tornavis/source/blender/blenkernel/intern/subdiv_ccg.cc

2030 lines
80 KiB
C++

/* SPDX-FileCopyrightText: 2018 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#include "BKE_subdiv_ccg.hh"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "MEM_guardedalloc.h"
#include "BLI_ghash.h"
#include "BLI_math_bits.h"
#include "BLI_math_geom.h"
#include "BLI_math_vector.h"
#include "BLI_task.h"
#include "BKE_DerivedMesh.hh"
#include "BKE_ccg.h"
#include "BKE_global.h"
#include "BKE_mesh.hh"
#include "BKE_subdiv.hh"
#include "BKE_subdiv_eval.hh"
#include "opensubdiv_topology_refiner_capi.h"
using blender::Array;
using blender::Vector;
/* -------------------------------------------------------------------- */
/** \name Various forward declarations
* \{ */
static void subdiv_ccg_average_all_boundaries_and_corners(SubdivCCG *subdiv_ccg, CCGKey *key);
static void subdiv_ccg_average_inner_face_grids(SubdivCCG *subdiv_ccg,
CCGKey *key,
SubdivCCGFace *face);
void subdiv_ccg_average_faces_boundaries_and_corners(SubdivCCG *subdiv_ccg,
CCGKey *key,
CCGFace **effected_faces,
int num_effected_faces);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Generally useful internal helpers
* \{ */
/* Number of floats in per-vertex elements. */
static int num_element_float_get(const SubdivCCG *subdiv_ccg)
{
/* We always have 3 floats for coordinate. */
int num_floats = 3;
if (subdiv_ccg->has_normal) {
num_floats += 3;
}
if (subdiv_ccg->has_mask) {
num_floats += 1;
}
return num_floats;
}
/* Per-vertex element size in bytes. */
static int element_size_bytes_get(const SubdivCCG *subdiv_ccg)
{
return sizeof(float) * num_element_float_get(subdiv_ccg);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Internal helpers for CCG creation
* \{ */
static void subdiv_ccg_init_layers(SubdivCCG *subdiv_ccg, const SubdivToCCGSettings *settings)
{
/* CCG always contains coordinates. Rest of layers are coming after them. */
int layer_offset = sizeof(float[3]);
/* Mask. */
if (settings->need_mask) {
subdiv_ccg->has_mask = true;
subdiv_ccg->mask_offset = layer_offset;
layer_offset += sizeof(float);
}
else {
subdiv_ccg->has_mask = false;
subdiv_ccg->mask_offset = -1;
}
/* Normals.
*
* NOTE: Keep them at the end, matching old CCGDM. Doesn't really matter
* here, but some other area might in theory depend memory layout. */
if (settings->need_normal) {
subdiv_ccg->has_normal = true;
subdiv_ccg->normal_offset = layer_offset;
layer_offset += sizeof(float[3]);
}
else {
subdiv_ccg->has_normal = false;
subdiv_ccg->normal_offset = -1;
}
}
/* TODO(sergey): Make it more accessible function. */
static int topology_refiner_count_face_corners(OpenSubdiv_TopologyRefiner *topology_refiner)
{
const int num_faces = topology_refiner->getNumFaces(topology_refiner);
int num_corners = 0;
for (int face_index = 0; face_index < num_faces; face_index++) {
num_corners += topology_refiner->getNumFaceVertices(topology_refiner, face_index);
}
return num_corners;
}
/* NOTE: Grid size and layer flags are to be filled in before calling this
* function. */
static void subdiv_ccg_alloc_elements(SubdivCCG *subdiv_ccg, Subdiv *subdiv)
{
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
const int element_size = element_size_bytes_get(subdiv_ccg);
/* Allocate memory for surface grids. */
const int num_faces = topology_refiner->getNumFaces(topology_refiner);
const int num_grids = topology_refiner_count_face_corners(topology_refiner);
const int grid_size = BKE_subdiv_grid_size_from_level(subdiv_ccg->level);
const int grid_area = grid_size * grid_size;
subdiv_ccg->grid_element_size = element_size;
subdiv_ccg->num_grids = num_grids;
subdiv_ccg->grids = static_cast<CCGElem **>(
MEM_calloc_arrayN(num_grids, sizeof(CCGElem *), "subdiv ccg grids"));
subdiv_ccg->grids_storage = static_cast<uchar *>(
MEM_calloc_arrayN(num_grids, size_t(grid_area) * element_size, "subdiv ccg grids storage"));
const size_t grid_size_in_bytes = size_t(grid_area) * element_size;
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
const size_t grid_offset = grid_size_in_bytes * grid_index;
subdiv_ccg->grids[grid_index] = (CCGElem *)&subdiv_ccg->grids_storage[grid_offset];
}
/* Grid material flags. */
subdiv_ccg->grid_flag_mats = static_cast<DMFlagMat *>(
MEM_calloc_arrayN(num_grids, sizeof(DMFlagMat), "ccg grid material flags"));
/* Grid hidden flags. */
subdiv_ccg->grid_hidden = static_cast<BLI_bitmap **>(
MEM_calloc_arrayN(num_grids, sizeof(BLI_bitmap *), "ccg grid material flags"));
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
subdiv_ccg->grid_hidden[grid_index] = BLI_BITMAP_NEW(grid_area, "ccg grid hidden");
}
/* TODO(sergey): Allocate memory for loose elements. */
/* Allocate memory for faces. */
subdiv_ccg->num_faces = num_faces;
if (num_faces) {
subdiv_ccg->faces = static_cast<SubdivCCGFace *>(
MEM_calloc_arrayN(num_faces, sizeof(SubdivCCGFace), "Subdiv CCG faces"));
subdiv_ccg->grid_to_face_map.reinitialize(num_grids);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Grids evaluation
* \{ */
struct CCGEvalGridsData {
SubdivCCG *subdiv_ccg;
Subdiv *subdiv;
int *face_ptex_offset;
SubdivCCGMaskEvaluator *mask_evaluator;
SubdivCCGMaterialFlagsEvaluator *material_flags_evaluator;
};
static void subdiv_ccg_eval_grid_element_limit(CCGEvalGridsData *data,
const int ptex_face_index,
const float u,
const float v,
uchar *element)
{
Subdiv *subdiv = data->subdiv;
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
if (subdiv->displacement_evaluator != nullptr) {
BKE_subdiv_eval_final_point(subdiv, ptex_face_index, u, v, (float *)element);
}
else if (subdiv_ccg->has_normal) {
BKE_subdiv_eval_limit_point_and_normal(subdiv,
ptex_face_index,
u,
v,
(float *)element,
(float *)(element + subdiv_ccg->normal_offset));
}
else {
BKE_subdiv_eval_limit_point(subdiv, ptex_face_index, u, v, (float *)element);
}
}
static void subdiv_ccg_eval_grid_element_mask(CCGEvalGridsData *data,
const int ptex_face_index,
const float u,
const float v,
uchar *element)
{
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
if (!subdiv_ccg->has_mask) {
return;
}
float *mask_value_ptr = (float *)(element + subdiv_ccg->mask_offset);
if (data->mask_evaluator != nullptr) {
*mask_value_ptr = data->mask_evaluator->eval_mask(data->mask_evaluator, ptex_face_index, u, v);
}
else {
*mask_value_ptr = 0.0f;
}
}
static void subdiv_ccg_eval_grid_element(CCGEvalGridsData *data,
const int ptex_face_index,
const float u,
const float v,
uchar *element)
{
subdiv_ccg_eval_grid_element_limit(data, ptex_face_index, u, v, element);
subdiv_ccg_eval_grid_element_mask(data, ptex_face_index, u, v, element);
}
static void subdiv_ccg_eval_regular_grid(CCGEvalGridsData *data, const int face_index)
{
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
const int ptex_face_index = data->face_ptex_offset[face_index];
const int grid_size = subdiv_ccg->grid_size;
const float grid_size_1_inv = 1.0f / (grid_size - 1);
const int element_size = element_size_bytes_get(subdiv_ccg);
SubdivCCGFace *faces = subdiv_ccg->faces;
blender::MutableSpan<int> grid_to_face_map = subdiv_ccg->grid_to_face_map;
const SubdivCCGFace *face = &faces[face_index];
for (int corner = 0; corner < face->num_grids; corner++) {
const int grid_index = face->start_grid_index + corner;
uchar *grid = (uchar *)subdiv_ccg->grids[grid_index];
for (int y = 0; y < grid_size; y++) {
const float grid_v = y * grid_size_1_inv;
for (int x = 0; x < grid_size; x++) {
const float grid_u = x * grid_size_1_inv;
float u, v;
BKE_subdiv_rotate_grid_to_quad(corner, grid_u, grid_v, &u, &v);
const size_t grid_element_index = size_t(y) * grid_size + x;
const size_t grid_element_offset = grid_element_index * element_size;
subdiv_ccg_eval_grid_element(data, ptex_face_index, u, v, &grid[grid_element_offset]);
}
}
/* Assign grid's face. */
grid_to_face_map[grid_index] = face_index;
/* Assign material flags. */
subdiv_ccg->grid_flag_mats[grid_index] = data->material_flags_evaluator->eval_material_flags(
data->material_flags_evaluator, face_index);
}
}
static void subdiv_ccg_eval_special_grid(CCGEvalGridsData *data, const int face_index)
{
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
const int grid_size = subdiv_ccg->grid_size;
const float grid_size_1_inv = 1.0f / (grid_size - 1);
const int element_size = element_size_bytes_get(subdiv_ccg);
SubdivCCGFace *faces = subdiv_ccg->faces;
blender::MutableSpan<int> grid_to_face_map = subdiv_ccg->grid_to_face_map;
const SubdivCCGFace *face = &faces[face_index];
for (int corner = 0; corner < face->num_grids; corner++) {
const int grid_index = face->start_grid_index + corner;
const int ptex_face_index = data->face_ptex_offset[face_index] + corner;
uchar *grid = (uchar *)subdiv_ccg->grids[grid_index];
for (int y = 0; y < grid_size; y++) {
const float u = 1.0f - (y * grid_size_1_inv);
