tornavis/source/blender/blenkernel/intern/effect.cc

1411 lines
40 KiB
C++

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#include <cstdarg>
#include <cstddef>
#include <cmath>
#include <cstdlib>
#include "MEM_guardedalloc.h"
#include "DNA_collection_types.h"
#include "DNA_curve_types.h"
#include "DNA_listBase.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_force_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "BLI_blenlib.h"
#include "BLI_ghash.h"
#include "BLI_math_base_safe.h"
#include "BLI_math_matrix.h"
#include "BLI_math_rotation.h"
#include "BLI_math_vector.h"
#include "BLI_noise.h"
#include "BLI_rand.h"
#include "BLI_utildefines.h"
#include "PIL_time.h"
#include "BKE_anim_path.h" /* needed for where_on_path */
#include "BKE_bvhutils.hh"
#include "BKE_collection.h"
#include "BKE_collision.h"
#include "BKE_curve.hh"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_fluid.h"
#include "BKE_global.h"
#include "BKE_layer.h"
#include "BKE_mesh.hh"
#include "BKE_modifier.hh"
#include "BKE_object.hh"
#include "BKE_object_types.hh"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "DEG_depsgraph.hh"
#include "DEG_depsgraph_physics.hh"
#include "DEG_depsgraph_query.hh"
#include "RE_texture.h"
EffectorWeights *BKE_effector_add_weights(Collection *collection)
{
EffectorWeights *weights = static_cast<EffectorWeights *>(
MEM_callocN(sizeof(EffectorWeights), "EffectorWeights"));
for (int i = 0; i < NUM_PFIELD_TYPES; i++) {
weights->weight[i] = 1.0f;
}
weights->global_gravity = 1.0f;
weights->group = collection;
return weights;
}
PartDeflect *BKE_partdeflect_new(int type)
{
PartDeflect *pd;
pd = static_cast<PartDeflect *>(MEM_callocN(sizeof(PartDeflect), "PartDeflect"));
pd->forcefield = type;
pd->pdef_sbdamp = 0.1f;
pd->pdef_sbift = 0.2f;
pd->pdef_sboft = 0.02f;
pd->pdef_cfrict = 5.0f;
pd->seed = (uint(ceil(PIL_check_seconds_timer())) + 1) % 128;
pd->f_strength = 1.0f;
pd->f_damp = 1.0f;
/* set sensible defaults based on type */
switch (type) {
case PFIELD_VORTEX:
pd->shape = PFIELD_SHAPE_PLANE;
break;
case PFIELD_WIND:
pd->shape = PFIELD_SHAPE_PLANE;
pd->f_flow = 1.0f; /* realistic wind behavior */
pd->f_wind_factor = 1.0f; /* only act perpendicularly to a surface */
break;
case PFIELD_TEXTURE:
pd->f_size = 1.0f;
break;
case PFIELD_FLUIDFLOW:
pd->f_flow = 1.0f;
break;
}
pd->flag = PFIELD_DO_LOCATION | PFIELD_DO_ROTATION | PFIELD_CLOTH_USE_CULLING;
return pd;
}
/************************ PARTICLES ***************************/
PartDeflect *BKE_partdeflect_copy(const PartDeflect *pd_src)
{
if (pd_src == nullptr) {
return nullptr;
}
PartDeflect *pd_dst = static_cast<PartDeflect *>(MEM_dupallocN(pd_src));
if (pd_dst->rng != nullptr) {
pd_dst->rng = BLI_rng_copy(pd_dst->rng);
}
return pd_dst;
}
void BKE_partdeflect_free(PartDeflect *pd)
{
if (!pd) {
return;
}
if (pd->rng) {
BLI_rng_free(pd->rng);
}
MEM_freeN(pd);
}
/******************** EFFECTOR RELATIONS ***********************/
static void precalculate_effector(Depsgraph *depsgraph, EffectorCache *eff)
{
float ctime = DEG_get_ctime(depsgraph);
uint cfra = uint(ctime >= 0 ? ctime : -ctime);
if (!eff->pd->rng) {
eff->pd->rng = BLI_rng_new(eff->pd->seed + cfra);
}
else {
BLI_rng_srandom(eff->pd->rng, eff->pd->seed + cfra);
}
if (eff->pd->forcefield == PFIELD_GUIDE && eff->ob->type == OB_CURVES_LEGACY) {
Curve *cu = static_cast<Curve *>(eff->ob->data);
if (cu->flag & CU_PATH) {
if (eff->ob->runtime->curve_cache == nullptr ||
eff->ob->runtime->curve_cache->anim_path_accum_length == nullptr)
{
BKE_displist_make_curveTypes(depsgraph, eff->scene, eff->ob, false);
}
if (eff->ob->runtime->curve_cache->anim_path_accum_length) {
BKE_where_on_path(
eff->ob, 0.0, eff->guide_loc, eff->guide_dir, nullptr, &eff->guide_radius, nullptr);
mul_m4_v3(eff->ob->object_to_world, eff->guide_loc);
mul_mat3_m4_v3(eff->ob->object_to_world, eff->guide_dir);
}
}
}
else if (eff->pd->shape == PFIELD_SHAPE_SURFACE) {
eff->surmd = (SurfaceModifierData *)BKE_modifiers_findby_type(eff->ob, eModifierType_Surface);
