper_influence,
&r_lower_necs->values[j]);
BLI_BITMAP_SET(r_lower_necs->remap_domain.ptr, j, success);
}
}
static void nlaevalchan_combine_value_get_inverted_lower_evalchan(
NlaEvalChannelSnapshot *blended_necs,
NlaEvalChannelSnapshot *upper_necs,
const float upper_influence,
NlaEvalChannelSnapshot *r_lower_necs)
{
nlaevalchan_assert_blendOrcombine_compatible(r_lower_necs, upper_necs, blended_necs);
if (nlaevalchan_blendOrcombine_try_copy_to_lower(
blended_necs, upper_necs, upper_influence, r_lower_necs))
{
return;
}
float *base_values = r_lower_necs->channel->base_snapshot.values;
const int mix_mode = r_lower_necs->channel->mix_mode;
const int length = r_lower_necs->length;
for (int j = 0; j < length; j++) {
if (!BLI_BITMAP_TEST_BOOL(blended_necs->remap_domain.ptr, j)) {
BLI_BITMAP_DISABLE(r_lower_necs->remap_domain.ptr, j);
continue;
}
/* If upper value was not blended, then the blended value was directly copied from the lower
* value. */
if (!BLI_BITMAP_TEST_BOOL(upper_necs->blend_domain.ptr, j)) {
r_lower_necs->values[j] = blended_necs->values[j];
BLI_BITMAP_ENABLE(r_lower_necs->remap_domain.ptr, j);
continue;
}
const bool success = nla_combine_get_inverted_lower_value(mix_mode,
base_values[j],
upper_necs->values[j],
blended_necs->values[j],
upper_influence,
&r_lower_necs->values[j]);
BLI_BITMAP_SET(r_lower_necs->remap_domain.ptr, j, success);
}
}
static void nlaevalchan_combine_quaternion_get_inverted_lower_evalchan(
NlaEvalChannelSnapshot *blended_necs,
NlaEvalChannelSnapshot *upper_necs,
const float upper_influence,
NlaEvalChannelSnapshot *r_lower_necs)
{
nlaevalchan_assert_blendOrcombine_compatible_quaternion(r_lower_necs, upper_necs, blended_necs);
if (nlaevalchan_combine_quaternion_handle_undefined_blend_values(blended_necs, r_lower_necs)) {
return;
}
if (nlaevalchan_blendOrcombine_try_copy_to_lower(
blended_necs, upper_necs, upper_influence, r_lower_necs))
{
return;
}
/* If upper value was not blended, then the blended value was directly copied from the lower
* value. */
if (!BLI_BITMAP_TEST_BOOL(upper_necs->blend_domain.ptr, 0)) {
memcpy(r_lower_necs->values, blended_necs->values, 4 * sizeof(float));
BLI_bitmap_set_all(r_lower_necs->remap_domain.ptr, true, 4);
return;
}
nla_combine_quaternion_get_inverted_lower_values(
upper_necs->values, blended_necs->values, upper_influence, r_lower_necs->values);
BLI_bitmap_set_all(r_lower_necs->remap_domain.ptr, true, 4);
}
/**
* Based on blendmode and mix mode, solve for the lower values such that when lower blended or
* combined with upper then we get blended values as a result.
*
* Only processes blended values in the remap domain. Successfully remapped lower values are placed
* in the remap domain so caller knows which values are usable.
*
* \param blended_necs: Never nullptr.
* \param upper_necs: Can be nullptr.
* \param upper_blendmode: Enum value in eNlaStrip_Blend_Mode.
* \param upper_influence: Value in range [0, 1].
* \param r_lower_necs: Never nullptr.
*/
static void nlaevalchan_blendOrCombine_get_inverted_lower_evalchan(
NlaEvalChannelSnapshot *blended_necs,
NlaEvalChannelSnapshot *upper_necs,
const int upper_blendmode,
const float upper_influence,
NlaEvalChannelSnapshot *r_lower_necs)
{
nlaevalchan_assert_nonNull(r_lower_necs);
switch (upper_blendmode) {
case NLASTRIP_MODE_COMBINE: {
switch (r_lower_necs->channel->mix_mode) {
case NEC_MIX_QUATERNION: {
nlaevalchan_combine_quaternion_get_inverted_lower_evalchan(
blended_necs, upper_necs, upper_influence, r_lower_necs);
return;
}
case NEC_MIX_ADD:
case NEC_MIX_AXIS_ANGLE:
case NEC_MIX_MULTIPLY: {
nlaevalchan_combine_value_get_inverted_lower_evalchan(
blended_necs, upper_necs, upper_influence, r_lower_necs);
return;
}
}
BLI_assert_msg(0, "Mix mode should've been handled");
return;
}
case NLASTRIP_MODE_ADD:
case NLASTRIP_MODE_SUBTRACT:
case NLASTRIP_MODE_MULTIPLY:
case NLASTRIP_MODE_REPLACE: {
nlaevalchan_blend_value_get_inverted_lower_evalchan(
blended_necs, upper_necs, upper_blendmode, upper_influence, r_lower_necs);
return;
}
}
BLI_assert_msg(0, "Blend mode should've been handled");
}
/* ---------------------- */
/* F-Modifier stack joining/separation utilities -
* should we generalize these for BLI_listbase.h interface? */
/* Temporarily join two lists of modifiers together, storing the result in a third list */
static void nlaeval_fmodifiers_join_stacks(ListBase *result, ListBase *list1, ListBase *list2)
{
FModifier *fcm1, *fcm2;
/* if list1 is invalid... */
if (ELEM(nullptr, list1, list1->first)) {
if (list2 && list2->first) {
result->first = list2->first;
result->last = list2->last;
}
}
/* if list 2 is invalid... */
else if (ELEM(nullptr, list2, list2->first)) {
result->first = list1->first;
result->last = list1->last;
}
else {
/* list1 should be added first, and list2 second,
* with the endpoints of these being the endpoints for result
* - the original lists must be left unchanged though, as we need that fact for restoring.