for (int x = 0; x < grid_size; x++) {
const float v = 1.0f - (x * grid_size_1_inv);
const size_t grid_element_index = size_t(y) * grid_size + x;
const size_t grid_element_offset = grid_element_index * element_size;
subdiv_ccg_eval_grid_element(data, ptex_face_index, u, v, &grid[grid_element_offset]);
}
}
/* Assign grid's face. */
grid_to_face_map[grid_index] = face_index;
/* Assign material flags. */
subdiv_ccg->grid_flag_mats[grid_index] = data->material_flags_evaluator->eval_material_flags(
data->material_flags_evaluator, face_index);
}
}
static void subdiv_ccg_eval_grids_task(void *__restrict userdata_v,
const int face_index,
const TaskParallelTLS *__restrict /*tls*/)
{
CCGEvalGridsData *data = static_cast<CCGEvalGridsData *>(userdata_v);
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
SubdivCCGFace *face = &subdiv_ccg->faces[face_index];
if (face->num_grids == 4) {
subdiv_ccg_eval_regular_grid(data, face_index);
}
else {
subdiv_ccg_eval_special_grid(data, face_index);
}
}
static bool subdiv_ccg_evaluate_grids(SubdivCCG *subdiv_ccg,
Subdiv *subdiv,
SubdivCCGMaskEvaluator *mask_evaluator,
SubdivCCGMaterialFlagsEvaluator *material_flags_evaluator)
{
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
const int num_faces = topology_refiner->getNumFaces(topology_refiner);
/* Initialize data passed to all the tasks. */
CCGEvalGridsData data;
data.subdiv_ccg = subdiv_ccg;
data.subdiv = subdiv;
data.face_ptex_offset = BKE_subdiv_face_ptex_offset_get(subdiv);
data.mask_evaluator = mask_evaluator;
data.material_flags_evaluator = material_flags_evaluator;
/* Threaded grids evaluation. */
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
BLI_task_parallel_range(
0, num_faces, &data, subdiv_ccg_eval_grids_task, &parallel_range_settings);
/* If displacement is used, need to calculate normals after all final
* coordinates are known. */
if (subdiv->displacement_evaluator != nullptr) {
BKE_subdiv_ccg_recalc_normals(subdiv_ccg);
}
return true;
}
/* Initialize face descriptors, assuming memory for them was already
* allocated. */
static void subdiv_ccg_init_faces(SubdivCCG *subdiv_ccg)
{
Subdiv *subdiv = subdiv_ccg->subdiv;
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
const int num_faces = subdiv_ccg->num_faces;
int corner_index = 0;
for (int face_index = 0; face_index < num_faces; face_index++) {
const int num_corners = topology_refiner->getNumFaceVertices(topology_refiner, face_index);
subdiv_ccg->faces[face_index].num_grids = num_corners;
subdiv_ccg->faces[face_index].start_grid_index = corner_index;
corner_index += num_corners;
}
}
static void subdiv_ccg_allocate_adjacent_edges(SubdivCCG *subdiv_ccg, const int num_edges)
{
subdiv_ccg->num_adjacent_edges = num_edges;
subdiv_ccg->adjacent_edges = static_cast<SubdivCCGAdjacentEdge *>(MEM_calloc_arrayN(
subdiv_ccg->num_adjacent_edges, sizeof(*subdiv_ccg->adjacent_edges), "ccg adjacent edges"));
}
static SubdivCCGCoord subdiv_ccg_coord(int grid_index, int x, int y)
{
SubdivCCGCoord coord{};
coord.grid_index = grid_index;
coord.x = x;
coord.y = y;
return coord;
}
static CCGElem *subdiv_ccg_coord_to_elem(const CCGKey *key,
const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord)
{
return CCG_grid_elem(key, subdiv_ccg->grids[coord->grid_index], coord->x, coord->y);
}
/* Returns storage where boundary elements are to be stored. */
static SubdivCCGCoord *subdiv_ccg_adjacent_edge_add_face(SubdivCCG *subdiv_ccg,
SubdivCCGAdjacentEdge *adjacent_edge)
{
const int grid_size = subdiv_ccg->grid_size * 2;
const int adjacent_face_index = adjacent_edge->num_adjacent_faces;
++adjacent_edge->num_adjacent_faces;
/* Allocate memory for the boundary elements. */
adjacent_edge->boundary_coords = static_cast<SubdivCCGCoord **>(
MEM_reallocN(adjacent_edge->boundary_coords,
adjacent_edge->num_adjacent_faces * sizeof(*adjacent_edge->boundary_coords)));
adjacent_edge->boundary_coords[adjacent_face_index] = static_cast<SubdivCCGCoord *>(
MEM_malloc_arrayN(grid_size * 2, sizeof(SubdivCCGCoord), "ccg adjacent boundary"));
return adjacent_edge->boundary_coords[adjacent_face_index];
}
static void subdiv_ccg_init_faces_edge_neighborhood(SubdivCCG *subdiv_ccg)
{
Subdiv *subdiv = subdiv_ccg->subdiv;
SubdivCCGFace *faces = subdiv_ccg->faces;
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
const int num_edges = topology_refiner->getNumEdges(topology_refiner);
const int grid_size = subdiv_ccg->grid_size;
if (num_edges == 0) {
/* Early output, nothing to do in this case. */
return;
}
subdiv_ccg_allocate_adjacent_edges(subdiv_ccg, num_edges);
Vector<int, 64> face_vertices;
Vector<int, 64> face_edges;
/* Store adjacency for all faces. */
const int num_faces = subdiv_ccg->num_faces;
for (int face_index = 0; face_index < num_faces; face_index++) {
SubdivCCGFace *face = &faces[face_index];
const int num_face_grids = face->num_grids;
face_vertices.reinitialize(num_face_grids);
topology_refiner->getFaceVertices(topology_refiner, face_index, face_vertices.data());
/* Note that order of edges is same as order of MLoops, which also
* means it's the same as order of grids. */
face_edges.reinitialize(num_face_grids);
topology_refiner->getFaceEdges(topology_refiner, face_index, face_edges.data());
/* Store grids adjacency for this edge. */
for (int corner = 0; corner < num_face_grids; corner++) {
const int vertex_index = face_vertices[corner];
const int edge_index = face_edges[corner];
int edge_vertices[2];
topology_refiner->getEdgeVertices(topology_refiner, edge_index, edge_vertices);
const bool is_edge_flipped = (edge_vertices[0] != vertex_index);
/* Grid which is adjacent to the current corner. */
const int current_grid_index = face->start_grid_index + corner;
/* Grid which is adjacent to the next corner. */
const int next_grid_index = face->start_grid_index + (corner + 1) % num_face_grids;
/* Add new face to the adjacent edge. */
SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[edge_index];
SubdivCCGCoord *boundary_coords = subdiv_ccg_adjacent_edge_add_face(subdiv_ccg,
adjacent_edge);
/* Fill CCG elements along the edge. */
int boundary_element_index = 0;
if (is_edge_flipped) {
for (int i = 0; i < grid_size; i++) {
boundary_coords[boundary_element_index++] = subdiv_ccg_coord(
next_grid_index, grid_size - i - 1, grid_size - 1);
}
for (int i = 0; i < grid_size; i++) {
boundary_coords[boundary_element_index++] = subdiv_ccg_coord(
current_grid_index, grid_size - 1, i);
}
}
else {
for (int i = 0; i < grid_size; i++) {
boundary_coords[boundary_element_index++] = subdiv_ccg_coord(
current_grid_index, grid_size - 1, grid_size - i - 1);
}
for (int i = 0; i < grid_size; i++) {
boundary_coords[boundary_element_index++] = subdiv_ccg_coord(
next_grid_index, i, grid_size - 1);
}
}
}
}
}
static void subdiv_ccg_allocate_adjacent_vertices(SubdivCCG *subdiv_ccg, const int num_vertices)
{
subdiv_ccg->num_adjacent_vertices = num_vertices;
subdiv_ccg->adjacent_vertices = static_cast<SubdivCCGAdjacentVertex *>(
MEM_calloc_arrayN(subdiv_ccg->num_adjacent_vertices,
sizeof(*subdiv_ccg->adjacent_vertices),
"ccg adjacent vertices"));
}
/* Returns storage where corner elements are to be stored. This is a pointer
* to the actual storage. */
static SubdivCCGCoord *subdiv_ccg_adjacent_vertex_add_face(
SubdivCCGAdjacentVertex *adjacent_vertex)
{
const int adjacent_face_index = adjacent_vertex->num_adjacent_faces;
++adjacent_vertex->num_adjacent_faces;
/* Allocate memory for the boundary elements. */
adjacent_vertex->corner_coords = static_cast<SubdivCCGCoord *>(
MEM_reallocN(adjacent_vertex->corner_coords,
adjacent_vertex->num_adjacent_faces * sizeof(*adjacent_vertex->corner_coords)));
return &adjacent_vertex->corner_coords[adjacent_face_index];
}
static void subdiv_ccg_init_faces_vertex_neighborhood(SubdivCCG *subdiv_ccg)
{
Subdiv *subdiv = subdiv_ccg->subdiv;
SubdivCCGFace *faces = subdiv_ccg->faces;
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
const int num_vertices = topology_refiner->getNumVertices(topology_refiner);
const int grid_size = subdiv_ccg->grid_size;
if (num_vertices == 0) {
/* Early output, nothing to do in this case. */
return;
}
subdiv_ccg_allocate_adjacent_vertices(subdiv_ccg, num_vertices);
Vector<int, 64> face_vertices;
/* Key to access elements. */
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
/* Store adjacency for all faces. */
const int num_faces = subdiv_ccg->num_faces;
for (int face_index = 0; face_index < num_faces; face_index++) {
SubdivCCGFace *face = &faces[face_index];
const int num_face_grids = face->num_grids;
face_vertices.reinitialize(num_face_grids);
topology_refiner->getFaceVertices(topology_refiner, face_index, face_vertices.data());
for (int corner = 0; corner < num_face_grids; corner++) {
const int vertex_index = face_vertices[corner];