if (eff->ob->type == OB_CURVES_LEGACY) {
eff->flag |= PE_USE_NORMAL_DATA;
}
}
else if (eff->psys) {
psys_update_particle_tree(eff->psys, ctime);
}
}
static void add_effector_relation(ListBase *relations,
Object *ob,
ParticleSystem *psys,
PartDeflect *pd)
{
EffectorRelation *relation = static_cast<EffectorRelation *>(
MEM_callocN(sizeof(EffectorRelation), "EffectorRelation"));
relation->ob = ob;
relation->psys = psys;
relation->pd = pd;
BLI_addtail(relations, relation);
}
static void add_effector_evaluation(ListBase **effectors,
Depsgraph *depsgraph,
Scene *scene,
Object *ob,
ParticleSystem *psys,
PartDeflect *pd)
{
if (*effectors == nullptr) {
*effectors = static_cast<ListBase *>(MEM_callocN(sizeof(ListBase), "effector effectors"));
}
EffectorCache *eff = static_cast<EffectorCache *>(
MEM_callocN(sizeof(EffectorCache), "EffectorCache"));
eff->depsgraph = depsgraph;
eff->scene = scene;
eff->ob = ob;
eff->psys = psys;
eff->pd = pd;
eff->frame = -1;
BLI_addtail(*effectors, eff);
precalculate_effector(depsgraph, eff);
}
ListBase *BKE_effector_relations_create(Depsgraph *depsgraph,
const Scene *scene,
ViewLayer *view_layer,
Collection *collection)
{
Base *base = BKE_collection_or_layer_objects(scene, view_layer, collection);
const bool for_render = (DEG_get_mode(depsgraph) == DAG_EVAL_RENDER);
const int base_flag = (for_render) ? BASE_ENABLED_RENDER : BASE_ENABLED_VIEWPORT;
ListBase *relations = static_cast<ListBase *>(
MEM_callocN(sizeof(ListBase), "effector relations"));
for (; base; base = base->next) {
if (!(base->flag & base_flag)) {
continue;
}
Object *ob = base->object;
if (ob->pd && ob->pd->forcefield) {
add_effector_relation(relations, ob, nullptr, ob->pd);
}
LISTBASE_FOREACH (ParticleSystem *, psys, &ob->particlesystem) {
ParticleSettings *part = psys->part;
if (psys_check_enabled(ob, psys, for_render)) {
if (part->pd && part->pd->forcefield) {
add_effector_relation(relations, ob, psys, part->pd);
}
if (part->pd2 && part->pd2->forcefield) {
add_effector_relation(relations, ob, psys, part->pd2);
}
}
}
}
return relations;
}
void BKE_effector_relations_free(ListBase *lb)
{
if (lb) {
BLI_freelistN(lb);
MEM_freeN(lb);
}
}
/* Check that the force field isn't disabled via its flags. */
static bool is_effector_enabled(PartDeflect *pd, bool use_rotation)
{
switch (pd->forcefield) {
case PFIELD_BOID:
case PFIELD_GUIDE:
return true;
case PFIELD_TEXTURE:
return (pd->flag & PFIELD_DO_LOCATION) != 0 && pd->tex != nullptr;
default:
if (use_rotation) {
return (pd->flag & (PFIELD_DO_LOCATION | PFIELD_DO_ROTATION)) != 0;
}
else {
return (pd->flag & PFIELD_DO_LOCATION) != 0;
}
}
}
/* Check that the force field won't have zero effect due to strength settings. */
static bool is_effector_nonzero_strength(PartDeflect *pd)
{
if (pd->f_strength != 0.0f) {
return true;
}
if (pd->forcefield == PFIELD_TEXTURE) {
return false;
}
if (pd->f_noise > 0.0f || pd->f_flow != 0.0f) {
return true;
}
switch (pd->forcefield) {
case PFIELD_BOID:
case PFIELD_GUIDE:
return true;
case PFIELD_VORTEX:
return pd->shape != PFIELD_SHAPE_POINT;
case PFIELD_DRAG:
return pd->f_damp != 0.0f;
default:
return false;
}
}
/* Check if the force field will affect its user. */
static bool is_effector_relevant(PartDeflect *pd, EffectorWeights *weights, bool use_rotation)
{
return (weights->weight[pd->forcefield] != 0.0f) && is_effector_enabled(pd, use_rotation) &&
is_effector_nonzero_strength(pd);
}
ListBase *BKE_effectors_create(Depsgraph *depsgraph,
Object *ob_src,
ParticleSystem *psys_src,
EffectorWeights *weights,
bool use_rotation)
{
Scene *scene = DEG_get_evaluated_scene(depsgraph);
ListBase *relations = DEG_get_effector_relations(depsgraph, weights->group);
ListBase *effectors = nullptr;
if (!relations) {
return nullptr;
}
LISTBASE_FOREACH (EffectorRelation *, relation, relations) {
/* Get evaluated object. */
Object *ob = (Object *)DEG_get_evaluated_id(depsgraph, &relation->ob->id);
if (relation->psys) {
/* Get evaluated particle system. */