*/
result->first = list1->first;
result->last = list2->last;
fcm1 = static_cast<FModifier *>(list1->last);
fcm2 = static_cast<FModifier *>(list2->first);
fcm1->next = fcm2;
fcm2->prev = fcm1;
}
}
/* Split two temporary lists of modifiers */
static void nlaeval_fmodifiers_split_stacks(ListBase *list1, ListBase *list2)
{
FModifier *fcm1, *fcm2;
/* if list1/2 is invalid... just skip */
if (ELEM(nullptr, list1, list2)) {
return;
}
if (ELEM(nullptr, list1->first, list2->first)) {
return;
}
/* get endpoints */
fcm1 = static_cast<FModifier *>(list1->last);
fcm2 = static_cast<FModifier *>(list2->first);
/* clear their links */
fcm1->next = nullptr;
fcm2->prev = nullptr;
}
/* ---------------------- */
/** Fills \a r_snapshot with the \a action's evaluated fcurve values with modifiers applied. */
static void nlasnapshot_from_action(PointerRNA *ptr,
NlaEvalData *channels,
ListBase *modifiers,
bAction *action,
const float evaltime,
NlaEvalSnapshot *r_snapshot)
{
action_idcode_patch_check(ptr->owner_id, action);
/* Evaluate modifiers which modify time to evaluate the base curves at. */
FModifiersStackStorage storage;
storage.modifier_count = BLI_listbase_count(modifiers);
storage.size_per_modifier = evaluate_fmodifiers_storage_size_per_modifier(modifiers);
storage.buffer = alloca(storage.modifier_count * storage.size_per_modifier);
const float modified_evaltime = evaluate_time_fmodifiers(
&storage, modifiers, nullptr, 0.0f, evaltime);
LISTBASE_FOREACH (FCurve *, fcu, &action->curves) {
if (!is_fcurve_evaluatable(fcu)) {
continue;
}
NlaEvalChannel *nec = nlaevalchan_verify(ptr, channels, fcu->rna_path);
/* Invalid path or property cannot be animated. */
if (nec == nullptr) {
continue;
}
if (!nlaevalchan_validate_index_ex(nec, fcu->array_index)) {
continue;
}
NlaEvalChannelSnapshot *necs = nlaeval_snapshot_ensure_channel(r_snapshot, nec);
float value = evaluate_fcurve(fcu, modified_evaltime);
evaluate_value_fmodifiers(&storage, modifiers, fcu, &value, evaltime);
necs->values[fcu->array_index] = value;
if (nec->mix_mode == NEC_MIX_QUATERNION) {
BLI_bitmap_set_all(necs->blend_domain.ptr, true, 4);
}
else {
BLI_BITMAP_ENABLE(necs->blend_domain.ptr, fcu->array_index);
}
}
}
/* evaluate action-clip strip */
static void nlastrip_evaluate_actionclip(const int evaluation_mode,
PointerRNA *ptr,
NlaEvalData *channels,
ListBase *modifiers,
NlaEvalStrip *nes,
NlaEvalSnapshot *snapshot)
{
NlaStrip *strip = nes->strip;
/* sanity checks for action */
if (strip == nullptr) {
return;
}
if (strip->act == nullptr) {
CLOG_ERROR(&LOG, "NLA-Strip Eval Error: Strip '%s' has no Action", strip->name);
return;
}
ListBase tmp_modifiers = {nullptr, nullptr};
/* join this strip's modifiers to the parent's modifiers (own modifiers first) */
nlaeval_fmodifiers_join_stacks(&tmp_modifiers, &strip->modifiers, modifiers);
switch (evaluation_mode) {
case STRIP_EVAL_BLEND: {
NlaEvalSnapshot strip_snapshot;
nlaeval_snapshot_init(&strip_snapshot, channels, nullptr);
nlasnapshot_from_action(
ptr, channels, &tmp_modifiers, strip->act, strip->strip_time, &strip_snapshot);
nlasnapshot_blend(
channels, snapshot, &strip_snapshot, strip->blendmode, strip->influence, snapshot);
nlaeval_snapshot_free_data(&strip_snapshot);
break;
}
case STRIP_EVAL_BLEND_GET_INVERTED_LOWER_SNAPSHOT: {
NlaEvalSnapshot strip_snapshot;
nlaeval_snapshot_init(&strip_snapshot, channels, nullptr);
nlasnapshot_from_action(
ptr, channels, &tmp_modifiers, strip->act, strip->strip_time, &strip_snapshot);
nlasnapshot_blend_get_inverted_lower_snapshot(
channels, snapshot, &strip_snapshot, strip->blendmode, strip->influence, snapshot);
nlaeval_snapshot_free_data(&strip_snapshot);
break;
}
case STRIP_EVAL_NOBLEND: {
nlasnapshot_from_action(
ptr, channels, &tmp_modifiers, strip->act, strip->strip_time, snapshot);
break;
}
}
/* unlink this strip's modifiers from the parent's modifiers again */
nlaeval_fmodifiers_split_stacks(&strip->modifiers, modifiers);
}
/* evaluate transition strip */
static void nlastrip_evaluate_transition(const int evaluation_mode,
PointerRNA *ptr,
NlaEvalData *channels,
ListBase *modifiers,
NlaEvalStrip *nes,
NlaEvalSnapshot *snapshot,
const AnimationEvalContext *anim_eval_context,
const bool flush_to_original)
{
ListBase tmp_modifiers = {nullptr, nullptr};
NlaEvalSnapshot snapshot1, snapshot2;
NlaEvalStrip tmp_nes;
NlaStrip *s1, *s2;
/* join this strip's modifiers to the parent's modifiers (own modifiers first) */
nlaeval_fmodifiers_join_stacks(&tmp_modifiers, &nes->strip->modifiers, modifiers);
/* get the two strips to operate on
* - we use the endpoints of the strips directly flanking our strip
* using these as the endpoints of the transition (destination and source)
* - these should have already been determined to be valid...
* - if this strip is being played in reverse, we need to swap these endpoints
* otherwise they will be interpolated wrong
*/
if (nes->strip->flag & NLASTRIP_FLAG_REVERSE) {
s1 = nes->strip->next;
s2 = nes->strip->prev;
}
else {
s1 = nes->strip->prev;
s2 = nes->strip->next;
}
switch (evaluation_mode) {
case STRIP_EVAL_BLEND: {
/* prepare template for 'evaluation strip'
* - based on the transition strip's evaluation strip data
* - strip_mode is NES_TIME_TRANSITION_* based on which endpoint
* - strip_time is the 'normalized' (i.e. in-strip) time for evaluation,
* which doubles up as an additional weighting factor for the strip influences
* which allows us to appear to be 'interpolating' between the two extremes
*/
tmp_nes = *nes;
/* evaluate these strips into a temp-buffer (tmp_channels) */
/* FIXME: modifier evaluation here needs some work... */
/* first strip */
tmp_nes.strip_mode = NES_TIME_TRANSITION_START;
tmp_nes.strip = s1;
tmp_nes.strip_time = s1->strip_time;
nlaeval_snapshot_init(&snapshot1, channels, snapshot);
nlasnapshot_blend_strip(ptr,
channels,
&tmp_modifiers,
&tmp_nes,
&snapshot1,
anim_eval_context,
flush_to_original);
/* second strip */
tmp_nes.strip_mode = NES_TIME_TRANSITION_END;
tmp_nes.strip = s2;
tmp_nes.strip_time = s2->strip_time;
nlaeval_snapshot_init(&snapshot2, channels, snapshot);
nlasnapshot_blend_strip(ptr,
channels,
&tmp_modifiers,
&tmp_nes,
&snapshot2,
anim_eval_context,
flush_to_original);
/**
* Replace \a snapshot2 nullptr channels with base or default values so all channels blend.
*/
nlasnapshot_ensure_channels(channels, &snapshot2);
/** Mark all \a snapshot2 channel's values to blend. */
nlasnapshot_enable_all_blend_domain(&snapshot2);
nlasnapshot_blend(
channels, &snapshot1, &snapshot2, NLASTRIP_MODE_REPLACE, nes->strip_time, snapshot);
nlaeval_snapshot_free_data(&snapshot1);
nlaeval_snapshot_free_data(&snapshot2);
break;
}
case STRIP_EVAL_BLEND_GET_INVERTED_LOWER_SNAPSHOT: {
/* No support for remapping values through a transition. Mark all channel values affected by
* transition as non-remappable. */
tmp_nes = *nes;
/* Process first strip. */
tmp_nes.strip = s1;
tmp_nes.strip_time = s1->strip_time;
nlaeval_snapshot_init(&snapshot1, channels, snapshot);
nlasnapshot_blend_strip_no_blend(
ptr, channels, &tmp_modifiers, &tmp_nes, &snapshot1, anim_eval_context);
/* Remove channel values affected by transition from the remap domain. */
LISTBASE_FOREACH (NlaEvalChannel *, nec, &channels->channels) {
NlaEvalChannelSnapshot *necs = nlaeval_snapshot_get(&snapshot1, nec->index);
if (necs == nullptr) {
continue;
}
NlaEvalChannelSnapshot *output_necs = nlaeval_snapshot_ensure_channel(snapshot, nec);
for (int i = 0; i < necs->length; i++) {
if (BLI_BITMAP_TEST_BOOL(necs->blend_domain.ptr, i)) {
BLI_BITMAP_DISABLE(output_necs->remap_domain.ptr, i);
}
}
}
nlaeval_snapshot_free_data(&snapshot1);
/* Process second strip. */
tmp_nes.strip = s2;
tmp_nes.strip_time = s2->strip_time;
nlaeval_snapshot_init(&snapshot2, channels, snapshot);
nlasnapshot_blend_strip_no_blend(
ptr, channels, &tmp_modifiers, &tmp_nes, &snapshot2, anim_eval_context);
/* Remove channel values affected by transition from the remap domain. */
LISTBASE_FOREACH (NlaEvalChannel *, nec, &channels->channels) {
NlaEvalChannelSnapshot *necs = nlaeval_snapshot_get(&snapshot2, nec->index);
if (necs == nullptr) {
continue;
}
NlaEvalChannelSnapshot *output_necs = nlaeval_snapshot_ensure_channel(snapshot, nec);
for (int i = 0; i < necs->length; i++) {
if (BLI_BITMAP_TEST_BOOL(necs->blend_domain.ptr, i)) {
BLI_BITMAP_DISABLE(output_necs->remap_domain.ptr, i);
}
}
}
nlaeval_snapshot_free_data(&snapshot2);
break;
}
case STRIP_EVAL_NOBLEND: {
BLI_assert( !"This case shouldn't occur. Transitions assumed to not reference other "
"transitions. ");
break;
}
}
/* unlink this strip's modifiers from the parent's modifiers again */
nlaeval_fmodifiers_split_stacks(&nes->strip->modifiers, modifiers);
}
/* evaluate meta-strip */
static void nlastrip_evaluate_meta(const int evaluation_mode,
PointerRNA *ptr,
NlaEvalData *channels,
ListBase *modifiers,
NlaEvalStrip *nes,
NlaEvalSnapshot *snapshot,
const AnimationEvalContext *anim_eval_context,
const bool flush_to_original)
{
ListBase tmp_modifiers = {nullptr, nullptr};
NlaStrip *strip = nes->strip;
NlaEvalStrip *tmp_nes;
float evaltime;
/* meta-strip was calculated normally to have some time to be evaluated at
* and here we 'look inside' the meta strip, treating it as a decorated window to
* its child strips, which get evaluated as if they were some tracks on a strip
* (but with some extra modifiers to apply).