/* Grid which is adjacent to the current corner. */
const int grid_index = face->start_grid_index + corner;
/* Add new face to the adjacent edge. */
SubdivCCGAdjacentVertex *adjacent_vertex = &subdiv_ccg->adjacent_vertices[vertex_index];
SubdivCCGCoord *corner_coord = subdiv_ccg_adjacent_vertex_add_face(adjacent_vertex);
*corner_coord = subdiv_ccg_coord(grid_index, grid_size - 1, grid_size - 1);
}
}
}
static void subdiv_ccg_init_faces_neighborhood(SubdivCCG *subdiv_ccg)
{
subdiv_ccg_init_faces_edge_neighborhood(subdiv_ccg);
subdiv_ccg_init_faces_vertex_neighborhood(subdiv_ccg);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Creation / evaluation
* \{ */
SubdivCCG *BKE_subdiv_to_ccg(Subdiv *subdiv,
const SubdivToCCGSettings *settings,
SubdivCCGMaskEvaluator *mask_evaluator,
SubdivCCGMaterialFlagsEvaluator *material_flags_evaluator)
{
BKE_subdiv_stats_begin(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_CCG);
SubdivCCG *subdiv_ccg = MEM_new<SubdivCCG>(__func__);
subdiv_ccg->subdiv = subdiv;
subdiv_ccg->level = bitscan_forward_i(settings->resolution - 1);
subdiv_ccg->grid_size = BKE_subdiv_grid_size_from_level(subdiv_ccg->level);
subdiv_ccg_init_layers(subdiv_ccg, settings);
subdiv_ccg_alloc_elements(subdiv_ccg, subdiv);
subdiv_ccg_init_faces(subdiv_ccg);
subdiv_ccg_init_faces_neighborhood(subdiv_ccg);
if (!subdiv_ccg_evaluate_grids(subdiv_ccg, subdiv, mask_evaluator, material_flags_evaluator)) {
BKE_subdiv_ccg_destroy(subdiv_ccg);
BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_CCG);
return nullptr;
}
BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_CCG);
return subdiv_ccg;
}
Mesh *BKE_subdiv_to_ccg_mesh(Subdiv *subdiv,
const SubdivToCCGSettings *settings,
const Mesh *coarse_mesh)
{
/* Make sure evaluator is ready. */
BKE_subdiv_stats_begin(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_CCG);
if (!BKE_subdiv_eval_begin_from_mesh(
subdiv, coarse_mesh, nullptr, SUBDIV_EVALUATOR_TYPE_CPU, nullptr))
{
if (coarse_mesh->faces_num) {
return nullptr;
}
}
BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_CCG);
SubdivCCGMaskEvaluator mask_evaluator;
bool has_mask = BKE_subdiv_ccg_mask_init_from_paint(&mask_evaluator, coarse_mesh);
SubdivCCGMaterialFlagsEvaluator material_flags_evaluator;
BKE_subdiv_ccg_material_flags_init_from_mesh(&material_flags_evaluator, coarse_mesh);
SubdivCCG *subdiv_ccg = BKE_subdiv_to_ccg(
subdiv, settings, has_mask ? &mask_evaluator : nullptr, &material_flags_evaluator);
if (has_mask) {
mask_evaluator.free(&mask_evaluator);
}
material_flags_evaluator.free(&material_flags_evaluator);
if (subdiv_ccg == nullptr) {
return nullptr;
}
Mesh *result = BKE_mesh_new_nomain_from_template(coarse_mesh, 0, 0, 0, 0);
result->runtime->subdiv_ccg = subdiv_ccg;
return result;
}
void BKE_subdiv_ccg_destroy(SubdivCCG *subdiv_ccg)
{
const int num_grids = subdiv_ccg->num_grids;
MEM_SAFE_FREE(subdiv_ccg->grids);
MEM_SAFE_FREE(subdiv_ccg->grids_storage);
MEM_SAFE_FREE(subdiv_ccg->edges);
MEM_SAFE_FREE(subdiv_ccg->vertices);
MEM_SAFE_FREE(subdiv_ccg->grid_flag_mats);
if (subdiv_ccg->grid_hidden != nullptr) {
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
MEM_SAFE_FREE(subdiv_ccg->grid_hidden[grid_index]);
}
MEM_SAFE_FREE(subdiv_ccg->grid_hidden);
}
if (subdiv_ccg->subdiv != nullptr) {
BKE_subdiv_free(subdiv_ccg->subdiv);
}
MEM_SAFE_FREE(subdiv_ccg->faces);
/* Free map of adjacent edges. */
for (int i = 0; i < subdiv_ccg->num_adjacent_edges; i++) {
SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[i];
for (int face_index = 0; face_index < adjacent_edge->num_adjacent_faces; face_index++) {
MEM_SAFE_FREE(adjacent_edge->boundary_coords[face_index]);
}
MEM_SAFE_FREE(adjacent_edge->boundary_coords);
}
MEM_SAFE_FREE(subdiv_ccg->adjacent_edges);
/* Free map of adjacent vertices. */
for (int i = 0; i < subdiv_ccg->num_adjacent_vertices; i++) {
SubdivCCGAdjacentVertex *adjacent_vertex = &subdiv_ccg->adjacent_vertices[i];
MEM_SAFE_FREE(adjacent_vertex->corner_coords);
}
MEM_SAFE_FREE(subdiv_ccg->adjacent_vertices);
MEM_SAFE_FREE(subdiv_ccg->cache_.start_face_grid_index);
MEM_delete(subdiv_ccg);
}
void BKE_subdiv_ccg_key(CCGKey *key, const SubdivCCG *subdiv_ccg, int level)
{
key->level = level;
key->elem_size = element_size_bytes_get(subdiv_ccg);
key->grid_size = BKE_subdiv_grid_size_from_level(level);
key->grid_area = key->grid_size * key->grid_size;
key->grid_bytes = key->elem_size * key->grid_area;
key->normal_offset = subdiv_ccg->normal_offset;
key->mask_offset = subdiv_ccg->mask_offset;
key->has_normals = subdiv_ccg->has_normal;
key->has_mask = subdiv_ccg->has_mask;
}
void BKE_subdiv_ccg_key_top_level(CCGKey *key, const SubdivCCG *subdiv_ccg)
{
BKE_subdiv_ccg_key(key, subdiv_ccg, subdiv_ccg->level);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Normals
* \{ */
struct RecalcInnerNormalsData {
SubdivCCG *subdiv_ccg;
CCGKey *key;
};
struct RecalcInnerNormalsTLSData {
float (*face_normals)[3];
};
/* Evaluate high-res face normals, for faces which corresponds to grid elements
*
* {(x, y), {x + 1, y}, {x + 1, y + 1}, {x, y + 1}}
*
* The result is stored in normals storage from TLS. */
static void subdiv_ccg_recalc_inner_face_normals(SubdivCCG *subdiv_ccg,
CCGKey *key,
RecalcInnerNormalsTLSData *tls,
const int grid_index)
{
const int grid_size = subdiv_ccg->grid_size;
const int grid_size_1 = grid_size - 1;
CCGElem *grid = subdiv_ccg->grids[grid_index];
if (tls->face_normals == nullptr) {
tls->face_normals = static_cast<float(*)[3]>(
MEM_malloc_arrayN(grid_size_1 * grid_size_1, sizeof(float[3]), "CCG TLS normals"));
}
for (int y = 0; y < grid_size - 1; y++) {
for (int x = 0; x < grid_size - 1; x++) {
CCGElem *grid_elements[4] = {
CCG_grid_elem(key, grid, x, y + 1),
CCG_grid_elem(key, grid, x + 1, y + 1),
CCG_grid_elem(key, grid, x + 1, y),
CCG_grid_elem(key, grid, x, y),
};
float *co[4] = {
CCG_elem_co(key, grid_elements[0]),
CCG_elem_co(key, grid_elements[1]),
CCG_elem_co(key, grid_elements[2]),
CCG_elem_co(key, grid_elements[3]),
};
const int face_index = y * grid_size_1 + x;
float *face_normal = tls->face_normals[face_index];
normal_quad_v3(face_normal, co[0], co[1], co[2], co[3]);
}
}
}
/* Average normals at every grid element, using adjacent faces normals. */
static void subdiv_ccg_average_inner_face_normals(SubdivCCG *subdiv_ccg,
CCGKey *key,
RecalcInnerNormalsTLSData *tls,
const int grid_index)
{
const int grid_size = subdiv_ccg->grid_size;
const int grid_size_1 = grid_size - 1;
CCGElem *grid = subdiv_ccg->grids[grid_index];
const float(*face_normals)[3] = tls->face_normals;
for (int y = 0; y < grid_size; y++) {
for (int x = 0; x < grid_size; x++) {
float normal_acc[3] = {0.0f, 0.0f, 0.0f};
int counter = 0;
/* Accumulate normals of all adjacent faces. */
if (x < grid_size_1 && y < grid_size_1) {
add_v3_v3(normal_acc, face_normals[y * grid_size_1 + x]);
counter++;
}
if (x >= 1) {
if (y < grid_size_1) {
add_v3_v3(normal_acc, face_normals[y * grid_size_1 + (x - 1)]);
counter++;
}
if (y >= 1) {
add_v3_v3(normal_acc, face_normals[(y - 1) * grid_size_1 + (x - 1)]);
counter++;
}
}
if (y >= 1 && x < grid_size_1) {
add_v3_v3(normal_acc, face_normals[(y - 1) * grid_size_1 + x]);
counter++;
}
/* Normalize and store. */
mul_v3_v3fl(CCG_grid_elem_no(key, grid, x, y), normal_acc, 1.0f / counter);
}
}
}
static void subdiv_ccg_recalc_inner_normal_task(void *__restrict userdata_v,
const int grid_index,
const TaskParallelTLS *__restrict tls_v)
{
RecalcInnerNormalsData *data = static_cast<RecalcInnerNormalsData *>(userdata_v);
RecalcInnerNormalsTLSData *tls = static_cast<RecalcInnerNormalsTLSData *>(tls_v->userdata_chunk);
subdiv_ccg_recalc_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
subdiv_ccg_average_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
}
static void subdiv_ccg_recalc_inner_normal_free(const void *__restrict /*userdata*/,
void *__restrict tls_v)
{
RecalcInnerNormalsTLSData *tls = static_cast<RecalcInnerNormalsTLSData *>(tls_v);
MEM_SAFE_FREE(tls->face_normals);
}
/* Recalculate normals which corresponds to non-boundaries elements of grids. */
static void subdiv_ccg_recalc_inner_grid_normals(SubdivCCG *subdiv_ccg)
{
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
RecalcInnerNormalsData data{};
data.subdiv_ccg = subdiv_ccg;
data.key = &key;
RecalcInnerNormalsTLSData tls_data = {nullptr};
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
parallel_range_settings.userdata_chunk = &tls_data;
parallel_range_settings.userdata_chunk_size = sizeof(tls_data);
parallel_range_settings.func_free = subdiv_ccg_recalc_inner_normal_free;
BLI_task_parallel_range(0,
subdiv_ccg->num_grids,
&data,
subdiv_ccg_recalc_inner_normal_task,
&parallel_range_settings);
}
void BKE_subdiv_ccg_recalc_normals(SubdivCCG *subdiv_ccg)
{
if (!subdiv_ccg->has_normal) {