ParticleSystem *psys = static_cast<ParticleSystem *>(BLI_findstring(
&ob->particlesystem, relation->psys->name, offsetof(ParticleSystem, name)));
ParticleSettings *part = psys->part;
if (psys == psys_src && (part->flag & PART_SELF_EFFECT) == 0) {
continue;
}
PartDeflect *pd = (relation->pd == relation->psys->part->pd) ? part->pd : part->pd2;
if (!is_effector_relevant(pd, weights, use_rotation)) {
continue;
}
add_effector_evaluation(&effectors, depsgraph, scene, ob, psys, pd);
}
else {
/* Object effector. */
if (ob == ob_src) {
continue;
}
if (!is_effector_relevant(ob->pd, weights, use_rotation)) {
continue;
}
if (ob->pd->shape == PFIELD_SHAPE_POINTS && BKE_object_get_evaluated_mesh(ob) == nullptr) {
continue;
}
add_effector_evaluation(&effectors, depsgraph, scene, ob, nullptr, ob->pd);
}
}
return effectors;
}
void BKE_effectors_free(ListBase *lb)
{
if (lb) {
LISTBASE_FOREACH (EffectorCache *, eff, lb) {
if (eff->guide_data) {
MEM_freeN(eff->guide_data);
}
}
BLI_freelistN(lb);
MEM_freeN(lb);
}
}
void pd_point_from_particle(ParticleSimulationData *sim,
ParticleData *pa,
ParticleKey *state,
EffectedPoint *point)
{
ParticleSettings *part = sim->psys->part;
point->loc = state->co;
point->vel = state->vel;
point->index = pa - sim->psys->particles;
point->size = pa->size;
point->charge = 0.0f;
if (part->pd && part->pd->forcefield == PFIELD_CHARGE) {
point->charge += part->pd->f_strength;
}
if (part->pd2 && part->pd2->forcefield == PFIELD_CHARGE) {
point->charge += part->pd2->f_strength;
}
point->vel_to_sec = 1.0f;
point->vel_to_frame = psys_get_timestep(sim);
point->flag = 0;
if (sim->psys->part->flag & PART_ROT_DYN) {
point->ave = state->ave;
point->rot = state->rot;
}
else {
point->ave = point->rot = nullptr;
}
point->psys = sim->psys;
}
void pd_point_from_loc(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
{
point->loc = loc;
point->vel = vel;
point->index = index;
point->size = 0.0f;
point->vel_to_sec = float(scene->r.frs_sec);
point->vel_to_frame = 1.0f;
point->flag = 0;
point->ave = point->rot = nullptr;
point->psys = nullptr;
}
void pd_point_from_soft(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
{
point->loc = loc;
point->vel = vel;
point->index = index;
point->size = 0.0f;
point->vel_to_sec = float(scene->r.frs_sec);
point->vel_to_frame = 1.0f;
point->flag = PE_WIND_AS_SPEED;
point->ave = point->rot = nullptr;
point->psys = nullptr;
}
/************************************************/
/* Effectors */
/************************************************/
// triangle - ray callback function
static void eff_tri_ray_hit(void * /*user_data*/,
int /*index*/,
const BVHTreeRay * /*ray*/,
BVHTreeRayHit *hit)
{
/* whenever we hit a bounding box, we don't check further */
hit->dist = -1;
hit->index = 1;
}
/**
* Get visibility of a wind ray.
*/
static float eff_calc_visibility(ListBase *colliders,
EffectorCache *eff,
EffectorData *efd,
EffectedPoint *point)
{
const int raycast_flag = BVH_RAYCAST_DEFAULT & ~BVH_RAYCAST_WATERTIGHT;
ListBase *colls = colliders;
float norm[3], len = 0.0;
float visibility = 1.0, absorption = 0.0;
if (!(eff->pd->flag & PFIELD_VISIBILITY)) {
return visibility;
}
if (!colls) {
colls = BKE_collider_cache_create(eff->depsgraph, eff->ob, nullptr);
}
if (!colls) {
return visibility;
}
negate_v3_v3(norm, efd->vec_to_point);
len = normalize_v3(norm);
/* check all collision objects */
LISTBASE_FOREACH (ColliderCache *, col, colls) {
CollisionModifierData *collmd = col->collmd;
if (col->ob == eff->ob) {
continue;
}
if (collmd->bvhtree) {
BVHTreeRayHit hit;
hit.index = -1;
hit.dist = len + FLT_EPSILON;
/* check if the way is blocked */
if (BLI_bvhtree_ray_cast_ex(collmd->bvhtree,
point->loc,
norm,
0.0f,
&hit,
eff_tri_ray_hit,
nullptr,
raycast_flag) != -1)
{
absorption = col->ob->pd->absorption;
/* visibility is only between 0 and 1, calculated from 1-absorption */
visibility *= CLAMPIS(1.0f - absorption, 0.0f, 1.0f);
if (visibility <= 0.0f) {
break;
}
}
}
}
if (!colliders) {