*
* NOTE: keep this in sync with animsys_evaluate_nla()
*/
/* join this strip's modifiers to the parent's modifiers (own modifiers first) */
nlaeval_fmodifiers_join_stacks(&tmp_modifiers, &strip->modifiers, modifiers);
/* find the child-strip to evaluate */
evaltime = (nes->strip_time * (strip->end - strip->start)) + strip->start;
AnimationEvalContext child_context = BKE_animsys_eval_context_construct_at(anim_eval_context,
evaltime);
tmp_nes = nlastrips_ctime_get_strip(
nullptr, &strip->strips, -1, &child_context, flush_to_original);
/* Assert currently supported modes. If new mode added, then assertion marks potentially missed
* area.
*
* NOTE: In the future if support is ever added to meta-strips to support nested tracks, then
* STRIP_EVAL_BLEND and STRIP_EVAL_BLEND_GET_INVERTED_LOWER_SNAPSHOT cases are no longer
* equivalent. The output of nlastrips_ctime_get_strip() may return a list of strips. The only
* case difference should be the evaluation order.
*/
BLI_assert(ELEM(evaluation_mode,
STRIP_EVAL_BLEND,
STRIP_EVAL_BLEND_GET_INVERTED_LOWER_SNAPSHOT,
STRIP_EVAL_NOBLEND));
/* directly evaluate child strip into accumulation buffer...
* - there's no need to use a temporary buffer (as it causes issues [#40082])
*/
if (tmp_nes) {
nlastrip_evaluate(evaluation_mode,
ptr,
channels,
&tmp_modifiers,
tmp_nes,
snapshot,
&child_context,
flush_to_original);
/* free temp eval-strip */
MEM_freeN(tmp_nes);
}
/* unlink this strip's modifiers from the parent's modifiers again */
nlaeval_fmodifiers_split_stacks(&strip->modifiers, modifiers);
}
void nlastrip_evaluate(const int evaluation_mode,
PointerRNA *ptr,
NlaEvalData *channels,
ListBase *modifiers,
NlaEvalStrip *nes,
NlaEvalSnapshot *snapshot,
const AnimationEvalContext *anim_eval_context,
const bool flush_to_original)
{
NlaStrip *strip = nes->strip;
/* To prevent potential infinite recursion problems
* (i.e. transition strip, beside meta strip containing a transition
* several levels deep inside it),
* we tag the current strip as being evaluated, and clear this when we leave.
*/
/* TODO: be careful with this flag, since some edit tools may be running and have
* set this while animation playback was running. */
if (strip->flag & NLASTRIP_FLAG_EDIT_TOUCHED) {
return;
}
strip->flag |= NLASTRIP_FLAG_EDIT_TOUCHED;
/* actions to take depend on the type of strip */
switch (strip->type) {
case NLASTRIP_TYPE_CLIP: /* action-clip */
nlastrip_evaluate_actionclip(evaluation_mode, ptr, channels, modifiers, nes, snapshot);
break;
case NLASTRIP_TYPE_TRANSITION: /* transition */
nlastrip_evaluate_transition(evaluation_mode,
ptr,
channels,
modifiers,
nes,
snapshot,
anim_eval_context,
flush_to_original);
break;
case NLASTRIP_TYPE_META: /* meta */
nlastrip_evaluate_meta(evaluation_mode,
ptr,
channels,
modifiers,
nes,
snapshot,
anim_eval_context,
flush_to_original);
break;
default: /* do nothing */
break;
}
/* clear temp recursion safe-check */
strip->flag &= ~NLASTRIP_FLAG_EDIT_TOUCHED;
}
void nlasnapshot_blend_strip(PointerRNA *ptr,
NlaEvalData *channels,
ListBase *modifiers,
NlaEvalStrip *nes,
NlaEvalSnapshot *snapshot,
const AnimationEvalContext *anim_eval_context,
const bool flush_to_original)
{
nlastrip_evaluate(STRIP_EVAL_BLEND,
ptr,
channels,
modifiers,
nes,
snapshot,
anim_eval_context,
flush_to_original);
}
void nlasnapshot_blend_strip_get_inverted_lower_snapshot(
PointerRNA *ptr,
NlaEvalData *channels,
ListBase *modifiers,
NlaEvalStrip *nes,
NlaEvalSnapshot *snapshot,
const AnimationEvalContext *anim_eval_context)
{
nlastrip_evaluate(STRIP_EVAL_BLEND_GET_INVERTED_LOWER_SNAPSHOT,
ptr,
channels,
modifiers,
nes,
snapshot,
anim_eval_context,
false);
}
void nlasnapshot_blend_strip_no_blend(PointerRNA *ptr,
NlaEvalData *channels,
ListBase *modifiers,
NlaEvalStrip *nes,
NlaEvalSnapshot *snapshot,
const AnimationEvalContext *anim_eval_context)
{
nlastrip_evaluate(
STRIP_EVAL_NOBLEND, ptr, channels, modifiers, nes, snapshot, anim_eval_context, false);
}
void nladata_flush_channels(PointerRNA *ptr,
NlaEvalData *channels,
NlaEvalSnapshot *snapshot,
const bool flush_to_original)
{
/* sanity checks */
if (channels == nullptr) {
return;
}
/* for each channel with accumulated values, write its value on the property it affects */
LISTBASE_FOREACH (NlaEvalChannel *, nec, &channels->channels) {
/**
* The bitmask is set for all channels touched by NLA due to the domain() function.
* Channels touched by current set of evaluated strips will have a snapshot channel directly
* from the evaluation snapshot.
*
* This function falls back to the default value if the snapshot channel doesn't exist.
* Thus channels, touched by NLA but not by the current set of evaluated strips, will be
* reset to default. If channel not touched by NLA then it's value is unchanged.
*/
NlaEvalChannelSnapshot *nec_snapshot = nlaeval_snapshot_find_channel(snapshot, nec);
PathResolvedRNA rna = {nec->key.ptr, nec->key.prop, -1};
for (int i = 0; i < nec_snapshot->length; i++) {
if (BLI_BITMAP_TEST(nec->domain.ptr, i)) {
float value = nec_snapshot->values[i];
if (nec->is_array) {
rna.prop_index = i;
}
BKE_animsys_write_to_rna_path(&rna, value);
if (flush_to_original) {
animsys_write_orig_anim_rna(ptr, nec->rna_path, rna.prop_index, value);
}
}
}
}
}
/* ---------------------- */
static void nla_eval_domain_action(PointerRNA *ptr,
NlaEvalData *channels,
bAction *act,
GSet *touched_actions)
{
if (!BLI_gset_add(touched_actions, act)) {
return;
}
LISTBASE_FOREACH (FCurve *, fcu, &act->curves) {
/* check if this curve should be skipped */
if (!is_fcurve_evaluatable(fcu)) {
continue;
}
NlaEvalChannel *nec = nlaevalchan_verify(ptr, channels, fcu->rna_path);
if (nec != nullptr) {
/* For quaternion properties, enable all sub-channels. */
if (nec->mix_mode == NEC_MIX_QUATERNION) {
BLI_bitmap_set_all(nec->domain.ptr, true, 4);
continue;
}
int idx = nlaevalchan_validate_index(nec, fcu->array_index);
if (idx >= 0) {
BLI_BITMAP_ENABLE(nec->domain.ptr, idx);
}
}
}
}
static void nla_eval_domain_strips(PointerRNA *ptr,
NlaEvalData *channels,
ListBase *strips,
GSet *touched_actions)
{
LISTBASE_FOREACH (NlaStrip *, strip, strips) {
/* Check strip's action. */
if (strip->act) {
nla_eval_domain_action(ptr, channels, strip->act, touched_actions);
}
/* Check sub-strips (if meta-strips). */
nla_eval_domain_strips(ptr, channels, &strip->strips, touched_actions);
}
}
/**
* Ensure that all channels touched by any of the actions in enabled tracks exist.