/* Grids don't have normals, can do early output. */
return;
}
subdiv_ccg_recalc_inner_grid_normals(subdiv_ccg);
BKE_subdiv_ccg_average_grids(subdiv_ccg);
}
struct RecalcModifiedInnerNormalsData {
SubdivCCG *subdiv_ccg;
CCGKey *key;
SubdivCCGFace **effected_ccg_faces;
};
static void subdiv_ccg_recalc_modified_inner_normal_task(void *__restrict userdata_v,
const int face_index,
const TaskParallelTLS *__restrict tls_v)
{
RecalcModifiedInnerNormalsData *data = static_cast<RecalcModifiedInnerNormalsData *>(userdata_v);
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
CCGKey *key = data->key;
RecalcInnerNormalsTLSData *tls = static_cast<RecalcInnerNormalsTLSData *>(tls_v->userdata_chunk);
SubdivCCGFace **faces = data->effected_ccg_faces;
SubdivCCGFace *face = faces[face_index];
const int num_face_grids = face->num_grids;
for (int i = 0; i < num_face_grids; i++) {
const int grid_index = face->start_grid_index + i;
subdiv_ccg_recalc_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
subdiv_ccg_average_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
}
subdiv_ccg_average_inner_face_grids(subdiv_ccg, key, face);
}
static void subdiv_ccg_recalc_modified_inner_normal_free(const void *__restrict /*userdata*/,
void *__restrict tls_v)
{
RecalcInnerNormalsTLSData *tls = static_cast<RecalcInnerNormalsTLSData *>(tls_v);
MEM_SAFE_FREE(tls->face_normals);
}
static void subdiv_ccg_recalc_modified_inner_grid_normals(SubdivCCG *subdiv_ccg,
CCGFace **effected_faces,
int num_effected_faces)
{
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
RecalcModifiedInnerNormalsData data{};
data.subdiv_ccg = subdiv_ccg;
data.key = &key;
data.effected_ccg_faces = (SubdivCCGFace **)effected_faces;
RecalcInnerNormalsTLSData tls_data = {nullptr};
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
parallel_range_settings.userdata_chunk = &tls_data;
parallel_range_settings.userdata_chunk_size = sizeof(tls_data);
parallel_range_settings.func_free = subdiv_ccg_recalc_modified_inner_normal_free;
BLI_task_parallel_range(0,
num_effected_faces,
&data,
subdiv_ccg_recalc_modified_inner_normal_task,
&parallel_range_settings);
}
void BKE_subdiv_ccg_update_normals(SubdivCCG *subdiv_ccg,
CCGFace **effected_faces,
int num_effected_faces)
{
if (!subdiv_ccg->has_normal) {
/* Grids don't have normals, can do early output. */
return;
}
if (num_effected_faces == 0) {
/* No faces changed, so nothing to do here. */
return;
}
subdiv_ccg_recalc_modified_inner_grid_normals(subdiv_ccg, effected_faces, num_effected_faces);
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
subdiv_ccg_average_faces_boundaries_and_corners(
subdiv_ccg, &key, effected_faces, num_effected_faces);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Boundary averaging/stitching
* \{ */
struct AverageInnerGridsData {
SubdivCCG *subdiv_ccg;
CCGKey *key;
};
static void average_grid_element_value_v3(float a[3], float b[3])
{
add_v3_v3(a, b);
mul_v3_fl(a, 0.5f);
copy_v3_v3(b, a);
}
static void average_grid_element(SubdivCCG *subdiv_ccg,
CCGKey *key,
CCGElem *grid_element_a,
CCGElem *grid_element_b)
{
average_grid_element_value_v3(CCG_elem_co(key, grid_element_a),
CCG_elem_co(key, grid_element_b));
if (subdiv_ccg->has_normal) {
average_grid_element_value_v3(CCG_elem_no(key, grid_element_a),
CCG_elem_no(key, grid_element_b));
}
if (subdiv_ccg->has_mask) {
float mask = (*CCG_elem_mask(key, grid_element_a) + *CCG_elem_mask(key, grid_element_b)) *
0.5f;
*CCG_elem_mask(key, grid_element_a) = mask;
*CCG_elem_mask(key, grid_element_b) = mask;
}
}
/* Accumulator to hold data during averaging. */
struct GridElementAccumulator {
float co[3];
float no[3];
float mask;
};
static void element_accumulator_init(GridElementAccumulator *accumulator)
{
zero_v3(accumulator->co);
zero_v3(accumulator->no);
accumulator->mask = 0.0f;
}
static void element_accumulator_add(GridElementAccumulator *accumulator,
const SubdivCCG *subdiv_ccg,
CCGKey *key,
/*const*/ CCGElem *grid_element)
{
add_v3_v3(accumulator->co, CCG_elem_co(key, grid_element));
if (subdiv_ccg->has_normal) {
add_v3_v3(accumulator->no, CCG_elem_no(key, grid_element));
}
if (subdiv_ccg->has_mask) {
accumulator->mask += *CCG_elem_mask(key, grid_element);
}
}
static void element_accumulator_mul_fl(GridElementAccumulator *accumulator, const float f)
{
mul_v3_fl(accumulator->co, f);
mul_v3_fl(accumulator->no, f);
accumulator->mask *= f;
}
static void element_accumulator_copy(SubdivCCG *subdiv_ccg,
CCGKey *key,
CCGElem *destination,
const GridElementAccumulator *accumulator)
{
copy_v3_v3(CCG_elem_co(key, destination), accumulator->co);
if (subdiv_ccg->has_normal) {
copy_v3_v3(CCG_elem_no(key, destination), accumulator->no);
}
if (subdiv_ccg->has_mask) {
*CCG_elem_mask(key, destination) = accumulator->mask;
}
}
static void subdiv_ccg_average_inner_face_grids(SubdivCCG *subdiv_ccg,
CCGKey *key,
SubdivCCGFace *face)
{
CCGElem **grids = subdiv_ccg->grids;
const int num_face_grids = face->num_grids;
const int grid_size = subdiv_ccg->grid_size;
CCGElem *prev_grid = grids[face->start_grid_index + num_face_grids - 1];
/* Average boundary between neighbor grid. */
for (int corner = 0; corner < num_face_grids; corner++) {
CCGElem *grid = grids[face->start_grid_index + corner];
for (int i = 1; i < grid_size; i++) {
CCGElem *prev_grid_element = CCG_grid_elem(key, prev_grid, i, 0);
CCGElem *grid_element = CCG_grid_elem(key, grid, 0, i);
average_grid_element(subdiv_ccg, key, prev_grid_element, grid_element);
}
prev_grid = grid;
}
/* Average all grids centers into a single accumulator, and share it.
* Guarantees correct and smooth averaging in the center. */
GridElementAccumulator center_accumulator;
element_accumulator_init(&center_accumulator);
for (int corner = 0; corner < num_face_grids; corner++) {
CCGElem *grid = grids[face->start_grid_index + corner];
CCGElem *grid_center_element = CCG_grid_elem(key, grid, 0, 0);
element_accumulator_add(&center_accumulator, subdiv_ccg, key, grid_center_element);
}
element_accumulator_mul_fl(&center_accumulator, 1.0f / num_face_grids);
for (int corner = 0; corner < num_face_grids; corner++) {
CCGElem *grid = grids[face->start_grid_index + corner];
CCGElem *grid_center_element = CCG_grid_elem(key, grid, 0, 0);
element_accumulator_copy(subdiv_ccg, key, grid_center_element, &center_accumulator);
}
}
static void subdiv_ccg_average_inner_grids_task(void *__restrict userdata_v,
const int face_index,
const TaskParallelTLS *__restrict /*tls_v*/)
{
AverageInnerGridsData *data = static_cast<AverageInnerGridsData *>(userdata_v);
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
CCGKey *key = data->key;
SubdivCCGFace *faces = subdiv_ccg->faces;
SubdivCCGFace *face = &faces[face_index];
subdiv_ccg_average_inner_face_grids(subdiv_ccg, key, face);
}
struct AverageGridsBoundariesData {
SubdivCCG *subdiv_ccg;
CCGKey *key;
/* Optional lookup table. Maps task index to index in `subdiv_ccg->adjacent_vertices`. */
const int *adjacent_edge_index_map;
};
struct AverageGridsBoundariesTLSData {
GridElementAccumulator *accumulators;
};
static void subdiv_ccg_average_grids_boundary(SubdivCCG *subdiv_ccg,
CCGKey *key,
SubdivCCGAdjacentEdge *adjacent_edge,
AverageGridsBoundariesTLSData *tls)
{
const int num_adjacent_faces = adjacent_edge->num_adjacent_faces;
const int grid_size2 = subdiv_ccg->grid_size * 2;
if (num_adjacent_faces == 1) {
/* Nothing to average with. */
return;
}
if (tls->accumulators == nullptr) {
tls->accumulators = static_cast<GridElementAccumulator *>(
MEM_calloc_arrayN(grid_size2, sizeof(GridElementAccumulator), "average accumulators"));
}
else {
for (int i = 1; i < grid_size2 - 1; i++) {
element_accumulator_init(&tls->accumulators[i]);
}
}
for (int face_index = 0; face_index < num_adjacent_faces; face_index++) {
for (int i = 1; i < grid_size2 - 1; i++) {
CCGElem *grid_element = subdiv_ccg_coord_to_elem(
key, subdiv_ccg, &adjacent_edge->boundary_coords[face_index][i]);
element_accumulator_add(&tls->accumulators[i], subdiv_ccg, key, grid_element);
}
}
for (int i = 1; i < grid_size2 - 1; i++) {
element_accumulator_mul_fl(&tls->accumulators[i], 1.0f / num_adjacent_faces);
}
/* Copy averaged value to all the other faces. */
for (int face_index = 0; face_index < num_adjacent_faces; face_index++) {
for (int i = 1; i < grid_size2 - 1; i++) {
CCGElem *grid_element = subdiv_ccg_coord_to_elem(
key, subdiv_ccg, &adjacent_edge->boundary_coords[face_index][i]);
element_accumulator_copy(subdiv_ccg, key, grid_element, &tls->accumulators[i]);
}
}
}
static void subdiv_ccg_average_grids_boundaries_task(void *__restrict userdata_v,
const int n,
const TaskParallelTLS *__restrict tls_v)
{
AverageGridsBoundariesData *data = static_cast<AverageGridsBoundariesData *>(userdata_v);
const int adjacent_edge_index = data->adjacent_edge_index_map ?