BKE_collider_cache_free(&colls);
}
return visibility;
}
/* Noise function for wind e.g. */
static float wind_func(RNG *rng, float strength)
{
int random = (BLI_rng_get_int(rng) + 1) % 128; /* max 2357 */
float force = BLI_rng_get_float(rng) + 1.0f;
float ret;
float sign = 0;
/* Dividing by 2 is not giving equal sign distribution. */
sign = (float(random) > 64.0f) ? 1.0f : -1.0f;
ret = sign * (float(random) / force) * strength / 128.0f;
return ret;
}
/* maxdist: zero effect from this distance outwards (if usemax) */
/* mindist: full effect up to this distance (if usemin) */
/* power: falloff with formula 1/r^power */
static float falloff_func(
float fac, int usemin, float mindist, int usemax, float maxdist, float power)
{
/* first quick checks */
if (usemax && fac > maxdist) {
return 0.0f;
}
if (usemin && fac < mindist) {
return 1.0f;
}
if (!usemin) {
mindist = 0.0;
}
return pow(double(1.0f + fac - mindist), double(-power));
}
static float falloff_func_dist(PartDeflect *pd, float fac)
{
return falloff_func(fac,
pd->flag & PFIELD_USEMIN,
pd->mindist,
pd->flag & PFIELD_USEMAX,
pd->maxdist,
pd->f_power);
}
static float falloff_func_rad(PartDeflect *pd, float fac)
{
return falloff_func(fac,
pd->flag & PFIELD_USEMINR,
pd->minrad,
pd->flag & PFIELD_USEMAXR,
pd->maxrad,
pd->f_power_r);
}
float effector_falloff(EffectorCache *eff,
EffectorData *efd,
EffectedPoint * /*point*/,
EffectorWeights *weights)
{
float temp[3];
float falloff = weights ? weights->weight[0] * weights->weight[eff->pd->forcefield] : 1.0f;
float fac, r_fac;
fac = dot_v3v3(efd->nor, efd->vec_to_point2);
if (eff->pd->zdir == PFIELD_Z_POS && fac < 0.0f) {
falloff = 0.0f;
}
else if (eff->pd->zdir == PFIELD_Z_NEG && fac > 0.0f) {
falloff = 0.0f;
}
else {
switch (eff->pd->falloff) {
case PFIELD_FALL_SPHERE:
falloff *= falloff_func_dist(eff->pd, efd->distance);
break;
case PFIELD_FALL_TUBE:
falloff *= falloff_func_dist(eff->pd, fabsf(fac));
if (falloff == 0.0f) {
break;
}
madd_v3_v3v3fl(temp, efd->vec_to_point2, efd->nor, -fac);
r_fac = len_v3(temp);
falloff *= falloff_func_rad(eff->pd, r_fac);
break;
case PFIELD_FALL_CONE:
falloff *= falloff_func_dist(eff->pd, fabsf(fac));
if (falloff == 0.0f) {
break;
}
r_fac = RAD2DEGF(safe_acosf(fac / len_v3(efd->vec_to_point2)));
falloff *= falloff_func_rad(eff->pd, r_fac);
break;
}
}
return falloff;
}
bool closest_point_on_surface(SurfaceModifierData *surmd,
const float co[3],
float surface_co[3],
float surface_nor[3],
float surface_vel[3])
{
BVHTreeFromMesh *bvhtree = surmd->runtime.bvhtree;
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
BLI_bvhtree_find_nearest(bvhtree->tree, co, &nearest, bvhtree->nearest_callback, bvhtree);
if (nearest.index != -1) {
copy_v3_v3(surface_co, nearest.co);
if (surface_nor) {
copy_v3_v3(surface_nor, nearest.no);
}
if (surface_vel) {
const int *corner_verts = bvhtree->corner_verts;
const MLoopTri *lt = &bvhtree->looptri[nearest.index];
copy_v3_v3(surface_vel, surmd->runtime.vert_velocities[corner_verts[lt->tri[0]]]);
add_v3_v3(surface_vel, surmd->runtime.vert_velocities[corner_verts[lt->tri[1]]]);
add_v3_v3(surface_vel, surmd->runtime.vert_velocities[corner_verts[lt->tri[2]]]);
mul_v3_fl(surface_vel, (1.0f / 3.0f));
}
return true;
}
return false;
}
bool get_effector_data(EffectorCache *eff,
EffectorData *efd,
EffectedPoint *point,
int real_velocity)
{
float cfra = DEG_get_ctime(eff->depsgraph);
bool ret = false;
/* In case surface object is in Edit mode when loading the .blend,
* surface modifier is never executed and bvhtree never built, see #48415. */
if (eff->pd && eff->pd->shape == PFIELD_SHAPE_SURFACE && eff->surmd &&
eff->surmd->runtime.bvhtree) {
/* closest point in the object surface is an effector */
float vec[3];
/* using velocity corrected location allows for easier sliding over effector surface */
copy_v3_v3(vec, point->vel);
mul_v3_fl(vec, point->vel_to_frame);
add_v3_v3(vec, point->loc);
ret = closest_point_on_surface(
eff->surmd, vec, efd->loc, efd->nor, real_velocity ? efd->vel : nullptr);