* This is necessary to ensure that evaluation result depends only on current frame.
*/
static void animsys_evaluate_nla_domain(PointerRNA *ptr, NlaEvalData *channels, AnimData *adt)
{
GSet *touched_actions = BLI_gset_ptr_new(__func__);
/* Include domain of Action Track. */
if ((adt->flag & ADT_NLA_EDIT_ON) == 0) {
if (adt->action) {
nla_eval_domain_action(ptr, channels, adt->action, touched_actions);
}
}
else if (adt->tmpact && (adt->flag & ADT_NLA_EVAL_UPPER_TRACKS)) {
nla_eval_domain_action(ptr, channels, adt->tmpact, touched_actions);
}
/* NLA Data - Animation Data for Strips */
LISTBASE_FOREACH (NlaTrack *, nlt, &adt->nla_tracks) {
/* solo and muting are mutually exclusive... */
if (adt->flag & ADT_NLA_SOLO_TRACK) {
/* skip if there is a solo track, but this isn't it */
if ((nlt->flag & NLATRACK_SOLO) == 0) {
continue;
}
/* else - mute doesn't matter */
}
else {
/* no solo tracks - skip track if muted */
if (nlt->flag & NLATRACK_MUTED) {
continue;
}
}
nla_eval_domain_strips(ptr, channels, &nlt->strips, touched_actions);
}
BLI_gset_free(touched_actions, nullptr);
}
/* ---------------------- */
/**
* Tweaked strip is evaluated differently from other strips. Adjacent strips are ignored
* and includes a workaround for when user is not editing in place.
*/
static void animsys_create_tweak_strip(const AnimData *adt,
const bool keyframing_to_strip,
NlaStrip *r_tweak_strip)
{
/* Copy active strip so we can modify how it evaluates without affecting user data. */
memcpy(r_tweak_strip, adt->actstrip, sizeof(NlaStrip));
r_tweak_strip->next = r_tweak_strip->prev = nullptr;
/* If tweaked strip is syncing action length, then evaluate using action length. */
if (r_tweak_strip->flag & NLASTRIP_FLAG_SYNC_LENGTH) {
BKE_nlastrip_recalculate_bounds_sync_action(r_tweak_strip);
}
/* Strips with a user-defined time curve don't get properly remapped for editing
* at the moment, so mapping them just for display may be confusing. */
const bool is_inplace_tweak = !(adt->flag & ADT_NLA_EDIT_NOMAP) &&
!(adt->actstrip->flag & NLASTRIP_FLAG_USR_TIME);
if (!is_inplace_tweak) {
/* Use Hold due to no proper remapping yet (the note above). */
r_tweak_strip->extendmode = NLASTRIP_EXTEND_HOLD;
/* Disable range. */
r_tweak_strip->flag |= NLASTRIP_FLAG_NO_TIME_MAP;
}
/** Controls whether able to keyframe outside range of tweaked strip. */
if (keyframing_to_strip) {
r_tweak_strip->extendmode = (is_inplace_tweak &&
!(r_tweak_strip->flag & NLASTRIP_FLAG_SYNC_LENGTH)) ?
NLASTRIP_EXTEND_NOTHING :
NLASTRIP_EXTEND_HOLD;
}
}
/** Action track and strip are associated with the non-pushed action. */
static void animsys_create_action_track_strip(const AnimData *adt,
const bool keyframing_to_strip,
NlaStrip *r_action_strip)
{
memset(r_action_strip, 0, sizeof(NlaStrip));
bAction *action = adt->action;
if (adt->flag & ADT_NLA_EDIT_ON) {
action = adt->tmpact;
}
/* Set settings of dummy NLA strip from AnimData settings. */
r_action_strip->act = action;
/* Action range is calculated taking F-Modifiers into account
* (which making new strips doesn't do due to the troublesome nature of that). */
BKE_action_frame_range_calc(
r_action_strip->act, true, &r_action_strip->actstart, &r_action_strip->actend);
BKE_nla_clip_length_ensure_nonzero(&r_action_strip->actstart, &r_action_strip->actend);
r_action_strip->start = r_action_strip->actstart;
r_action_strip->end = r_action_strip->actend;
r_action_strip->blendmode = adt->act_blendmode;
r_action_strip->extendmode = adt->act_extendmode;
r_action_strip->influence = adt->act_influence;
/* Must set NLASTRIP_FLAG_USR_INFLUENCE, or else the default setting overrides, and influence
* doesn't work.
*/
r_action_strip->flag |= NLASTRIP_FLAG_USR_INFLUENCE;
const bool tweaking = (adt->flag & ADT_NLA_EDIT_ON) != 0;
const bool soloing = (adt->flag & ADT_NLA_SOLO_TRACK) != 0;
const bool eval_upper = !tweaking || (adt->flag & ADT_NLA_EVAL_UPPER_TRACKS) != 0;
const bool actionstrip_evaluated = r_action_strip->act && !soloing && eval_upper;
if (!actionstrip_evaluated) {
r_action_strip->flag |= NLASTRIP_FLAG_MUTED;
}
/** If we're keyframing, then we must allow keyframing outside fcurve bounds. */
if (keyframing_to_strip) {
r_action_strip->extendmode = NLASTRIP_EXTEND_HOLD;
}
}
static bool is_nlatrack_evaluatable(const AnimData *adt, const NlaTrack *nlt)
{
/* Skip disabled tracks unless it contains the tweaked strip. */
const bool contains_tweak_strip = (adt->flag & ADT_NLA_EDIT_ON) && adt->act_track &&
(nlt->index == adt->act_track->index);
if ((nlt->flag & NLATRACK_DISABLED) && !contains_tweak_strip) {
return false;
}
/* Solo and muting are mutually exclusive. */
if (adt->flag & ADT_NLA_SOLO_TRACK) {
/* Skip if there is a solo track, but this isn't it. */
if ((nlt->flag & NLATRACK_SOLO) == 0) {
return false;
}
}
else {
/* Skip track if muted. */
if (nlt->flag & NLATRACK_MUTED) {
return false;
}
}
return true;
}
/**
* Check for special case of non-pushed action being evaluated with no NLA influence (off and no
* strips evaluated) nor NLA interference (ensure NLA not soloing).
*/
static bool is_action_track_evaluated_without_nla(const AnimData *adt,
const bool any_strip_evaluated)
{
if (adt->action == nullptr) {
return false;
}
if (any_strip_evaluated) {
return false;
}
/** NLA settings interference. */
if ((adt->flag & (ADT_NLA_SOLO_TRACK | ADT_NLA_EDIT_ON)) != 0) {
return false;
}
/** Allow action track to evaluate as if there isn't any NLA data. */
return true;
}
/**
* XXX(Wayde Moss): #BKE_nlatrack_find_tweaked() exists within `nla.cc`, but it doesn't appear to
* work as expected. From #animsys_evaluate_nla_for_flush(), it returns nullptr in tweak mode. I'm
* not sure why. Preferably, it would be as simple as checking for `(adt->act_Track == nlt)` but
* that doesn't work either, neither does comparing indices.
*
* This function is a temporary work around. The first disabled track is always the tweaked track.