data->adjacent_edge_index_map[n] :
n;
AverageGridsBoundariesTLSData *tls = static_cast<AverageGridsBoundariesTLSData *>(
tls_v->userdata_chunk);
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
CCGKey *key = data->key;
SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[adjacent_edge_index];
subdiv_ccg_average_grids_boundary(subdiv_ccg, key, adjacent_edge, tls);
}
static void subdiv_ccg_average_grids_boundaries_free(const void *__restrict /*userdata*/,
void *__restrict tls_v)
{
AverageGridsBoundariesTLSData *tls = static_cast<AverageGridsBoundariesTLSData *>(tls_v);
MEM_SAFE_FREE(tls->accumulators);
}
struct AverageGridsCornerData {
SubdivCCG *subdiv_ccg;
CCGKey *key;
/* Optional lookup table. Maps task range index to index in `subdiv_ccg->adjacent_vertices`. */
const int *adjacent_vert_index_map;
};
static void subdiv_ccg_average_grids_corners(SubdivCCG *subdiv_ccg,
CCGKey *key,
SubdivCCGAdjacentVertex *adjacent_vertex)
{
const int num_adjacent_faces = adjacent_vertex->num_adjacent_faces;
if (num_adjacent_faces == 1) {
/* Nothing to average with. */
return;
}
GridElementAccumulator accumulator;
element_accumulator_init(&accumulator);
for (int face_index = 0; face_index < num_adjacent_faces; face_index++) {
CCGElem *grid_element = subdiv_ccg_coord_to_elem(
key, subdiv_ccg, &adjacent_vertex->corner_coords[face_index]);
element_accumulator_add(&accumulator, subdiv_ccg, key, grid_element);
}
element_accumulator_mul_fl(&accumulator, 1.0f / num_adjacent_faces);
/* Copy averaged value to all the other faces. */
for (int face_index = 0; face_index < num_adjacent_faces; face_index++) {
CCGElem *grid_element = subdiv_ccg_coord_to_elem(
key, subdiv_ccg, &adjacent_vertex->corner_coords[face_index]);
element_accumulator_copy(subdiv_ccg, key, grid_element, &accumulator);
}
}
static void subdiv_ccg_average_grids_corners_task(void *__restrict userdata_v,
const int n,
const TaskParallelTLS *__restrict /*tls_v*/)
{
AverageGridsCornerData *data = static_cast<AverageGridsCornerData *>(userdata_v);
const int adjacent_vertex_index = data->adjacent_vert_index_map ?
data->adjacent_vert_index_map[n] :
n;
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
CCGKey *key = data->key;
SubdivCCGAdjacentVertex *adjacent_vertex = &subdiv_ccg->adjacent_vertices[adjacent_vertex_index];
subdiv_ccg_average_grids_corners(subdiv_ccg, key, adjacent_vertex);
}
static void subdiv_ccg_average_boundaries(SubdivCCG *subdiv_ccg,
CCGKey *key,
const int *adjacent_edge_index_map,
int num_adjacent_edges)
{
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
AverageGridsBoundariesData boundaries_data{};
boundaries_data.subdiv_ccg = subdiv_ccg;
boundaries_data.key = key;
boundaries_data.adjacent_edge_index_map = adjacent_edge_index_map;
AverageGridsBoundariesTLSData tls_data = {nullptr};
parallel_range_settings.userdata_chunk = &tls_data;
parallel_range_settings.userdata_chunk_size = sizeof(tls_data);
parallel_range_settings.func_free = subdiv_ccg_average_grids_boundaries_free;
BLI_task_parallel_range(0,
num_adjacent_edges,
&boundaries_data,
subdiv_ccg_average_grids_boundaries_task,
&parallel_range_settings);
}
static void subdiv_ccg_average_all_boundaries(SubdivCCG *subdiv_ccg, CCGKey *key)
{
subdiv_ccg_average_boundaries(subdiv_ccg, key, nullptr, subdiv_ccg->num_adjacent_edges);
}
static void subdiv_ccg_average_corners(SubdivCCG *subdiv_ccg,
CCGKey *key,
const int *adjacent_vert_index_map,
int num_adjacent_vertices)
{
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
AverageGridsCornerData corner_data{};
corner_data.subdiv_ccg = subdiv_ccg;
corner_data.key = key;
corner_data.adjacent_vert_index_map = adjacent_vert_index_map;
BLI_task_parallel_range(0,
num_adjacent_vertices,
&corner_data,
subdiv_ccg_average_grids_corners_task,
&parallel_range_settings);
}
static void subdiv_ccg_average_all_corners(SubdivCCG *subdiv_ccg, CCGKey *key)
{
subdiv_ccg_average_corners(subdiv_ccg, key, nullptr, subdiv_ccg->num_adjacent_vertices);
}
static void subdiv_ccg_average_all_boundaries_and_corners(SubdivCCG *subdiv_ccg, CCGKey *key)
{
subdiv_ccg_average_all_boundaries(subdiv_ccg, key);
subdiv_ccg_average_all_corners(subdiv_ccg, key);
}
void BKE_subdiv_ccg_average_grids(SubdivCCG *subdiv_ccg)
{
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
/* Average inner boundaries of grids (within one face), across faces
* from different face-corners. */
AverageInnerGridsData inner_data{};
inner_data.subdiv_ccg = subdiv_ccg;
inner_data.key = &key;
BLI_task_parallel_range(0,
subdiv_ccg->num_faces,
&inner_data,
subdiv_ccg_average_inner_grids_task,
&parallel_range_settings);
subdiv_ccg_average_all_boundaries_and_corners(subdiv_ccg, &key);
}
static void subdiv_ccg_affected_face_adjacency(SubdivCCG *subdiv_ccg,
CCGFace **effected_faces,
int num_effected_faces,
GSet *r_adjacent_vertices,
GSet *r_adjacent_edges)
{
Subdiv *subdiv = subdiv_ccg->subdiv;
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
Vector<int, 64> face_vertices;
Vector<int, 64> face_edges;
for (int i = 0; i < num_effected_faces; i++) {
SubdivCCGFace *face = (SubdivCCGFace *)effected_faces[i];
int face_index = face - subdiv_ccg->faces;
const int num_face_grids = face->num_grids;
face_vertices.reinitialize(num_face_grids);
topology_refiner->getFaceVertices(topology_refiner, face_index, face_vertices.data());
/* Note that order of edges is same as order of MLoops, which also
* means it's the same as order of grids. */
face_edges.reinitialize(num_face_grids);
topology_refiner->getFaceEdges(topology_refiner, face_index, face_edges.data());
for (int corner = 0; corner < num_face_grids; corner++) {
const int vertex_index = face_vertices[corner];
const int edge_index = face_edges[corner];
int edge_vertices[2];
topology_refiner->getEdgeVertices(topology_refiner, edge_index, edge_vertices);
SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[edge_index];
BLI_gset_add(r_adjacent_edges, adjacent_edge);
SubdivCCGAdjacentVertex *adjacent_vertex = &subdiv_ccg->adjacent_vertices[vertex_index];
BLI_gset_add(r_adjacent_vertices, adjacent_vertex);
}
}
}
void subdiv_ccg_average_faces_boundaries_and_corners(SubdivCCG *subdiv_ccg,
CCGKey *key,
CCGFace **effected_faces,
int num_effected_faces)
{
GSet *adjacent_vertices = BLI_gset_ptr_new(__func__);
GSet *adjacent_edges = BLI_gset_ptr_new(__func__);
GSetIterator gi;
subdiv_ccg_affected_face_adjacency(
subdiv_ccg, effected_faces, num_effected_faces, adjacent_vertices, adjacent_edges);
int i = 0;
/* Average boundaries. */
Array<int, 64> adjacent_edge_index_map(BLI_gset_len(adjacent_edges));
GSET_ITER_INDEX (gi, adjacent_edges, i) {
SubdivCCGAdjacentEdge *adjacent_edge = static_cast<SubdivCCGAdjacentEdge *>(
BLI_gsetIterator_getKey(&gi));
adjacent_edge_index_map[i] = adjacent_edge - subdiv_ccg->adjacent_edges;
}
subdiv_ccg_average_boundaries(
subdiv_ccg, key, adjacent_edge_index_map.data(), BLI_gset_len(adjacent_edges));
/* Average corners. */
Array<int, 64> adjacent_vertex_index_map(BLI_gset_len(adjacent_vertices));
GSET_ITER_INDEX (gi, adjacent_vertices, i) {
SubdivCCGAdjacentVertex *adjacent_vertex = static_cast<SubdivCCGAdjacentVertex *>(
BLI_gsetIterator_getKey(&gi));
adjacent_vertex_index_map[i] = adjacent_vertex - subdiv_ccg->adjacent_vertices;
}
subdiv_ccg_average_corners(
subdiv_ccg, key, adjacent_vertex_index_map.data(), BLI_gset_len(adjacent_vertices));
BLI_gset_free(adjacent_vertices, nullptr);
BLI_gset_free(adjacent_edges, nullptr);
}
struct StitchFacesInnerGridsData {
SubdivCCG *subdiv_ccg;
CCGKey *key;
CCGFace **effected_ccg_faces;
};
static void subdiv_ccg_stitch_face_inner_grids_task(void *__restrict userdata_v,
const int face_index,
const TaskParallelTLS *__restrict /*tls_v*/)
{
StitchFacesInnerGridsData *data = static_cast<StitchFacesInnerGridsData *>(userdata_v);
SubdivCCG *subdiv_ccg = data->subdiv_ccg;
CCGKey *key = data->key;
CCGFace **effected_ccg_faces = data->effected_ccg_faces;
CCGFace *effected_ccg_face = effected_ccg_faces[face_index];
SubdivCCGFace *face = (SubdivCCGFace *)effected_ccg_face;
subdiv_ccg_average_inner_face_grids(subdiv_ccg, key, face);
}
void BKE_subdiv_ccg_average_stitch_faces(SubdivCCG *subdiv_ccg,
CCGFace **effected_faces,
int num_effected_faces)
{
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
StitchFacesInnerGridsData data{};
data.subdiv_ccg = subdiv_ccg;
data.key = &key;
data.effected_ccg_faces = effected_faces;
TaskParallelSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
BLI_task_parallel_range(0,
num_effected_faces,
&data,
subdiv_ccg_stitch_face_inner_grids_task,
&parallel_range_settings);
/* TODO(sergey): Only average elements which are adjacent to modified
* faces. */