efd->size = 0.0f;
}
else if (eff->pd && eff->pd->shape == PFIELD_SHAPE_POINTS) {
/* TODO: hair and points object support */
const Mesh *me_eval = BKE_object_get_evaluated_mesh(eff->ob);
const blender::Span<blender::float3> positions = me_eval->vert_positions();
const blender::Span<blender::float3> vert_normals = me_eval->vert_normals();
if (me_eval != nullptr) {
copy_v3_v3(efd->loc, positions[*efd->index]);
copy_v3_v3(efd->nor, vert_normals[*efd->index]);
mul_m4_v3(eff->ob->object_to_world, efd->loc);
mul_mat3_m4_v3(eff->ob->object_to_world, efd->nor);
normalize_v3(efd->nor);
efd->size = 0.0f;
ret = true;
}
}
else if (eff->psys) {
ParticleData *pa = eff->psys->particles + *efd->index;
ParticleKey state;
/* exclude the particle itself for self effecting particles */
if (eff->psys == point->psys && *efd->index == point->index) {
/* pass */
}
else {
ParticleSimulationData sim = {nullptr};
sim.depsgraph = eff->depsgraph;
sim.scene = eff->scene;
sim.ob = eff->ob;
sim.psys = eff->psys;
/* TODO: time from actual previous calculated frame (step might not be 1) */
state.time = cfra - 1.0f;
ret = psys_get_particle_state(&sim, *efd->index, &state, false);
/* TODO */
// if (eff->pd->forcefiled == PFIELD_HARMONIC && ret==0) {
// if (pa->dietime < eff->psys->cfra)
// eff->flag |= PE_VELOCITY_TO_IMPULSE;
//}
copy_v3_v3(efd->loc, state.co);
/* rather than use the velocity use rotated x-axis (defaults to velocity) */
efd->nor[0] = 1.0f;
efd->nor[1] = efd->nor[2] = 0.0f;
mul_qt_v3(state.rot, efd->nor);
if (real_velocity) {
copy_v3_v3(efd->vel, state.vel);
}
efd->size = pa->size;
}
}
else {
/* use center of object for distance calculus */
const Object *ob = eff->ob;
/* Use z-axis as normal. */
normalize_v3_v3(efd->nor, ob->object_to_world[2]);
if (eff->pd && ELEM(eff->pd->shape, PFIELD_SHAPE_PLANE, PFIELD_SHAPE_LINE)) {
float temp[3], translate[3];
sub_v3_v3v3(temp, point->loc, ob->object_to_world[3]);
project_v3_v3v3(translate, temp, efd->nor);
/* for vortex the shape chooses between old / new force */
if (eff->pd->forcefield == PFIELD_VORTEX || eff->pd->shape == PFIELD_SHAPE_LINE) {
add_v3_v3v3(efd->loc, ob->object_to_world[3], translate);
}
else { /* Normally `efd->loc` is closest point on effector XY-plane. */
sub_v3_v3v3(efd->loc, point->loc, translate);
}
}
else {
copy_v3_v3(efd->loc, ob->object_to_world[3]);
}
zero_v3(efd->vel);
efd->size = 0.0f;
ret = true;
}
if (ret) {
sub_v3_v3v3(efd->vec_to_point, point->loc, efd->loc);
efd->distance = len_v3(efd->vec_to_point);
/* Rest length for harmonic effector,
* will have to see later if this could be extended to other effectors. */
if (eff->pd && eff->pd->forcefield == PFIELD_HARMONIC && eff->pd->f_size) {
mul_v3_fl(efd->vec_to_point, (efd->distance - eff->pd->f_size) / efd->distance);
}
if (eff->flag & PE_USE_NORMAL_DATA) {
copy_v3_v3(efd->vec_to_point2, efd->vec_to_point);
copy_v3_v3(efd->nor2, efd->nor);
}
else {
/* for some effectors we need the object center every time */
sub_v3_v3v3(efd->vec_to_point2, point->loc, eff->ob->object_to_world[3]);
normalize_v3_v3(efd->nor2, eff->ob->object_to_world[2]);
}
}
return ret;
}
static void get_effector_tot(
EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int *tot, int *p, int *step)
{
*p = 0;
efd->index = p;
if (eff->pd->shape == PFIELD_SHAPE_POINTS) {
/* TODO: hair and points object support */
const Mesh *me_eval = BKE_object_get_evaluated_mesh(eff->ob);
*tot = me_eval != nullptr ? me_eval->totvert : 1;
if (*tot && eff->pd->forcefield == PFIELD_HARMONIC && point->index >= 0) {
*p = point->index % *tot;
*tot = *p + 1;
}
}
else if (eff->psys) {
*tot = eff->psys->totpart;
if (eff->pd->forcefield == PFIELD_CHARGE) {
/* Only the charge of the effected particle is used for
* interaction, not fall-offs. If the fall-offs aren't the
* same this will be nonphysical, but for animation this
* could be the wanted behavior. If you want physical
* correctness the fall-off should be spherical 2.0 anyways.
