tornavis/source/blender/editors/transform/transform_input.cc

506 lines
13 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup edtransform
*/
#include <cmath>
#include <cstdlib>
#include "DNA_screen_types.h"
#include "DNA_space_types.h"
#include "BKE_context.hh"
#include "BLI_math_vector.h"
#include "BLI_utildefines.h"
#include "WM_api.hh"
#include "WM_types.hh"
#include "transform.hh"
#include "transform_mode.hh"
#include "MEM_guardedalloc.h"
using namespace blender;
/* -------------------------------------------------------------------- */
/** \name Callbacks for #MouseInput.apply
* \{ */
/** Callback for #INPUT_VECTOR */
static void InputVector(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
convertViewVec(t, output, mval[0] - mi->imval[0], mval[1] - mi->imval[1]);
}
/** Callback for #INPUT_SPRING */
static void InputSpring(TransInfo * /*t*/, MouseInput *mi, const double mval[2], float output[3])
{
double dx, dy;
float ratio;
dx = double(mi->center[0]) - mval[0];
dy = double(mi->center[1]) - mval[1];
ratio = hypot(dx, dy) / double(mi->factor);
output[0] = ratio;
}
/** Callback for #INPUT_SPRING_FLIP */
static void InputSpringFlip(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputSpring(t, mi, mval, output);
/* flip scale */
/* values can become really big when zoomed in so use longs #26598. */
if ((int64_t(int(mi->center[0]) - mval[0]) * int64_t(int(mi->center[0]) - mi->imval[0]) +
int64_t(int(mi->center[1]) - mval[1]) * int64_t(int(mi->center[1]) - mi->imval[1])) < 0)
{
output[0] *= -1.0f;
}
}
/** Callback for #INPUT_SPRING_DELTA */
static void InputSpringDelta(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputSpring(t, mi, mval, output);
output[0] -= 1.0f;
}
/** Callback for #INPUT_TRACKBALL */
static void InputTrackBall(TransInfo * /*t*/,
MouseInput *mi,
const double mval[2],
float output[3])
{
output[0] = float(mi->imval[1] - mval[1]);
output[1] = float(mval[0] - mi->imval[0]);
output[0] *= mi->factor;
output[1] *= mi->factor;
}
/** Callback for #INPUT_HORIZONTAL_RATIO */
static void InputHorizontalRatio(TransInfo *t,
MouseInput *mi,
const double mval[2],
float output[3])
{
const int winx = t->region ? t->region->winx : 1;
output[0] = ((mval[0] - mi->imval[0]) / winx) * 2.0f;
}
/** Callback for #INPUT_HORIZONTAL_ABSOLUTE */
static void InputHorizontalAbsolute(TransInfo *t,
MouseInput *mi,
const double mval[2],
float output[3])
{
float vec[3];
InputVector(t, mi, mval, vec);
project_v3_v3v3(vec, vec, t->viewinv[0]);
output[0] = dot_v3v3(t->viewinv[0], vec) * 2.0f;
}
static void InputVerticalRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
const int winy = t->region ? t->region->winy : 1;
/* Dragging up increases (matching viewport zoom). */
output[0] = ((mval[1] - mi->imval[1]) / winy) * 2.0f;
}
/** Callback for #INPUT_VERTICAL_ABSOLUTE */
static void InputVerticalAbsolute(TransInfo *t,
MouseInput *mi,
const double mval[2],
float output[3])
{
float vec[3];
InputVector(t, mi, mval, vec);
project_v3_v3v3(vec, vec, t->viewinv[1]);
/* Dragging up increases (matching viewport zoom). */
output[0] = dot_v3v3(t->viewinv[1], vec) * 2.0f;
}
/** Callback for #INPUT_CUSTOM_RATIO_FLIP */
static void InputCustomRatioFlip(TransInfo * /*t*/,
MouseInput *mi,
const double mval[2],
float output[3])
{
double length;
double distance;
double dx, dy;
const int *data = static_cast<const int *>(mi->data);
if (data) {
int mdx, mdy;
dx = data[2] - data[0];
dy = data[3] - data[1];
length = hypot(dx, dy);
mdx = mval[0] - data[2];
mdy = mval[1] - data[3];
distance = (length != 0.0) ? (mdx * dx + mdy * dy) / length : 0.0;
output[0] = (length != 0.0) ? double(distance / length) : 0.0;
}
}
/** Callback for #INPUT_CUSTOM_RATIO */
static void InputCustomRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputCustomRatioFlip(t, mi, mval, output);
output[0] = -output[0];
}
struct InputAngle_Data {
double angle;
double mval_prev[2];