subdiv_ccg_average_all_boundaries_and_corners(subdiv_ccg, &key);
}
void BKE_subdiv_ccg_topology_counters(const SubdivCCG *subdiv_ccg,
int *r_num_vertices,
int *r_num_edges,
int *r_num_faces,
int *r_num_loops)
{
const int num_grids = subdiv_ccg->num_grids;
const int grid_size = subdiv_ccg->grid_size;
const int grid_area = grid_size * grid_size;
const int num_edges_per_grid = 2 * (grid_size * (grid_size - 1));
*r_num_vertices = num_grids * grid_area;
*r_num_edges = num_grids * num_edges_per_grid;
*r_num_faces = num_grids * (grid_size - 1) * (grid_size - 1);
*r_num_loops = *r_num_faces * 4;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Neighbors
* \{ */
void BKE_subdiv_ccg_print_coord(const char *message, const SubdivCCGCoord *coord)
{
printf("%s: grid index: %d, coord: (%d, %d)\n", message, coord->grid_index, coord->x, coord->y);
}
bool BKE_subdiv_ccg_check_coord_valid(const SubdivCCG *subdiv_ccg, const SubdivCCGCoord *coord)
{
if (coord->grid_index < 0 || coord->grid_index >= subdiv_ccg->num_grids) {
return false;
}
const int grid_size = subdiv_ccg->grid_size;
if (coord->x < 0 || coord->x >= grid_size) {
return false;
}
if (coord->y < 0 || coord->y >= grid_size) {
return false;
}
return true;
}
BLI_INLINE void subdiv_ccg_neighbors_init(SubdivCCGNeighbors *neighbors,
const int num_unique,
const int num_duplicates)
{
const int size = num_unique + num_duplicates;
neighbors->size = size;
neighbors->num_duplicates = num_duplicates;
if (size < ARRAY_SIZE(neighbors->coords_fixed)) {
neighbors->coords = neighbors->coords_fixed;
}
else {
neighbors->coords = static_cast<SubdivCCGCoord *>(
MEM_mallocN(sizeof(*neighbors->coords) * size, "SubdivCCGNeighbors.coords"));
}
}
/* Check whether given coordinate belongs to a grid corner. */
BLI_INLINE bool is_corner_grid_coord(const SubdivCCG *subdiv_ccg, const SubdivCCGCoord *coord)
{
const int grid_size_1 = subdiv_ccg->grid_size - 1;
return (coord->x == 0 && coord->y == 0) || (coord->x == 0 && coord->y == grid_size_1) ||
(coord->x == grid_size_1 && coord->y == grid_size_1) ||
(coord->x == grid_size_1 && coord->y == 0);
}
/* Check whether given coordinate belongs to a grid boundary. */
BLI_INLINE bool is_boundary_grid_coord(const SubdivCCG *subdiv_ccg, const SubdivCCGCoord *coord)
{
const int grid_size_1 = subdiv_ccg->grid_size - 1;
return coord->x == 0 || coord->y == 0 || coord->x == grid_size_1 || coord->y == grid_size_1;
}
/* Check whether coordinate is at the boundary between two grids of the same face. */
BLI_INLINE bool is_inner_edge_grid_coordinate(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord)
{
const int grid_size_1 = subdiv_ccg->grid_size - 1;
if (coord->x == 0) {
return coord->y > 0 && coord->y < grid_size_1;
}
if (coord->y == 0) {
return coord->x > 0 && coord->x < grid_size_1;
}
return false;
}
BLI_INLINE SubdivCCGCoord coord_at_prev_row(const SubdivCCG * /*subdiv_ccg*/,
const SubdivCCGCoord *coord)
{
BLI_assert(coord->y > 0);
SubdivCCGCoord result = *coord;
result.y -= 1;
return result;
}
BLI_INLINE SubdivCCGCoord coord_at_next_row(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord)
{
UNUSED_VARS_NDEBUG(subdiv_ccg);
BLI_assert(coord->y < subdiv_ccg->grid_size - 1);
SubdivCCGCoord result = *coord;
result.y += 1;
return result;
}
BLI_INLINE SubdivCCGCoord coord_at_prev_col(const SubdivCCG * /*subdiv_ccg*/,
const SubdivCCGCoord *coord)
{
BLI_assert(coord->x > 0);
SubdivCCGCoord result = *coord;
result.x -= 1;
return result;
}
BLI_INLINE SubdivCCGCoord coord_at_next_col(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord)
{
UNUSED_VARS_NDEBUG(subdiv_ccg);
BLI_assert(coord->x < subdiv_ccg->grid_size - 1);
SubdivCCGCoord result = *coord;
result.x += 1;
return result;
}
/* For the input coordinate which is at the boundary of the grid do one step inside. */
static SubdivCCGCoord coord_step_inside_from_boundary(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord)
{
SubdivCCGCoord result = *coord;
const int grid_size_1 = subdiv_ccg->grid_size - 1;
if (result.x == grid_size_1) {
--result.x;
}
else if (result.y == grid_size_1) {
--result.y;
}
else if (result.x == 0) {
++result.x;
}
else if (result.y == 0) {
++result.y;
}
else {
BLI_assert_msg(0, "non-boundary element given");
}
return result;
}
BLI_INLINE
int next_grid_index_from_coord(const SubdivCCG *subdiv_ccg, const SubdivCCGCoord *coord)
{
const SubdivCCGFace *face = &subdiv_ccg->faces[subdiv_ccg->grid_to_face_map[coord->grid_index]];
const int face_grid_index = coord->grid_index;
int next_face_grid_index = face_grid_index + 1 - face->start_grid_index;
if (next_face_grid_index == face->num_grids) {
next_face_grid_index = 0;
}
return face->start_grid_index + next_face_grid_index;
}
BLI_INLINE int prev_grid_index_from_coord(const SubdivCCG *subdiv_ccg, const SubdivCCGCoord *coord)
{
const SubdivCCGFace *face = &subdiv_ccg->faces[subdiv_ccg->grid_to_face_map[coord->grid_index]];
const int face_grid_index = coord->grid_index;
int prev_face_grid_index = face_grid_index - 1 - face->start_grid_index;
if (prev_face_grid_index < 0) {
prev_face_grid_index = face->num_grids - 1;
}
return face->start_grid_index + prev_face_grid_index;
}
/* Simple case of getting neighbors of a corner coordinate: the corner is a face center, so
* can only iterate over grid of a single face, without looking into adjacency. */
static void neighbor_coords_corner_center_get(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const bool include_duplicates,
SubdivCCGNeighbors *r_neighbors)
{
const SubdivCCGFace *face = &subdiv_ccg->faces[subdiv_ccg->grid_to_face_map[coord->grid_index]];
const int num_adjacent_grids = face->num_grids;
subdiv_ccg_neighbors_init(
r_neighbors, num_adjacent_grids, (include_duplicates) ? num_adjacent_grids - 1 : 0);
int duplicate_face_grid_index = num_adjacent_grids;
for (int face_grid_index = 0; face_grid_index < num_adjacent_grids; ++face_grid_index) {
SubdivCCGCoord neighbor_coord;
neighbor_coord.grid_index = face->start_grid_index + face_grid_index;
neighbor_coord.x = 1;
neighbor_coord.y = 0;
r_neighbors->coords[face_grid_index] = neighbor_coord;
if (include_duplicates && neighbor_coord.grid_index != coord->grid_index) {
neighbor_coord.x = 0;
r_neighbors->coords[duplicate_face_grid_index++] = neighbor_coord;
}
}
}
/* Get index within adjacent_vertices array for the given CCG coordinate. */
static int adjacent_vertex_index_from_coord(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord)
{
Subdiv *subdiv = subdiv_ccg->subdiv;
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
const SubdivCCGFace *face = &subdiv_ccg->faces[subdiv_ccg->grid_to_face_map[coord->grid_index]];
const int face_index = face - subdiv_ccg->faces;
const int face_grid_index = coord->grid_index - face->start_grid_index;
const int num_face_grids = face->num_grids;
Array<int, 64> face_vertices(num_face_grids);
topology_refiner->getFaceVertices(topology_refiner, face_index, face_vertices.data());
const int adjacent_vertex_index = face_vertices[face_grid_index];
return adjacent_vertex_index;
}
/* The corner is adjacent to a coarse vertex. */
static void neighbor_coords_corner_vertex_get(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const bool include_duplicates,
SubdivCCGNeighbors *r_neighbors)
{
Subdiv *subdiv = subdiv_ccg->subdiv;
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
const int adjacent_vertex_index = adjacent_vertex_index_from_coord(subdiv_ccg, coord);
BLI_assert(adjacent_vertex_index >= 0);
BLI_assert(adjacent_vertex_index < subdiv_ccg->num_adjacent_vertices);
const int num_vertex_edges = topology_refiner->getNumVertexEdges(topology_refiner,
adjacent_vertex_index);
SubdivCCGAdjacentVertex *adjacent_vertex = &subdiv_ccg->adjacent_vertices[adjacent_vertex_index];
const int num_adjacent_faces = adjacent_vertex->num_adjacent_faces;
subdiv_ccg_neighbors_init(
r_neighbors, num_vertex_edges, (include_duplicates) ? num_adjacent_faces - 1 : 0);
Array<int, 64> vertex_edges(num_vertex_edges);
topology_refiner->getVertexEdges(topology_refiner, adjacent_vertex_index, vertex_edges.data());
for (int i = 0; i < num_vertex_edges; ++i) {
const int edge_index = vertex_edges[i];
/* Use very first grid of every edge. */
const int edge_face_index = 0;
/* Depending edge orientation we use first (zero-based) or previous-to-last point. */
int edge_vertices_indices[2];
topology_refiner->getEdgeVertices(topology_refiner, edge_index, edge_vertices_indices);
int edge_point_index, duplicate_edge_point_index;
if (edge_vertices_indices[0] == adjacent_vertex_index) {
duplicate_edge_point_index = 0;
edge_point_index = duplicate_edge_point_index + 1;
}
else {
/* Edge "consists" of 2 grids, which makes it 2 * grid_size elements per edge.