*/
static NlaTrack *nlatrack_find_tweaked(const AnimData *adt)
{
if (adt == nullptr) {
return nullptr;
}
/* Since the track itself gets disabled, we want the first disabled. */
LISTBASE_FOREACH (NlaTrack *, nlt, &adt->nla_tracks) {
if (nlt->flag & NLATRACK_DISABLED) {
return nlt;
}
}
return nullptr;
}
/**
* NLA Evaluation function - values are calculated and stored in temporary "NlaEvalChannels"
* \param[out] echannels: Evaluation channels with calculated values
*/
static bool animsys_evaluate_nla_for_flush(NlaEvalData *echannels,
PointerRNA *ptr,
const AnimData *adt,
const AnimationEvalContext *anim_eval_context,
const bool flush_to_original)
{
NlaTrack *nlt;
short track_index = 0;
bool has_strips = false;
ListBase estrips = {nullptr, nullptr};
NlaEvalStrip *nes;
NlaStrip tweak_strip;
NlaTrack *tweaked_track = nlatrack_find_tweaked(adt);
/* Get the stack of strips to evaluate at current time (influence calculated here). */
for (nlt = static_cast<NlaTrack *>(adt->nla_tracks.first); nlt; nlt = nlt->next, track_index++) {
if (!is_nlatrack_evaluatable(adt, nlt)) {
continue;
}
if (nlt->strips.first) {
has_strips = true;
}
/** Append strip to evaluate for this track. */
if (nlt == tweaked_track) {
/** Tweaked strip is evaluated differently. */
animsys_create_tweak_strip(adt, false, &tweak_strip);
nes = nlastrips_ctime_get_strip_single(
&estrips, &tweak_strip, anim_eval_context, flush_to_original);
}
else {
nes = nlastrips_ctime_get_strip(
&estrips, &nlt->strips, track_index, anim_eval_context, flush_to_original);
}
if (nes) {
nes->track = nlt;
}
}
if (is_action_track_evaluated_without_nla(adt, has_strips)) {
BLI_freelistN(&estrips);
return false;
}
NlaStrip action_strip = {nullptr};
animsys_create_action_track_strip(adt, false, &action_strip);
nlastrips_ctime_get_strip_single(&estrips, &action_strip, anim_eval_context, flush_to_original);
/* Per strip, evaluate and accumulate on top of existing channels. */
LISTBASE_FOREACH (NlaEvalStrip *, nes, &estrips) {
nlasnapshot_blend_strip(ptr,
echannels,
nullptr,
nes,
&echannels->eval_snapshot,
anim_eval_context,
flush_to_original);
}
/* Free temporary evaluation data that's not used elsewhere. */
BLI_freelistN(&estrips);
return true;
}
/** Lower blended values are calculated and accumulated into r_context->lower_eval_data. */
static void animsys_evaluate_nla_for_keyframing(PointerRNA *ptr,
const AnimData *adt,
const AnimationEvalContext *anim_eval_context,
NlaKeyframingContext *r_context)
{
if (!r_context) {
return;
}
/* Early out. If NLA track is soloing and tweaked action isn't it, then don't allow keyframe
* insertion. */
if (adt->flag & ADT_NLA_SOLO_TRACK) {
if (!(adt->act_track && (adt->act_track->flag & NLATRACK_SOLO))) {
r_context->eval_strip = nullptr;
return;
}
}
NlaTrack *nlt;
short track_index = 0;
bool has_strips = false;
ListBase *upper_estrips = &r_context->upper_estrips;
ListBase lower_estrips = {nullptr, nullptr};
NlaEvalStrip *nes;
NlaTrack *tweaked_track = nlatrack_find_tweaked(adt);
/* Get the lower stack of strips to evaluate at current time (influence calculated here). */
for (nlt = static_cast<NlaTrack *>(adt->nla_tracks.first); nlt; nlt = nlt->next, track_index++) {
if (!is_nlatrack_evaluatable(adt, nlt)) {
continue;
}
/* Tweaked strip effect should not be stored in any snapshot. */
if (nlt == tweaked_track) {
break;
}
if (nlt->strips.first) {
has_strips = true;
}
/* Get strip to evaluate for this channel. */
nes = nlastrips_ctime_get_strip(
&lower_estrips, &nlt->strips, track_index, anim_eval_context, false);
if (nes) {
nes->track = nlt;
}
}
/* Get the upper stack of strips to evaluate at current time (influence calculated here).
* Var nlt exists only if tweak strip exists. */
if (nlt) {
/* Skip tweaked strip. */
nlt = nlt->next;
track_index++;
for (; nlt; nlt = nlt->next, track_index++) {
if (!is_nlatrack_evaluatable(adt, nlt)) {
continue;
}
if (nlt->strips.first) {
has_strips = true;
}
/* Get strip to evaluate for this channel. */
nes = nlastrips_ctime_get_strip(
upper_estrips, &nlt->strips, track_index, anim_eval_context, false);
}
}
/* NOTE: Although we early out, we can still keyframe to the non-pushed action since the
* keyframe remap function detects (r_context->strip.act == nullptr) and will keyframe without
* remapping. */
if (is_action_track_evaluated_without_nla(adt, has_strips)) {
BLI_freelistN(&lower_estrips);
return;
}
/* Write r_context->eval_strip. */
if (adt->flag & ADT_NLA_EDIT_ON) {
/* Append action_track_strip to upper estrips. */
NlaStrip *action_strip = &r_context->action_track_strip;
animsys_create_action_track_strip(adt, false, action_strip);
nlastrips_ctime_get_strip_single(upper_estrips, action_strip, anim_eval_context, false);
NlaStrip *tweak_strip = &r_context->strip;
animsys_create_tweak_strip(adt, true, tweak_strip);
r_context->eval_strip = nlastrips_ctime_get_strip_single(
nullptr, tweak_strip, anim_eval_context, false);
}
else {
NlaStrip *action_strip = &r_context->strip;
animsys_create_action_track_strip(adt, true, action_strip);
r_context->eval_strip = nlastrips_ctime_get_strip_single(
nullptr, action_strip, anim_eval_context, false);
}
/* If nullptr, then keyframing will fail. No need to do any more processing. */
if (!r_context->eval_strip) {
BLI_freelistN(&lower_estrips);
return;
}
/* If tweak strip is full REPLACE, then lower strips not needed. */
if (r_context->strip.blendmode == NLASTRIP_MODE_REPLACE &&
IS_EQF(r_context->strip.influence, 1.0f))
{
BLI_freelistN(&lower_estrips);
return;
}
/* For each strip, evaluate then accumulate on top of existing channels. */
LISTBASE_FOREACH (NlaEvalStrip *, nes, &lower_estrips) {
nlasnapshot_blend_strip(ptr,
&r_context->lower_eval_data,
nullptr,
nes,
&r_context->lower_eval_data.eval_snapshot,
anim_eval_context,
false);
}
/* Free temporary evaluation data that's not used elsewhere. */
BLI_freelistN(&lower_estrips);
}
/* NLA Evaluation function (mostly for use through do_animdata)
* - All channels that will be affected are not cleared anymore. Instead, we just evaluate into
* some temp channels, where values can be accumulated in one go.