*/
efd->charge = eff->pd->f_strength;
}
else if (eff->pd->forcefield == PFIELD_HARMONIC &&
(eff->pd->flag & PFIELD_MULTIPLE_SPRINGS) == 0) {
/* every particle is mapped to only one harmonic effector particle */
*p = point->index % eff->psys->totpart;
*tot = *p + 1;
}
if (eff->psys->part->effector_amount) {
int totpart = eff->psys->totpart;
int amount = eff->psys->part->effector_amount;
*step = (totpart > amount) ? int(ceil(float(totpart) / float(amount))) : 1;
}
}
else {
*tot = 1;
}
}
static void do_texture_effector(EffectorCache *eff,
EffectorData *efd,
EffectedPoint *point,
float *total_force)
{
TexResult result[4];
float tex_co[3], strength, force[3];
float nabla = eff->pd->tex_nabla;
int hasrgb;
short mode = eff->pd->tex_mode;
if (!eff->pd->tex) {
return;
}
strength = eff->pd->f_strength * efd->falloff;
copy_v3_v3(tex_co, point->loc);
if (eff->pd->flag & PFIELD_TEX_OBJECT) {
mul_m4_v3(eff->ob->world_to_object, tex_co);
if (eff->pd->flag & PFIELD_TEX_2D) {
tex_co[2] = 0.0f;
}
}
else if (eff->pd->flag & PFIELD_TEX_2D) {
float fac = -dot_v3v3(tex_co, efd->nor);
madd_v3_v3fl(tex_co, efd->nor, fac);
}
hasrgb = multitex_ext(
eff->pd->tex, tex_co, nullptr, nullptr, 0, result, 0, nullptr, true, false);
if (hasrgb && mode == PFIELD_TEX_RGB) {
force[0] = (0.5f - result->trgba[0]) * strength;
force[1] = (0.5f - result->trgba[1]) * strength;
force[2] = (0.5f - result->trgba[2]) * strength;
}
else if (nabla != 0) {
strength /= nabla;
tex_co[0] += nabla;
multitex_ext(eff->pd->tex, tex_co, nullptr, nullptr, 0, result + 1, 0, nullptr, true, false);
tex_co[0] -= nabla;
tex_co[1] += nabla;
multitex_ext(eff->pd->tex, tex_co, nullptr, nullptr, 0, result + 2, 0, nullptr, true, false);
tex_co[1] -= nabla;
tex_co[2] += nabla;
multitex_ext(eff->pd->tex, tex_co, nullptr, nullptr, 0, result + 3, 0, nullptr, true, false);
if (mode == PFIELD_TEX_GRAD || !hasrgb) { /* if we don't have rgb fall back to grad */
/* generate intensity if texture only has rgb value */
if (hasrgb & TEX_RGB) {
for (int i = 0; i < 4; i++) {
result[i].tin = (1.0f / 3.0f) *
(result[i].trgba[0] + result[i].trgba[1] + result[i].trgba[2]);
}
}
force[0] = (result[0].tin - result[1].tin) * strength;
force[1] = (result[0].tin - result[2].tin) * strength;
force[2] = (result[0].tin - result[3].tin) * strength;
}
else { /*PFIELD_TEX_CURL*/
float dbdy, dgdz, drdz, dbdx, dgdx, drdy;
dbdy = result[2].trgba[2] - result[0].trgba[2];
dgdz = result[3].trgba[1] - result[0].trgba[1];
drdz = result[3].trgba[0] - result[0].trgba[0];
dbdx = result[1].trgba[2] - result[0].trgba[2];
dgdx = result[1].trgba[1] - result[0].trgba[1];
drdy = result[2].trgba[0] - result[0].trgba[0];
force[0] = (dbdy - dgdz) * strength;
force[1] = (drdz - dbdx) * strength;
force[2] = (dgdx - drdy) * strength;
}
}
else {
zero_v3(force);
}
if (eff->pd->flag & PFIELD_TEX_2D) {
float fac = -dot_v3v3(force, efd->nor);
madd_v3_v3fl(force, efd->nor, fac);
}
if (eff->pd->flag & PFIELD_DO_LOCATION) {
add_v3_v3(total_force, force);
}
}
static void do_physical_effector(EffectorCache *eff,
EffectorData *efd,
EffectedPoint *point,
float *total_force)
{
PartDeflect *pd = eff->pd;
RNG *rng = pd->rng;
float force[3] = {0, 0, 0};
float temp[3];
float fac;
float strength = pd->f_strength;
float damp = pd->f_damp;
float noise_factor = pd->f_noise;
float flow_falloff = efd->falloff;
if (noise_factor > 0.0f) {
strength += wind_func(rng, noise_factor);
if (ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG)) {
damp += wind_func(rng, noise_factor);
}
}
copy_v3_v3(force, efd->vec_to_point);
switch (pd->forcefield) {
case PFIELD_WIND:
copy_v3_v3(force, efd->nor);
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_FORCE:
normalize_v3(force);
if (pd->flag & PFIELD_GRAVITATION) { /* Option: Multiply by 1/distance^2 */
if (efd->distance < FLT_EPSILON) {
strength = 0.0f;
}
else {
strength *= powf(efd->distance, -2.0f);
}
}
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_VORTEX:
/* old vortex force */
if (pd->shape == PFIELD_SHAPE_POINT) {
cross_v3_v3v3(force, efd->nor, efd->vec_to_point);
normalize_v3(force);
mul_v3_fl(force, strength * efd->distance * efd->falloff);
}
else {
/* new vortex force */
cross_v3_v3v3(temp, efd->nor2, efd->vec_to_point2);
mul_v3_fl(temp, strength * efd->falloff);
cross_v3_v3v3(force, efd->nor2, temp);
mul_v3_fl(force, strength * efd->falloff);
madd_v3_v3fl(temp, point->vel, -point->vel_to_sec);
add_v3_v3(force, temp);
}
break;
case PFIELD_MAGNET:
if (ELEM(eff->pd->shape, PFIELD_SHAPE_POINT, PFIELD_SHAPE_LINE)) {
/* magnetic field of a moving charge */