* The index of last edge element is 2 * grid_size - 1 (due to zero-based indices),
* and we are interested in previous to last element. */
duplicate_edge_point_index = subdiv_ccg->grid_size * 2 - 1;
edge_point_index = duplicate_edge_point_index - 1;
}
SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[edge_index];
r_neighbors->coords[i] = adjacent_edge->boundary_coords[edge_face_index][edge_point_index];
}
if (include_duplicates) {
/* Add duplicates of the current grid vertex in adjacent faces if requested. */
for (int i = 0, duplicate_i = num_vertex_edges; i < num_adjacent_faces; i++) {
SubdivCCGCoord neighbor_coord = adjacent_vertex->corner_coords[i];
if (neighbor_coord.grid_index != coord->grid_index) {
r_neighbors->coords[duplicate_i++] = neighbor_coord;
}
}
}
}
static int adjacent_edge_index_from_coord(const SubdivCCG *subdiv_ccg, const SubdivCCGCoord *coord)
{
Subdiv *subdiv = subdiv_ccg->subdiv;
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
const SubdivCCGFace *face = &subdiv_ccg->faces[subdiv_ccg->grid_to_face_map[coord->grid_index]];
const int face_grid_index = coord->grid_index - face->start_grid_index;
const int face_index = face - subdiv_ccg->faces;
const int num_face_edges = topology_refiner->getNumFaceEdges(topology_refiner, face_index);
Array<int, 64> face_edges(num_face_edges);
topology_refiner->getFaceEdges(topology_refiner, face_index, face_edges.data());
const int grid_size_1 = subdiv_ccg->grid_size - 1;
int adjacent_edge_index = -1;
if (coord->x == grid_size_1) {
adjacent_edge_index = face_edges[face_grid_index];
}
else {
BLI_assert(coord->y == grid_size_1);
adjacent_edge_index =
face_edges[face_grid_index == 0 ? face->num_grids - 1 : face_grid_index - 1];
}
return adjacent_edge_index;
}
static int adjacent_edge_point_index_from_coord(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const int adjacent_edge_index)
{
Subdiv *subdiv = subdiv_ccg->subdiv;
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
const int adjacent_vertex_index = adjacent_vertex_index_from_coord(subdiv_ccg, coord);
int edge_vertices_indices[2];
topology_refiner->getEdgeVertices(topology_refiner, adjacent_edge_index, edge_vertices_indices);
/* Vertex index of an edge which is used to see whether edge points in the right direction.
* Tricky part here is that depending whether input coordinate is are maximum X or Y coordinate
* of the grid we need to use different edge direction.
* Basically, the edge adjacent to a previous loop needs to point opposite direction. */
int directional_edge_vertex_index = -1;
const int grid_size_1 = subdiv_ccg->grid_size - 1;
int adjacent_edge_point_index = -1;
if (coord->x == grid_size_1) {
adjacent_edge_point_index = subdiv_ccg->grid_size - coord->y - 1;
directional_edge_vertex_index = edge_vertices_indices[0];
}
else {
BLI_assert(coord->y == grid_size_1);
adjacent_edge_point_index = subdiv_ccg->grid_size + coord->x;
directional_edge_vertex_index = edge_vertices_indices[1];
}
/* Flip the index if the edge points opposite direction. */
if (adjacent_vertex_index != directional_edge_vertex_index) {
const int num_edge_points = subdiv_ccg->grid_size * 2;
adjacent_edge_point_index = num_edge_points - adjacent_edge_point_index - 1;
}
return adjacent_edge_point_index;
}
/* Adjacent edge has two points in the middle which corresponds to grid corners, but which are
* the same point in the final geometry.
* So need to use extra step when calculating next/previous points, so we don't go from a corner
* of one grid to a corner of adjacent grid. */
static int next_adjacent_edge_point_index(const SubdivCCG *subdiv_ccg, const int point_index)
{
if (point_index == subdiv_ccg->grid_size - 1) {
return point_index + 2;
}
return point_index + 1;
}
static int prev_adjacent_edge_point_index(const SubdivCCG *subdiv_ccg, const int point_index)
{
if (point_index == subdiv_ccg->grid_size) {
return point_index - 2;
}
return point_index - 1;
}
/* When the point index corresponds to a grid corner, returns the point index which corresponds to
* the corner of the adjacent grid, as the adjacent edge has two separate points for each grid
* corner at the middle of the edge. */
static int adjacent_grid_corner_point_index_on_edge(const SubdivCCG *subdiv_ccg,
const int point_index)
{
if (point_index == subdiv_ccg->grid_size) {
return point_index - 1;
}
return point_index + 1;
}
/* Common implementation of neighbor calculation when input coordinate is at the edge between two
* coarse faces, but is not at the coarse vertex. */
static void neighbor_coords_edge_get(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const bool include_duplicates,
SubdivCCGNeighbors *r_neighbors)
{
const bool is_corner = is_corner_grid_coord(subdiv_ccg, coord);
const int adjacent_edge_index = adjacent_edge_index_from_coord(subdiv_ccg, coord);
BLI_assert(adjacent_edge_index >= 0);
BLI_assert(adjacent_edge_index < subdiv_ccg->num_adjacent_edges);
const SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[adjacent_edge_index];
/* 2 neighbor points along the edge, plus one inner point per every adjacent grid. */
const int num_adjacent_faces = adjacent_edge->num_adjacent_faces;
int num_duplicates = 0;
if (include_duplicates) {
num_duplicates += num_adjacent_faces - 1;
if (is_corner) {
/* When the coord is a grid corner, add an extra duplicate per adjacent grid in all adjacent
* faces to the edge. */
num_duplicates += num_adjacent_faces;
}
}
subdiv_ccg_neighbors_init(r_neighbors, num_adjacent_faces + 2, num_duplicates);
const int point_index = adjacent_edge_point_index_from_coord(
subdiv_ccg, coord, adjacent_edge_index);
const int point_index_duplicate = adjacent_grid_corner_point_index_on_edge(subdiv_ccg,
point_index);
const int next_point_index = next_adjacent_edge_point_index(subdiv_ccg, point_index);
const int prev_point_index = prev_adjacent_edge_point_index(subdiv_ccg, point_index);
int duplicate_i = num_adjacent_faces;
for (int i = 0; i < num_adjacent_faces; ++i) {
SubdivCCGCoord *boundary_coords = adjacent_edge->boundary_coords[i];
/* One step into the grid from the edge for each adjacent face. */
SubdivCCGCoord grid_coord = boundary_coords[point_index];
r_neighbors->coords[i + 2] = coord_step_inside_from_boundary(subdiv_ccg, &grid_coord);
if (grid_coord.grid_index == coord->grid_index) {
/* Previous and next along the edge for the current grid. */
r_neighbors->coords[0] = boundary_coords[prev_point_index];
r_neighbors->coords[1] = boundary_coords[next_point_index];
}
else if (include_duplicates) {
/* Same coordinate on neighboring grids if requested. */
r_neighbors->coords[duplicate_i + 2] = grid_coord;
duplicate_i++;
}
/* When it is a corner, add the duplicate of the adjacent grid in the same face. */
if (include_duplicates && is_corner) {
SubdivCCGCoord duplicate_corner_grid_coord = boundary_coords[point_index_duplicate];
r_neighbors->coords[duplicate_i + 2] = duplicate_corner_grid_coord;
duplicate_i++;
}
}
BLI_assert(duplicate_i - num_adjacent_faces == num_duplicates);
}
/* The corner is at the middle of edge between faces. */
static void neighbor_coords_corner_edge_get(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const bool include_duplicates,
SubdivCCGNeighbors *r_neighbors)
{
neighbor_coords_edge_get(subdiv_ccg, coord, include_duplicates, r_neighbors);
}
/* Input coordinate is at one of 4 corners of its grid corners. */
static void neighbor_coords_corner_get(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const bool include_duplicates,
SubdivCCGNeighbors *r_neighbors)
{
if (coord->x == 0 && coord->y == 0) {
neighbor_coords_corner_center_get(subdiv_ccg, coord, include_duplicates, r_neighbors);
}
else {
const int grid_size_1 = subdiv_ccg->grid_size - 1;
if (coord->x == grid_size_1 && coord->y == grid_size_1) {
neighbor_coords_corner_vertex_get(subdiv_ccg, coord, include_duplicates, r_neighbors);
}
else {
neighbor_coords_corner_edge_get(subdiv_ccg, coord, include_duplicates, r_neighbors);
}
}
}
/* Simple case of getting neighbors of a boundary coordinate: the input coordinate is at the
* boundary between two grids of the same face and there is no need to check adjacency with
* other faces. */
static void neighbor_coords_boundary_inner_get(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const bool include_duplicates,
SubdivCCGNeighbors *r_neighbors)
{
subdiv_ccg_neighbors_init(r_neighbors, 4, (include_duplicates) ? 1 : 0);
if (coord->x == 0) {
r_neighbors->coords[0] = coord_at_prev_row(subdiv_ccg, coord);
r_neighbors->coords[1] = coord_at_next_row(subdiv_ccg, coord);
r_neighbors->coords[2] = coord_at_next_col(subdiv_ccg, coord);
r_neighbors->coords[3].grid_index = prev_grid_index_from_coord(subdiv_ccg, coord);
r_neighbors->coords[3].x = coord->y;
r_neighbors->coords[3].y = 1;
if (include_duplicates) {
r_neighbors->coords[4] = r_neighbors->coords[3];
r_neighbors->coords[4].y = 0;
}
}
else if (coord->y == 0) {
r_neighbors->coords[0] = coord_at_prev_col(subdiv_ccg, coord);
r_neighbors->coords[1] = coord_at_next_col(subdiv_ccg, coord);
r_neighbors->coords[2] = coord_at_next_row(subdiv_ccg, coord);
r_neighbors->coords[3].grid_index = next_grid_index_from_coord(subdiv_ccg, coord);
r_neighbors->coords[3].x = 1;
r_neighbors->coords[3].y = coord->x;
if (include_duplicates) {
r_neighbors->coords[4] = r_neighbors->coords[3];
r_neighbors->coords[4].x = 0;
}
}
}
/* Input coordinate is on an edge between two faces. Need to check adjacency. */
static void neighbor_coords_boundary_outer_get(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const bool include_duplicates,
SubdivCCGNeighbors *r_neighbors)
{
neighbor_coords_edge_get(subdiv_ccg, coord, include_duplicates, r_neighbors);
}
/* Input coordinate is at one of 4 boundaries of its grid.