*/
static void animsys_calculate_nla(PointerRNA *ptr,
AnimData *adt,
const AnimationEvalContext *anim_eval_context,
const bool flush_to_original)
{
NlaEvalData echannels;
nlaeval_init(&echannels);
/* evaluate the NLA stack, obtaining a set of values to flush */
if (animsys_evaluate_nla_for_flush(&echannels, ptr, adt, anim_eval_context, flush_to_original)) {
/* reset any channels touched by currently inactive actions to default value */
animsys_evaluate_nla_domain(ptr, &echannels, adt);
/* flush effects of accumulating channels in NLA to the actual data they affect */
nladata_flush_channels(ptr, &echannels, &echannels.eval_snapshot, flush_to_original);
}
else {
/* special case - evaluate as if there isn't any NLA data */
/* TODO: this is really just a stop-gap measure... */
if (G.debug & G_DEBUG) {
CLOG_WARN(&LOG, "NLA Eval: Stopgap for active action on NLA Stack - no strips case");
}
animsys_evaluate_action(ptr, adt->action, anim_eval_context, flush_to_original);
}
/* free temp data */
nlaeval_free(&echannels);
}
/* ---------------------- */
void nlasnapshot_enable_all_blend_domain(NlaEvalSnapshot *snapshot)
{
for (int i = 0; i < snapshot->size; i++) {
NlaEvalChannelSnapshot *necs = nlaeval_snapshot_get(snapshot, i);
if (necs == nullptr) {
continue;
}
BLI_bitmap_set_all(necs->blend_domain.ptr, true, necs->length);
}
}
void nlasnapshot_ensure_channels(NlaEvalData *eval_data, NlaEvalSnapshot *snapshot)
{
LISTBASE_FOREACH (NlaEvalChannel *, nec, &eval_data->channels) {
nlaeval_snapshot_ensure_channel(snapshot, nec);
}
}
void nlasnapshot_blend(NlaEvalData *eval_data,
NlaEvalSnapshot *lower_snapshot,
NlaEvalSnapshot *upper_snapshot,
const short upper_blendmode,
const float upper_influence,
NlaEvalSnapshot *r_blended_snapshot)
{
nlaeval_snapshot_ensure_size(r_blended_snapshot, eval_data->num_channels);
LISTBASE_FOREACH (NlaEvalChannel *, nec, &eval_data->channels) {
NlaEvalChannelSnapshot *upper_necs = nlaeval_snapshot_get(upper_snapshot, nec->index);
NlaEvalChannelSnapshot *lower_necs = nlaeval_snapshot_get(lower_snapshot, nec->index);
if (upper_necs == nullptr && lower_necs == nullptr) {
continue;
}
/** Blend with lower_snapshot's base or default. */
if (lower_necs == nullptr) {
lower_necs = nlaeval_snapshot_find_channel(lower_snapshot->base, nec);
}
NlaEvalChannelSnapshot *result_necs = nlaeval_snapshot_ensure_channel(r_blended_snapshot, nec);
nlaevalchan_blendOrcombine(
lower_necs, upper_necs, upper_blendmode, upper_influence, result_necs);
}
}
void nlasnapshot_blend_get_inverted_upper_snapshot(NlaEvalData *eval_data,
NlaEvalSnapshot *lower_snapshot,
NlaEvalSnapshot *blended_snapshot,
const short upper_blendmode,
const float upper_influence,
NlaEvalSnapshot *r_upper_snapshot)
{
nlaeval_snapshot_ensure_size(r_upper_snapshot, eval_data->num_channels);
LISTBASE_FOREACH (NlaEvalChannel *, nec, &eval_data->channels) {
NlaEvalChannelSnapshot *blended_necs = nlaeval_snapshot_get(blended_snapshot, nec->index);
if (blended_necs == nullptr) {
/** We assume the caller only wants a subset of channels to be inverted, those that exist
* within \a blended_snapshot. */
continue;
}
NlaEvalChannelSnapshot *lower_necs = nlaeval_snapshot_get(lower_snapshot, nec->index);
if (lower_necs == nullptr) {
lower_necs = nlaeval_snapshot_find_channel(lower_snapshot->base, nec);
}
NlaEvalChannelSnapshot *result_necs = nlaeval_snapshot_ensure_channel(r_upper_snapshot, nec);
nlaevalchan_blendOrcombine_get_inverted_upper_evalchan(
lower_necs, blended_necs, upper_blendmode, upper_influence, result_necs);
}
}
void nlasnapshot_blend_get_inverted_lower_snapshot(NlaEvalData *eval_data,
NlaEvalSnapshot *blended_snapshot,
NlaEvalSnapshot *upper_snapshot,
const short upper_blendmode,
const float upper_influence,
NlaEvalSnapshot *r_lower_snapshot)
{
nlaeval_snapshot_ensure_size(r_lower_snapshot, eval_data->num_channels);
LISTBASE_FOREACH (NlaEvalChannel *, nec, &eval_data->channels) {
NlaEvalChannelSnapshot *blended_necs = nlaeval_snapshot_get(blended_snapshot, nec->index);
if (blended_necs == nullptr) {
/* We assume the caller only wants a subset of channels to be inverted, those that exist
* within \a blended_snapshot. */
continue;
}
NlaEvalChannelSnapshot *upper_necs = nlaeval_snapshot_get(upper_snapshot, nec->index);
NlaEvalChannelSnapshot *result_necs = nlaeval_snapshot_ensure_channel(r_lower_snapshot, nec);
nlaevalchan_blendOrCombine_get_inverted_lower_evalchan(
blended_necs, upper_necs, upper_blendmode, upper_influence, result_necs);
}
}
/* ---------------------- */
NlaKeyframingContext *BKE_animsys_get_nla_keyframing_context(
ListBase *cache, PointerRNA *ptr, AnimData *adt, const AnimationEvalContext *anim_eval_context)
{
/* No remapping needed if NLA is off or no action. */
if ((adt == nullptr) || (adt->action == nullptr) || (adt->nla_tracks.first == nullptr) ||
(adt->flag & ADT_NLA_EVAL_OFF))
{
return nullptr;
}
/* No remapping if editing an ordinary Replace action with full influence and upper tracks not
* evaluated. */
if (!(adt->flag & ADT_NLA_EDIT_ON) &&
(adt->act_blendmode == NLASTRIP_MODE_REPLACE && adt->act_influence == 1.0f) &&
(adt->flag & ADT_NLA_EVAL_UPPER_TRACKS) == 0)
{
return nullptr;
}
/* Try to find a cached context. */
NlaKeyframingContext *ctx = static_cast<NlaKeyframingContext *>(
BLI_findptr(cache, adt, offsetof(NlaKeyframingContext, adt)));
if (ctx == nullptr) {
/* Allocate and evaluate a new context. */
ctx = static_cast<NlaKeyframingContext *>(MEM_callocN(sizeof(*ctx), "NlaKeyframingContext"));
ctx->adt = adt;
nlaeval_init(&ctx->lower_eval_data);
animsys_evaluate_nla_for_keyframing(ptr, adt, anim_eval_context, ctx);
BLI_assert(ELEM(ctx->strip.act, nullptr, adt->action));
BLI_addtail(cache, ctx);
}
return ctx;
}
void BKE_animsys_nla_remap_keyframe_values(NlaKeyframingContext *context,
PointerRNA *prop_ptr,
PropertyRNA *prop,
const blender::MutableSpan<float> values,
int index,
const AnimationEvalContext *anim_eval_context,
bool *r_force_all,
BLI_bitmap *r_successful_remaps)
{
const int count = values.size();
BLI_bitmap_set_all(r_successful_remaps, false, count);
if (r_force_all != nullptr) {
*r_force_all = false;
}
BLI_bitmap *remap_domain = BLI_BITMAP_NEW(count, __func__);
for (int i = 0; i < count; i++) {
if (!ELEM(index, i, -1)) {
continue;
}
BLI_BITMAP_ENABLE(remap_domain, i);
}
/* No context means no correction. */
if (context == nullptr || context->strip.act == nullptr) {
BLI_bitmap_copy_all(r_successful_remaps, remap_domain, count);
MEM_freeN(remap_domain);
return;
}
/* If the strip is not evaluated, it is the same as zero influence. */
if (context->eval_strip == nullptr) {
MEM_freeN(remap_domain);
return;
}
/* Full influence Replace strips also require no correction if there are no upper tracks
* evaluating. */
int blend_mode = context->strip.blendmode;
float influence = context->strip.influence;
if (blend_mode == NLASTRIP_MODE_REPLACE && influence == 1.0f &&
BLI_listbase_is_empty(&context->upper_estrips))
{
BLI_bitmap_copy_all(r_successful_remaps, remap_domain, count);
MEM_freeN(remap_domain);
return;
}
/* Zero influence is division by zero. */
if (influence <= 0.0f) {
MEM_freeN(remap_domain);
return;
}
/** Create \a blended_snapshot and fill with input \a values. */
NlaEvalData *eval_data = &context->lower_eval_data;
NlaEvalSnapshot blended_snapshot;
nlaeval_snapshot_init(&blended_snapshot, eval_data, nullptr);
NlaEvalChannelKey key{};
key.ptr = *prop_ptr;
key.prop = prop;
NlaEvalChannel *nec = nlaevalchan_verify_key(eval_data, nullptr, &key);
BLI_assert(nec);
if (nec->base_snapshot.length != count) {
BLI_assert_msg(0, "invalid value count");
nlaeval_snapshot_free_data(&blended_snapshot);
MEM_freeN(remap_domain);
return;
}
NlaEvalChannelSnapshot *blended_necs = nlaeval_snapshot_ensure_channel(&blended_snapshot, nec);
std::copy(values.begin(), values.end(), blended_necs->values);
/* Force all channels to be remapped for quaternions in a Combine or Replace strip, otherwise it
* will always fail. See nlaevalchan_combine_quaternion_handle_undefined_blend_values().