cross_v3_v3v3(temp, efd->nor, efd->vec_to_point);
}
else {
copy_v3_v3(temp, efd->nor);
}
normalize_v3(temp);
mul_v3_fl(temp, strength * efd->falloff);
cross_v3_v3v3(force, point->vel, temp);
mul_v3_fl(force, point->vel_to_sec);
break;
case PFIELD_HARMONIC:
mul_v3_fl(force, -strength * efd->falloff);
copy_v3_v3(temp, point->vel);
mul_v3_fl(temp, -damp * 2.0f * sqrtf(fabsf(strength)) * point->vel_to_sec);
add_v3_v3(force, temp);
break;
case PFIELD_CHARGE:
mul_v3_fl(force, point->charge * strength * efd->falloff);
break;
case PFIELD_LENNARDJ:
fac = pow((efd->size + point->size) / efd->distance, 6.0);
fac = -fac * (1.0f - fac) / efd->distance;
/* limit the repulsive term drastically to avoid huge forces */
fac = ((fac > 2.0f) ? 2.0f : fac);
mul_v3_fl(force, strength * fac);
break;
case PFIELD_BOID:
/* Boid field is handled completely in boids code. */
return;
case PFIELD_TURBULENCE:
if (pd->flag & PFIELD_GLOBAL_CO) {
copy_v3_v3(temp, point->loc);
}
else {
add_v3_v3v3(temp, efd->vec_to_point2, efd->nor2);
}
force[0] = -1.0f + 2.0f * BLI_noise_generic_turbulence(
pd->f_size, temp[0], temp[1], temp[2], 2, false, 2);
force[1] = -1.0f + 2.0f * BLI_noise_generic_turbulence(
pd->f_size, temp[1], temp[2], temp[0], 2, false, 2);
force[2] = -1.0f + 2.0f * BLI_noise_generic_turbulence(
pd->f_size, temp[2], temp[0], temp[1], 2, false, 2);
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_DRAG:
copy_v3_v3(force, point->vel);
fac = normalize_v3(force) * point->vel_to_sec;
strength = MIN2(strength, 2.0f);
damp = MIN2(damp, 2.0f);
mul_v3_fl(force, -efd->falloff * fac * (strength * fac + damp));
break;
case PFIELD_FLUIDFLOW:
zero_v3(force);
flow_falloff = 0;
#ifdef WITH_FLUID
if (pd->f_source) {
float density;
if ((density = BKE_fluid_get_velocity_at(pd->f_source, point->loc, force)) >= 0.0f) {
float influence = strength * efd->falloff;
if (pd->flag & PFIELD_SMOKE_DENSITY) {
influence *= density;
}
mul_v3_fl(force, influence);
flow_falloff = influence;
}
}
#endif
break;
}
if (pd->flag & PFIELD_DO_LOCATION) {
madd_v3_v3fl(total_force, force, 1.0f / point->vel_to_sec);
if (!ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG) && pd->f_flow != 0.0f) {
madd_v3_v3fl(total_force, point->vel, -pd->f_flow * flow_falloff);
}
}
if (pd->flag & PFIELD_DO_ROTATION && point->ave && point->rot) {
float xvec[3] = {1.0f, 0.0f, 0.0f};
float dave[3];
mul_qt_v3(point->rot, xvec);
cross_v3_v3v3(dave, xvec, force);
if (pd->f_flow != 0.0f) {
madd_v3_v3fl(dave, point->ave, -pd->f_flow * efd->falloff);
}
add_v3_v3(point->ave, dave);
}
}
void BKE_effectors_apply(ListBase *effectors,
ListBase *colliders,
EffectorWeights *weights,
EffectedPoint *point,
float *force,
float *wind_force,
float *impulse)
{
/* WARNING(@ideasman42): historic comment?
* Many of these parameters don't exist!
*
* `scene` = scene where it runs in, for time and stuff.
* `lb` = listbase with objects that take part in effecting.
* `opco` = global coord, as input.
* `force` = accumulator for force.
* `wind_force` = accumulator for force only acting perpendicular to a surface.
* `speed` = actual current speed which can be altered.
* `cur_time` = "external" time in frames, is constant for static particles.
* `loc_time` = "local" time in frames, range <0-1> for the lifetime of particle.
* `par_layer` = layer the caller is in.
* `flags` = only used for soft-body wind now.
* `guide` = old speed of particle.
*/
/*
* Modifies the force on a particle according to its
* relation with the effector object
* Different kind of effectors include:
* - Force-fields: Gravity-like attractor
* (force power is related to the inverse of distance to the power of a falloff value)
* - Vortex fields: swirling effectors
* (particles rotate around Z-axis of the object. otherwise, same relation as)
* (Force-fields, but this is not done through a force/acceleration)
* - Guide: particles on a path
* (particles are guided along a curve bezier or old nurbs)
* (is independent of other effectors)
*/
EffectorData efd;
int p = 0, tot = 1, step = 1;
/* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */
/* Check for min distance here? (yes would be cool to add that, ton) */
if (effectors) {
LISTBASE_FOREACH (EffectorCache *, eff, effectors) {
/* object effectors were fully checked to be OK to evaluate! */
get_effector_tot(eff, &efd, point, &tot, &p, &step);
for (; p < tot; p += step) {
if (get_effector_data(eff, &efd, point, 0)) {
efd.falloff = effector_falloff(eff, &efd, point, weights);
if (efd.falloff > 0.0f) {
efd.falloff *= eff_calc_visibility(colliders, eff, &efd, point);