* It could either be an inner boundary (which connects face center to the face edge) or could be
* a part of coarse face edge. */
static void neighbor_coords_boundary_get(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const bool include_duplicates,
SubdivCCGNeighbors *r_neighbors)
{
if (is_inner_edge_grid_coordinate(subdiv_ccg, coord)) {
neighbor_coords_boundary_inner_get(subdiv_ccg, coord, include_duplicates, r_neighbors);
}
else {
neighbor_coords_boundary_outer_get(subdiv_ccg, coord, include_duplicates, r_neighbors);
}
}
/* Input coordinate is inside of its grid, all the neighbors belong to the same grid. */
static void neighbor_coords_inner_get(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
SubdivCCGNeighbors *r_neighbors)
{
subdiv_ccg_neighbors_init(r_neighbors, 4, 0);
r_neighbors->coords[0] = coord_at_prev_row(subdiv_ccg, coord);
r_neighbors->coords[1] = coord_at_next_row(subdiv_ccg, coord);
r_neighbors->coords[2] = coord_at_prev_col(subdiv_ccg, coord);
r_neighbors->coords[3] = coord_at_next_col(subdiv_ccg, coord);
}
void BKE_subdiv_ccg_neighbor_coords_get(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const bool include_duplicates,
SubdivCCGNeighbors *r_neighbors)
{
BLI_assert(coord->grid_index >= 0);
BLI_assert(coord->grid_index < subdiv_ccg->num_grids);
BLI_assert(coord->x >= 0);
BLI_assert(coord->x < subdiv_ccg->grid_size);
BLI_assert(coord->y >= 0);
BLI_assert(coord->y < subdiv_ccg->grid_size);
if (is_corner_grid_coord(subdiv_ccg, coord)) {
neighbor_coords_corner_get(subdiv_ccg, coord, include_duplicates, r_neighbors);
}
else if (is_boundary_grid_coord(subdiv_ccg, coord)) {
neighbor_coords_boundary_get(subdiv_ccg, coord, include_duplicates, r_neighbors);
}
else {
neighbor_coords_inner_get(subdiv_ccg, coord, r_neighbors);
}
#ifndef NDEBUG
for (int i = 0; i < r_neighbors->size; i++) {
BLI_assert(BKE_subdiv_ccg_check_coord_valid(subdiv_ccg, &r_neighbors->coords[i]));
}
#endif
}
int BKE_subdiv_ccg_grid_to_face_index(const SubdivCCG *subdiv_ccg, const int grid_index)
{
return subdiv_ccg->grid_to_face_map[grid_index];
}
const int *BKE_subdiv_ccg_start_face_grid_index_ensure(SubdivCCG *subdiv_ccg)
{
if (subdiv_ccg->cache_.start_face_grid_index == nullptr) {
const Subdiv *subdiv = subdiv_ccg->subdiv;
OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
if (topology_refiner == nullptr) {
return nullptr;
}
const int num_coarse_faces = topology_refiner->getNumFaces(topology_refiner);
subdiv_ccg->cache_.start_face_grid_index = static_cast<int *>(
MEM_malloc_arrayN(num_coarse_faces, sizeof(int), "start_face_grid_index"));
int start_grid_index = 0;
for (int face_index = 0; face_index < num_coarse_faces; face_index++) {
const int num_face_grids = topology_refiner->getNumFaceVertices(topology_refiner,
face_index);
subdiv_ccg->cache_.start_face_grid_index[face_index] = start_grid_index;
start_grid_index += num_face_grids;
}
}
return subdiv_ccg->cache_.start_face_grid_index;
}
const int *BKE_subdiv_ccg_start_face_grid_index_get(const SubdivCCG *subdiv_ccg)
{
return subdiv_ccg->cache_.start_face_grid_index;
}
static void adjacent_vertices_index_from_adjacent_edge(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const blender::Span<int> corner_verts,
const blender::OffsetIndices<int> faces,
int *r_v1,
int *r_v2)
{
const int grid_size_1 = subdiv_ccg->grid_size - 1;
const int face_index = BKE_subdiv_ccg_grid_to_face_index(subdiv_ccg, coord->grid_index);
const blender::IndexRange face = faces[face_index];
*r_v1 = corner_verts[coord->grid_index];
const int corner = blender::bke::mesh::face_find_corner_from_vert(face, corner_verts, *r_v1);
if (coord->x == grid_size_1) {
const int next = blender::bke::mesh::face_corner_next(face, corner);
*r_v2 = corner_verts[next];
}
if (coord->y == grid_size_1) {
const int prev = blender::bke::mesh::face_corner_prev(face, corner);
*r_v2 = corner_verts[prev];
}
}
SubdivCCGAdjacencyType BKE_subdiv_ccg_coarse_mesh_adjacency_info_get(
const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
const blender::Span<int> corner_verts,
const blender::OffsetIndices<int> faces,
int *r_v1,
int *r_v2)
{
const int grid_size_1 = subdiv_ccg->grid_size - 1;
if (is_corner_grid_coord(subdiv_ccg, coord)) {
if (coord->x == 0 && coord->y == 0) {
/* Grid corner in the center of a face. */
return SUBDIV_CCG_ADJACENT_NONE;
}
if (coord->x == grid_size_1 && coord->y == grid_size_1) {
/* Grid corner adjacent to a coarse mesh vertex. */
*r_v1 = *r_v2 = corner_verts[coord->grid_index];
return SUBDIV_CCG_ADJACENT_VERTEX;
}
/* Grid corner adjacent to the middle of a coarse mesh edge. */
adjacent_vertices_index_from_adjacent_edge(subdiv_ccg, coord, corner_verts, faces, r_v1, r_v2);
return SUBDIV_CCG_ADJACENT_EDGE;
}
if (is_boundary_grid_coord(subdiv_ccg, coord)) {
if (!is_inner_edge_grid_coordinate(subdiv_ccg, coord)) {
/* Grid boundary adjacent to a coarse mesh edge. */
adjacent_vertices_index_from_adjacent_edge(
subdiv_ccg, coord, corner_verts, faces, r_v1, r_v2);
return SUBDIV_CCG_ADJACENT_EDGE;
}
}
return SUBDIV_CCG_ADJACENT_NONE;
}
void BKE_subdiv_ccg_grid_hidden_ensure(SubdivCCG *subdiv_ccg, int grid_index)
{
if (subdiv_ccg->grid_hidden[grid_index] != nullptr) {
return;
}
CCGKey key;
BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
subdiv_ccg->grid_hidden[grid_index] = BLI_BITMAP_NEW(key.grid_area, __func__);
}
void BKE_subdiv_ccg_grid_hidden_free(SubdivCCG *subdiv_ccg, int grid_index)
{
MEM_SAFE_FREE(subdiv_ccg->grid_hidden[grid_index]);
}
static void subdiv_ccg_coord_to_ptex_coord(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
int *r_ptex_face_index,
float *r_u,
float *r_v)
{
Subdiv *subdiv = subdiv_ccg->subdiv;
const float grid_size = subdiv_ccg->grid_size;
const float grid_size_1_inv = 1.0f / (grid_size - 1);
const float grid_u = coord->x * grid_size_1_inv;
const float grid_v = coord->y * grid_size_1_inv;
const int face_index = BKE_subdiv_ccg_grid_to_face_index(subdiv_ccg, coord->grid_index);
const SubdivCCGFace *faces = subdiv_ccg->faces;
const SubdivCCGFace *face = &faces[face_index];
const int *face_ptex_offset = BKE_subdiv_face_ptex_offset_get(subdiv);
*r_ptex_face_index = face_ptex_offset[face_index];
const float corner = coord->grid_index - face->start_grid_index;
if (face->num_grids == 4) {
BKE_subdiv_rotate_grid_to_quad(corner, grid_u, grid_v, r_u, r_v);
}
else {
*r_ptex_face_index += corner;
*r_u = 1.0f - grid_v;
*r_v = 1.0f - grid_u;
}
}
void BKE_subdiv_ccg_eval_limit_point(const SubdivCCG *subdiv_ccg,
const SubdivCCGCoord *coord,
float r_point[3])
{
Subdiv *subdiv = subdiv_ccg->subdiv;
int ptex_face_index;
float u, v;
subdiv_ccg_coord_to_ptex_coord(subdiv_ccg, coord, &ptex_face_index, &u, &v);
BKE_subdiv_eval_limit_point(subdiv, ptex_face_index, u, v, r_point);
}
/** \} */