};
/** Callback for #INPUT_ANGLE */
static void InputAngle(TransInfo * /*t*/, MouseInput *mi, const double mval[2], float output[3])
{
InputAngle_Data *data = static_cast<InputAngle_Data *>(mi->data);
float dir_prev[2], dir_curr[2], mi_center[2];
copy_v2_v2(mi_center, mi->center);
sub_v2_v2v2(
dir_prev, blender::float2{float(data->mval_prev[0]), float(data->mval_prev[1])}, mi_center);
sub_v2_v2v2(dir_curr, blender::float2{float(mval[0]), float(mval[1])}, mi_center);
if (normalize_v2(dir_prev) && normalize_v2(dir_curr)) {
float dphi = angle_normalized_v2v2(dir_prev, dir_curr);
if (cross_v2v2(dir_prev, dir_curr) > 0.0f) {
dphi = -dphi;
}
data->angle += double(dphi) * (mi->precision ? double(mi->precision_factor) : 1.0);
data->mval_prev[0] = mval[0];
data->mval_prev[1] = mval[1];
}
output[0] = data->angle;
}
static void InputAngleSpring(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
float toutput[3];
InputAngle(t, mi, mval, output);
InputSpring(t, mi, mval, toutput);
output[1] = toutput[0];
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Custom 2D Start/End Coordinate API
*
* - #INPUT_CUSTOM_RATIO
* - #INPUT_CUSTOM_RATIO_FLIP
* \{ */
void setCustomPoints(TransInfo * /*t*/,
MouseInput *mi,
const int mval_start[2],
const int mval_end[2])
{
int *data;
mi->data = MEM_reallocN(mi->data, sizeof(int[4]));
data = static_cast<int *>(mi->data);
data[0] = mval_start[0];
data[1] = mval_start[1];
data[2] = mval_end[0];
data[3] = mval_end[1];
}
void setCustomPointsFromDirection(TransInfo *t, MouseInput *mi, const float2 &dir)
{
BLI_ASSERT_UNIT_V2(dir);
const int win_axis =
t->region ? ((abs(int(t->region->winx * dir[0])) + abs(int(t->region->winy * dir[1]))) / 2) :
1;
const int2 mval_start = int2(mi->imval + dir * win_axis);
const int2 mval_end = int2(mi->imval);
setCustomPoints(t, mi, mval_start, mval_end);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Setup & Handle Mouse Input
* \{ */
void transform_input_reset(TransInfo *t, const float2 &mval)
{
MouseInput *mi = &t->mouse;
mi->imval = mval;
if (mi->data && ELEM(mi->apply, InputAngle, InputAngleSpring)) {
InputAngle_Data *data = static_cast<InputAngle_Data *>(mi->data);
data->mval_prev[0] = mi->imval[0];
data->mval_prev[1] = mi->imval[1];
data->angle = 0.0f;
}
}
void initMouseInput(
TransInfo *t, MouseInput *mi, const float2 &center, const float2 &mval, const bool precision)
{
mi->factor = 0;
mi->precision = precision;
mi->center = center;
mi->post = nullptr;
transform_input_reset(t, mval);
}
static void calcSpringFactor(MouseInput *mi)
{
float mdir[2] = {float(mi->center[1] - mi->imval[1]), float(mi->center[0] - mi->imval[0])};
mi->factor = len_v2(mdir);
if (mi->factor == 0.0f) {
mi->factor = 1.0f; /* prevent Inf */
}
}
void initMouseInputMode(TransInfo *t, MouseInput *mi, MouseInputMode mode)
{
/* In case we allocate a new value. */
void *mi_data_prev = mi->data;
mi->use_virtual_mval = true;
mi->precision_factor = 1.0f / 10.0f;
switch (mode) {
case INPUT_VECTOR:
mi->apply = InputVector;
t->helpline = HLP_NONE;
break;
case INPUT_SPRING:
calcSpringFactor(mi);
mi->apply = InputSpring;
t->helpline = HLP_SPRING;
break;
case INPUT_SPRING_FLIP:
calcSpringFactor(mi);
mi->apply = InputSpringFlip;
t->helpline = HLP_SPRING;
break;
case INPUT_SPRING_DELTA:
calcSpringFactor(mi);
mi->apply = InputSpringDelta;
t->helpline = HLP_SPRING;
break;
case INPUT_ANGLE:
case INPUT_ANGLE_SPRING: {
InputAngle_Data *data;
mi->use_virtual_mval = false;
mi->precision_factor = 1.0f / 30.0f;
data = static_cast<InputAngle_Data *>(
MEM_callocN(sizeof(InputAngle_Data), "angle accumulator"));
data->mval_prev[0] = mi->imval[0];
data->mval_prev[1] = mi->imval[1];
mi->data = data;
if (mode == INPUT_ANGLE) {
mi->apply = InputAngle;
}
else {
calcSpringFactor(mi);
mi->apply = InputAngleSpring;
}
t->helpline = HLP_ANGLE;
break;
}
case INPUT_TRACKBALL:
mi->precision_factor = 1.0f / 30.0f;
/* factor has to become setting or so */