}
if (efd.falloff > 0.0f) {
float out_force[3] = {0, 0, 0};
if (eff->pd->forcefield == PFIELD_TEXTURE) {
do_texture_effector(eff, &efd, point, out_force);
}
else {
do_physical_effector(eff, &efd, point, out_force);
/* for softbody backward compatibility */
if (point->flag & PE_WIND_AS_SPEED && impulse) {
sub_v3_v3v3(impulse, impulse, out_force);
}
}
if (wind_force) {
madd_v3_v3fl(force, out_force, 1.0f - eff->pd->f_wind_factor);
madd_v3_v3fl(wind_force, out_force, eff->pd->f_wind_factor);
}
else {
add_v3_v3(force, out_force);
}
}
}
else if (eff->flag & PE_VELOCITY_TO_IMPULSE && impulse) {
/* special case for harmonic effector */
add_v3_v3v3(impulse, impulse, efd.vel);
}
}
}
}
}
/* ======== Simulation Debugging ======== */
SimDebugData *_sim_debug_data = nullptr;
uint BKE_sim_debug_data_hash(int i)
{
return BLI_ghashutil_uinthash(uint(i));
}
uint BKE_sim_debug_data_hash_combine(uint kx, uint ky)
{
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
uint a, b, c;
a = b = c = 0xdeadbeef + (2 << 2) + 13;
a += kx;
b += ky;
c ^= b;
c -= rot(b, 14);
a ^= c;
a -= rot(c, 11);
b ^= a;
b -= rot(a, 25);
c ^= b;
c -= rot(b, 16);
a ^= c;
a -= rot(c, 4);
b ^= a;
b -= rot(a, 14);
c ^= b;
c -= rot(b, 24);
return c;
#undef rot
}
static uint debug_element_hash(const void *key)
{
const SimDebugElement *elem = static_cast<const SimDebugElement *>(key);
return elem->hash;
}
static bool debug_element_compare(const void *a, const void *b)
{
const SimDebugElement *elem1 = static_cast<const SimDebugElement *>(a);
const SimDebugElement *elem2 = static_cast<const SimDebugElement *>(b);
if (elem1->hash == elem2->hash) {
return false;
}
return true;
}
static void debug_element_free(void *val)
{
SimDebugElement *elem = static_cast<SimDebugElement *>(val);
MEM_freeN(elem);
}
void BKE_sim_debug_data_set_enabled(bool enable)
{
if (enable) {
if (!_sim_debug_data) {
_sim_debug_data = static_cast<SimDebugData *>(
MEM_callocN(sizeof(SimDebugData), "sim debug data"));
_sim_debug_data->gh = BLI_ghash_new(
debug_element_hash, debug_element_compare, "sim debug element hash");
}
}
else {
BKE_sim_debug_data_free();
}
}
bool BKE_sim_debug_data_get_enabled()
{
return _sim_debug_data != nullptr;
}
void BKE_sim_debug_data_free()
{
if (_sim_debug_data) {
if (_sim_debug_data->gh) {
BLI_ghash_free(_sim_debug_data->gh, nullptr, debug_element_free);
}
MEM_freeN(_sim_debug_data);
}
}
static void debug_data_insert(SimDebugData *debug_data, SimDebugElement *elem)
{
SimDebugElement *old_elem = static_cast<SimDebugElement *>(
BLI_ghash_lookup(debug_data->gh, elem));
if (old_elem) {
*old_elem = *elem;
MEM_freeN(elem);
}
else {
BLI_ghash_insert(debug_data->gh, elem, elem);
}
}
void BKE_sim_debug_data_add_element(int type,
const float v1[3],
const float v2[3],
const char *str,
float r,
float g,
float b,
const char *category,
uint hash)
{
uint category_hash = BLI_ghashutil_strhash_p(category);
SimDebugElement *elem;
if (!_sim_debug_data) {
if (G.debug & G_DEBUG_SIMDATA) {
BKE_sim_debug_data_set_enabled(true);
}
else {
return;
}
}
elem = static_cast<SimDebugElement *>(
MEM_callocN(sizeof(SimDebugElement), "sim debug data element"));
elem->type = type;
elem->category_hash = category_hash;
elem->hash = hash;
elem->color[0] = r;
elem->color[1] = g;
elem->color[2] = b;
if (v1) {
copy_v3_v3(elem->v1, v1);
}
else {
zero_v3(elem->v1);
}
if (v2) {
copy_v3_v3(elem->v2, v2);
}
else {
zero_v3(elem->v2);
}
if (str) {
STRNCPY(elem->str, str);
}
else {
elem->str[0] = '\0';
}
debug_data_insert(_sim_debug_data, elem);
}
void BKE_sim_debug_data_remove_element(uint hash)
{
SimDebugElement dummy;
if (!_sim_debug_data) {
return;
}
dummy.hash = hash;
BLI_ghash_remove(_sim_debug_data->gh, &dummy, nullptr, debug_element_free);
}
void BKE_sim_debug_data_clear()
{
if (!_sim_debug_data) {
return;
}
if (_sim_debug_data->gh) {
BLI_ghash_clear(_sim_debug_data->gh, nullptr, debug_element_free);
}
}
void BKE_sim_debug_data_clear_category(const char *category)
{
int category_hash = int(BLI_ghashutil_strhash_p(category));
if (!_sim_debug_data) {
return;
}
if (_sim_debug_data->gh) {
GHashIterator iter;
BLI_ghashIterator_init(&iter, _sim_debug_data->gh);
while (!BLI_ghashIterator_done(&iter)) {
const SimDebugElement *elem = static_cast<const SimDebugElement *>(
BLI_ghashIterator_getValue(&iter));
/* Removing invalidates the current iterator, so step before removing. */
BLI_ghashIterator_step(&iter);
if (elem->category_hash == category_hash) {
BLI_ghash_remove(_sim_debug_data->gh, elem, nullptr, debug_element_free);
}
}
}
}