*/
const bool can_force_all = r_force_all != nullptr;
if (blended_necs->channel->mix_mode == NEC_MIX_QUATERNION &&
ELEM(blend_mode, NLASTRIP_MODE_COMBINE, NLASTRIP_MODE_REPLACE) && can_force_all)
{
*r_force_all = true;
index = -1;
BLI_bitmap_set_all(remap_domain, true, 4);
}
BLI_bitmap_copy_all(blended_necs->remap_domain.ptr, remap_domain, count);
/* Need to send id_ptr instead of prop_ptr so fcurve RNA paths resolve properly. */
PointerRNA id_ptr = RNA_id_pointer_create(prop_ptr->owner_id);
/* Per iteration, remove effect of upper strip which gives output of nla stack below it. */
LISTBASE_FOREACH_BACKWARD (NlaEvalStrip *, nes, &context->upper_estrips) {
/* This will disable blended_necs->remap_domain bits if an upper strip is not invertible
* (full replace, multiply zero, or transition). Then there is no remap solution. */
nlasnapshot_blend_strip_get_inverted_lower_snapshot(
&id_ptr, eval_data, nullptr, nes, &blended_snapshot, anim_eval_context);
}
/** Remove lower NLA stack effects. */
nlasnapshot_blend_get_inverted_upper_snapshot(eval_data,
&context->lower_eval_data.eval_snapshot,
&blended_snapshot,
blend_mode,
influence,
&blended_snapshot);
/* Write results into \a values for successfully remapped values. */
for (int i = 0; i < count; i++) {
if (!BLI_BITMAP_TEST_BOOL(blended_necs->remap_domain.ptr, i)) {
continue;
}
values[i] = blended_necs->values[i];
}
BLI_bitmap_copy_all(r_successful_remaps, blended_necs->remap_domain.ptr, blended_necs->length);
nlaeval_snapshot_free_data(&blended_snapshot);
MEM_freeN(remap_domain);
}
void BKE_animsys_free_nla_keyframing_context_cache(ListBase *cache)
{
LISTBASE_FOREACH (NlaKeyframingContext *, ctx, cache) {
MEM_SAFE_FREE(ctx->eval_strip);
BLI_freelistN(&ctx->upper_estrips);
nlaeval_free(&ctx->lower_eval_data);
}
BLI_freelistN(cache);
}
/* ***************************************** */
/* Overrides System - Public API */
/* Evaluate Overrides */
static void animsys_evaluate_overrides(PointerRNA *ptr, AnimData *adt)
{
/* for each override, simply execute... */
LISTBASE_FOREACH (AnimOverride *, aor, &adt->overrides) {
PathResolvedRNA anim_rna;
if (BKE_animsys_rna_path_resolve(ptr, aor->rna_path, aor->array_index, &anim_rna)) {
BKE_animsys_write_to_rna_path(&anim_rna, aor->value);
}
}
}
/* ***************************************** */
/* Evaluation System - Public API */
/* Overview of how this system works:
* 1) Depsgraph sorts data as necessary, so that data is in an order that means
* that all dependencies are resolved before dependents.
* 2) All normal animation is evaluated, so that drivers have some basis values to
* work with
* a. NLA stacks are done first, as the Active Actions act as 'tweaking' tracks
* which modify the effects of the NLA-stacks
* b. Active Action is evaluated as per normal, on top of the results of the NLA tracks
*
* --------------< often in a separate phase... >------------------
*
* 3) Drivers/expressions are evaluated on top of this, in an order where dependencies are
* resolved nicely.
* NOTE: it may be necessary to have some tools to handle the cases where some higher-level
* drivers are added and cause some problematic dependencies that
* didn't exist in the local levels...
*
* --------------< always executed >------------------
*
* Maintenance of editability of settings (XXX):
* - In order to ensure that settings that are animated can still be manipulated in the UI without
* requiring that keyframes are added to prevent these values from being overwritten,
* we use 'overrides'.
*
* Unresolved things:
* - Handling of multi-user settings (i.e. time-offset, group-instancing) -> big cache grids
* or nodal system? but stored where?
* - Multiple-block dependencies
* (i.e. drivers for settings are in both local and higher levels) -> split into separate lists?
*
* Current Status:
* - Currently (as of September 2009), overrides we haven't needed to (fully) implement overrides.
* However, the code for this is relatively harmless, so is left in the code for now.
*/
void BKE_animsys_evaluate_animdata(ID *id,
AnimData *adt,
const AnimationEvalContext *anim_eval_context,
eAnimData_Recalc recalc,
const bool flush_to_original)
{
/* sanity checks */
if (ELEM(nullptr, id, adt)) {
return;
}
/* get pointer to ID-block for RNA to use */
PointerRNA id_ptr = RNA_id_pointer_create(id);
/* recalculate keyframe data:
* - NLA before Active Action, as Active Action behaves as 'tweaking track'
* that overrides 'rough' work in NLA
*/
/* TODO: need to double check that this all works correctly */
if (recalc & ADT_RECALC_ANIM) {
/* evaluate NLA data */
if ((adt->nla_tracks.first) && !(adt->flag & ADT_NLA_EVAL_OFF)) {
/* evaluate NLA-stack
* - active action is evaluated as part of the NLA stack as the last item
*/
animsys_calculate_nla(&id_ptr, adt, anim_eval_context, flush_to_original);
}
/* evaluate Active Action only */
else if (adt->action) {
animsys_evaluate_action(&id_ptr, adt->action, anim_eval_context, flush_to_original);
}
}
/* recalculate drivers
* - Drivers need to be evaluated afterwards, as they can either override
* or be layered on top of existing animation data.
* - Drivers should be in the appropriate order to be evaluated without problems...
*/
if (recalc & ADT_RECALC_DRIVERS) {
animsys_evaluate_drivers(&id_ptr, adt, anim_eval_context);
}
/* always execute 'overrides'
* - Overrides allow editing, by overwriting the value(s) set from animation-data, with the
* value last set by the user (and not keyframed yet).
* - Overrides are cleared upon frame change and/or keyframing
* - It is best that we execute this every time, so that no errors are likely to occur.
*/
animsys_evaluate_overrides(&id_ptr, adt);
}
void BKE_animsys_evaluate_all_animation(Main *main, Depsgraph *depsgraph, float ctime)
{
ID *id;
if (G.debug & G_DEBUG) {
printf("Evaluate all animation - %f\n", ctime);
}
const bool flush_to_original = DEG_is_active(depsgraph);
const AnimationEvalContext anim_eval_context = BKE_animsys_eval_context_construct(depsgraph,
ctime);
/* macros for less typing
* - only evaluate animation data for id if it has users (and not just fake ones)
* - whether animdata exists is checked for by the evaluation function, though taking
* this outside of the function may make things slightly faster?
*/
#define EVAL_ANIM_IDS(first, aflag) \
for (id = static_cast<ID *>(first); id; id = static_cast<ID *>(id->next)) { \
if (ID_REAL_USERS(id) > 0) { \
AnimData *adt = BKE_animdata_from_id(id); \
BKE_animsys_evaluate_animdata(id, adt, &anim_eval_context, aflag, flush_to_original); \
} \
} \
(void)0
/* Another macro for the "embedded" node-tree cases
* - This is like #EVAL_ANIM_IDS, but this handles the case "embedded node-trees"
* (i.e. `scene/material/texture->nodetree`) which we need a special exception
* for, otherwise they'd get skipped.
* - `ntp` stands for "node tree parent" = data-block where node tree stuff resides.
*/
#define EVAL_ANIM_NODETREE_IDS(first, NtId_Type, aflag) \
for (id = static_cast<ID *>(first); id; id = static_cast<ID *>(id->next)) { \
if (ID_REAL_USERS(id) > 0) { \
AnimData *adt = BKE_animdata_from_id(id); \
NtId_Type *ntp = (NtId_Type *)id; \
if (ntp->nodetree) { \
AnimData *adt2 = BKE_animdata_from_id((ID *)ntp->nodetree); \
BKE_animsys_evaluate_animdata( \
&ntp->nodetree->id, adt2, &anim_eval_context, ADT_RECALC_ANIM, flush_to_original); \
} \
BKE_animsys_evaluate_animdata(id, adt, &anim_eval_context, aflag, flush_to_original); \
} \
} \
(void)0
/* optimization:
* when there are no actions, don't go over database and loop over heaps of data-blocks,
* which should ultimately be empty, since it is not possible for now to have any animation
* without some actions, and drivers wouldn't get affected by any state changes
*
* however, if there are some curves, we will need to make sure that their 'ctime' property gets
* set correctly, so this optimization must be skipped in that case...