mi->factor = 0.01f;
mi->apply = InputTrackBall;
t->helpline = HLP_TRACKBALL;
break;
case INPUT_HORIZONTAL_RATIO:
mi->apply = InputHorizontalRatio;
t->helpline = HLP_HARROW;
break;
case INPUT_HORIZONTAL_ABSOLUTE:
mi->apply = InputHorizontalAbsolute;
t->helpline = HLP_HARROW;
break;
case INPUT_VERTICAL_RATIO:
mi->apply = InputVerticalRatio;
t->helpline = HLP_VARROW;
break;
case INPUT_VERTICAL_ABSOLUTE:
mi->apply = InputVerticalAbsolute;
t->helpline = HLP_VARROW;
break;
case INPUT_CUSTOM_RATIO:
mi->apply = InputCustomRatio;
t->helpline = HLP_CARROW;
break;
case INPUT_CUSTOM_RATIO_FLIP:
mi->apply = InputCustomRatioFlip;
t->helpline = HLP_CARROW;
break;
case INPUT_NONE:
default:
mi->apply = nullptr;
break;
}
/* setup for the mouse cursor: either set a custom one,
* or hide it if it will be drawn with the helpline */
wmWindow *win = CTX_wm_window(t->context);
switch (t->helpline) {
case HLP_NONE:
/* INPUT_VECTOR, INPUT_CUSTOM_RATIO, INPUT_CUSTOM_RATIO_FLIP */
if (t->flag & T_MODAL) {
t->flag |= T_MODAL_CURSOR_SET;
WM_cursor_modal_set(win, WM_CURSOR_NSEW_SCROLL);
}
break;
case HLP_SPRING:
case HLP_ANGLE:
case HLP_TRACKBALL:
case HLP_HARROW:
case HLP_VARROW:
case HLP_CARROW:
if (t->flag & T_MODAL) {
t->flag |= T_MODAL_CURSOR_SET;
WM_cursor_modal_set(win, WM_CURSOR_NONE);
}
break;
default:
break;
}
/* if we've allocated new data, free the old data
* less hassle than checking before every alloc above */
if (mi_data_prev && (mi_data_prev != mi->data)) {
MEM_freeN(mi_data_prev);
}
}
void setInputPostFct(MouseInput *mi, void (*post)(TransInfo *t, float values[3]))
{
mi->post = post;
}
void applyMouseInput(TransInfo *t, MouseInput *mi, const float2 &mval, float output[3])
{
double mval_db[2];
if (mi->use_virtual_mval) {
/* update accumulator */
double mval_delta[2];
mval_delta[0] = (mval[0] - mi->imval[0]) - mi->virtual_mval.prev[0];
mval_delta[1] = (mval[1] - mi->imval[1]) - mi->virtual_mval.prev[1];
mi->virtual_mval.prev[0] += mval_delta[0];
mi->virtual_mval.prev[1] += mval_delta[1];
if (mi->precision) {
mval_delta[0] *= double(mi->precision_factor);
mval_delta[1] *= double(mi->precision_factor);
}
mi->virtual_mval.accum[0] += mval_delta[0];
mi->virtual_mval.accum[1] += mval_delta[1];
mval_db[0] = mi->imval[0] + mi->virtual_mval.accum[0];
mval_db[1] = mi->imval[1] + mi->virtual_mval.accum[1];
}
else {
mval_db[0] = mval[0];
mval_db[1] = mval[1];
}
if (mi->apply != nullptr) {
mi->apply(t, mi, mval_db, output);
}
if (mi->post) {
mi->post(t, output);
}
}
void transform_input_update(TransInfo *t, const float fac)
{
MouseInput *mi = &t->mouse;
float2 offset = fac * (mi->imval - mi->center);
mi->imval = t->center2d + offset;
mi->factor *= fac;
float center_old[2];
copy_v2_v2(center_old, mi->center);
copy_v2_v2(mi->center, t->center2d);
if (mi->use_virtual_mval) {
/* Update accumulator. */
double mval_delta[2];
sub_v2_v2v2_db(mval_delta, mi->virtual_mval.accum, mi->virtual_mval.prev);
mval_delta[0] *= fac;
mval_delta[1] *= fac;
copy_v2_v2_db(mi->virtual_mval.accum, mi->virtual_mval.prev);
add_v2_v2_db(mi->virtual_mval.accum, mval_delta);
}
if (ELEM(mi->apply, InputAngle, InputAngleSpring)) {
float offset_center[2];
sub_v2_v2v2(offset_center, mi->center, center_old);
InputAngle_Data *data = static_cast<InputAngle_Data *>(mi->data);
data->mval_prev[0] += offset_center[0];
data->mval_prev[1] += offset_center[1];
}
if (t->mode == TFM_EDGE_SLIDE) {
transform_mode_edge_slide_reproject_input(t);
}
else if (t->mode == TFM_VERT_SLIDE) {
transform_mode_vert_slide_reproject_input(t);
}
}
void transform_input_virtual_mval_reset(TransInfo *t)
{
MouseInput *mi = &t->mouse;
if (ELEM(mi->apply, InputAngle, InputAngleSpring)) {
InputAngle_Data *data = static_cast<InputAngle_Data *>(mi->data);
data->angle = 0.0;
data->mval_prev[0] = mi->imval[0];
data->mval_prev[1] = mi->imval[1];
}
else {
memset(&mi->virtual_mval, 0, sizeof(mi->virtual_mval));
}
}
/** \} */