*/
if (BLI_listbase_is_empty(&main->actions) && BLI_listbase_is_empty(&main->curves)) {
if (G.debug & G_DEBUG) {
printf("\tNo Actions, so no animation needs to be evaluated...\n");
}
return;
}
/* nodes */
EVAL_ANIM_IDS(main->nodetrees.first, ADT_RECALC_ANIM);
/* textures */
EVAL_ANIM_NODETREE_IDS(main->textures.first, Tex, ADT_RECALC_ANIM);
/* lights */
EVAL_ANIM_NODETREE_IDS(main->lights.first, Light, ADT_RECALC_ANIM);
/* materials */
EVAL_ANIM_NODETREE_IDS(main->materials.first, Material, ADT_RECALC_ANIM);
/* cameras */
EVAL_ANIM_IDS(main->cameras.first, ADT_RECALC_ANIM);
/* shapekeys */
EVAL_ANIM_IDS(main->shapekeys.first, ADT_RECALC_ANIM);
/* metaballs */
EVAL_ANIM_IDS(main->metaballs.first, ADT_RECALC_ANIM);
/* curves */
EVAL_ANIM_IDS(main->curves.first, ADT_RECALC_ANIM);
/* armatures */
EVAL_ANIM_IDS(main->armatures.first, ADT_RECALC_ANIM);
/* lattices */
EVAL_ANIM_IDS(main->lattices.first, ADT_RECALC_ANIM);
/* meshes */
EVAL_ANIM_IDS(main->meshes.first, ADT_RECALC_ANIM);
/* particles */
EVAL_ANIM_IDS(main->particles.first, ADT_RECALC_ANIM);
/* speakers */
EVAL_ANIM_IDS(main->speakers.first, ADT_RECALC_ANIM);
/* movie clips */
EVAL_ANIM_IDS(main->movieclips.first, ADT_RECALC_ANIM);
/* linestyles */
EVAL_ANIM_IDS(main->linestyles.first, ADT_RECALC_ANIM);
/* grease pencil */
EVAL_ANIM_IDS(main->gpencils.first, ADT_RECALC_ANIM);
/* palettes */
EVAL_ANIM_IDS(main->palettes.first, ADT_RECALC_ANIM);
/* cache files */
EVAL_ANIM_IDS(main->cachefiles.first, ADT_RECALC_ANIM);
/* Hair Curves. */
EVAL_ANIM_IDS(main->hair_curves.first, ADT_RECALC_ANIM);
/* pointclouds */
EVAL_ANIM_IDS(main->pointclouds.first, ADT_RECALC_ANIM);
/* volumes */
EVAL_ANIM_IDS(main->volumes.first, ADT_RECALC_ANIM);
/* objects */
/* ADT_RECALC_ANIM doesn't need to be supplied here, since object AnimData gets
* this tagged by Depsgraph on frame-change. This optimization means that objects
* linked from other (not-visible) scenes will not need their data calculated.
*/
EVAL_ANIM_IDS(main->objects.first, eAnimData_Recalc(0));
/* masks */
EVAL_ANIM_IDS(main->masks.first, ADT_RECALC_ANIM);
/* worlds */
EVAL_ANIM_NODETREE_IDS(main->worlds.first, World, ADT_RECALC_ANIM);
/* scenes */
EVAL_ANIM_NODETREE_IDS(main->scenes.first, Scene, ADT_RECALC_ANIM);
}
/* ***************************************** */
/* ************** */
/* Evaluation API */
void BKE_animsys_eval_animdata(Depsgraph *depsgraph, ID *id)
{
float ctime = DEG_get_ctime(depsgraph);
AnimData *adt = BKE_animdata_from_id(id);
/* XXX: this is only needed for flushing RNA updates,
* which should get handled as part of the dependency graph instead. */
DEG_debug_print_eval_time(depsgraph, __func__, id->name, id, ctime);
const bool flush_to_original = DEG_is_active(depsgraph);
const AnimationEvalContext anim_eval_context = BKE_animsys_eval_context_construct(depsgraph,
ctime);
BKE_animsys_evaluate_animdata(id, adt, &anim_eval_context, ADT_RECALC_ANIM, flush_to_original);
}
void BKE_animsys_update_driver_array(ID *id)
{
AnimData *adt = BKE_animdata_from_id(id);
/* Runtime driver map to avoid O(n^2) lookups in BKE_animsys_eval_driver.
* Ideally the depsgraph could pass a pointer to the COW driver directly,
* but this is difficult in the current design. */
if (adt && adt->drivers.first) {
BLI_assert(!adt->driver_array);
int num_drivers = BLI_listbase_count(&adt->drivers);
adt->driver_array = static_cast<FCurve **>(
MEM_mallocN(sizeof(FCurve *) * num_drivers, "adt->driver_array"));
int driver_index = 0;
LISTBASE_FOREACH (FCurve *, fcu, &adt->drivers) {
adt->driver_array[driver_index++] = fcu;
}
}
}
void BKE_animsys_eval_driver(Depsgraph *depsgraph, ID *id, int driver_index, FCurve *fcu_orig)
{
BLI_assert(fcu_orig != nullptr);
/* TODO(sergey): De-duplicate with BKE animsys. */
bool ok = false;
/* Lookup driver, accelerated with driver array map. */
const AnimData *adt = BKE_animdata_from_id(id);
FCurve *fcu;
if (adt->driver_array) {
fcu = adt->driver_array[driver_index];
}
else {
fcu = static_cast<FCurve *>(BLI_findlink(&adt->drivers, driver_index));
}
DEG_debug_print_eval_subdata_index(
depsgraph, __func__, id->name, id, "fcu", fcu->rna_path, fcu, fcu->array_index);
PointerRNA id_ptr = RNA_id_pointer_create(id);
/* check if this driver's curve should be skipped */
if ((fcu->flag & (FCURVE_MUTED | FCURVE_DISABLED)) == 0) {
/* check if driver itself is tagged for recalculation */
/* XXX driver recalc flag is not set yet by depsgraph! */
ChannelDriver *driver_orig = fcu_orig->driver;
if ((driver_orig) && !(driver_orig->flag & DRIVER_FLAG_INVALID)) {
/* evaluate this using values set already in other places
* NOTE: for 'layering' option later on, we should check if we should remove old value before
* adding new to only be done when drivers only changed */
// printf("\told val = %f\n", fcu->curval);
PathResolvedRNA anim_rna;
if (BKE_animsys_rna_path_resolve(&id_ptr, fcu->rna_path, fcu->array_index, &anim_rna)) {
/* Evaluate driver, and write results to COW-domain destination */
const float ctime = DEG_get_ctime(depsgraph);
const AnimationEvalContext anim_eval_context = BKE_animsys_eval_context_construct(
depsgraph, ctime);
const float curval = calculate_fcurve(&anim_rna, fcu, &anim_eval_context);
ok = BKE_animsys_write_to_rna_path(&anim_rna, curval);
/* Flush results & status codes to original data for UI (#59984) */
if (ok && DEG_is_active(depsgraph)) {
animsys_write_orig_anim_rna(&id_ptr, fcu->rna_path, fcu->array_index, curval);
/* curval is displayed in the UI, and flag contains error-status codes */
fcu_orig->curval = fcu->curval;
driver_orig->curval = fcu->driver->curval;
driver_orig->flag = fcu->driver->flag;
DriverVar *dvar_orig = static_cast<DriverVar *>(driver_orig->variables.first);
DriverVar *dvar = static_cast<DriverVar *>(fcu->driver->variables.first);
for (; dvar_orig && dvar; dvar_orig = dvar_orig->next, dvar = dvar->next) {
DriverTarget *dtar_orig = &dvar_orig->targets[0];
DriverTarget *dtar = &dvar->targets[0];
for (int i = 0; i < MAX_DRIVER_TARGETS; i++, dtar_orig++, dtar++) {
dtar_orig->flag = dtar->flag;
}
dvar_orig->curval = dvar->curval;
dvar_orig->flag = dvar->flag;
}
}
}
/* set error-flag if evaluation failed */
if (ok == 0) {
CLOG_WARN(&LOG, "invalid driver - %s[%d]", fcu->rna_path, fcu->array_index);
driver_orig->flag |= DRIVER_FLAG_INVALID;
}
}
}
}