tornavis/source/blender/imbuf/intern/scaling.cc

1819 lines
47 KiB
C++

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup imbuf
*/
#include <cmath>
#include "BLI_math_color.h"
#include "BLI_math_interp.h"
#include "BLI_utildefines.h"
#include "MEM_guardedalloc.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "imbuf.h"
#include "IMB_filter.h"
#include "BLI_sys_types.h" /* for intptr_t support */
static void imb_half_x_no_alloc(ImBuf *ibuf2, ImBuf *ibuf1)
{
uchar *p1, *_p1, *dest;
short a, r, g, b;
int x, y;
float af, rf, gf, bf, *p1f, *_p1f, *destf;
bool do_rect, do_float;
do_rect = (ibuf1->byte_buffer.data != nullptr);
do_float = (ibuf1->float_buffer.data != nullptr && ibuf2->float_buffer.data != nullptr);
_p1 = ibuf1->byte_buffer.data;
dest = ibuf2->byte_buffer.data;
_p1f = ibuf1->float_buffer.data;
destf = ibuf2->float_buffer.data;
for (y = ibuf2->y; y > 0; y--) {
p1 = _p1;
p1f = _p1f;
for (x = ibuf2->x; x > 0; x--) {
if (do_rect) {
a = *(p1++);
b = *(p1++);
g = *(p1++);
r = *(p1++);
a += *(p1++);
b += *(p1++);
g += *(p1++);
r += *(p1++);
*(dest++) = a >> 1;
*(dest++) = b >> 1;
*(dest++) = g >> 1;
*(dest++) = r >> 1;
}
if (do_float) {
af = *(p1f++);
bf = *(p1f++);
gf = *(p1f++);
rf = *(p1f++);
af += *(p1f++);
bf += *(p1f++);
gf += *(p1f++);
rf += *(p1f++);
*(destf++) = 0.5f * af;
*(destf++) = 0.5f * bf;
*(destf++) = 0.5f * gf;
*(destf++) = 0.5f * rf;
}
}
if (do_rect) {
_p1 += (ibuf1->x << 2);
}
if (do_float) {
_p1f += (ibuf1->x << 2);
}
}
}
ImBuf *IMB_half_x(ImBuf *ibuf1)
{
ImBuf *ibuf2;
if (ibuf1 == nullptr) {
return nullptr;
}
if (ibuf1->byte_buffer.data == nullptr && ibuf1->float_buffer.data == nullptr) {
return nullptr;
}
if (ibuf1->x <= 1) {
return IMB_dupImBuf(ibuf1);
}
ibuf2 = IMB_allocImBuf((ibuf1->x) / 2, ibuf1->y, ibuf1->planes, ibuf1->flags);
if (ibuf2 == nullptr) {
return nullptr;
}
imb_half_x_no_alloc(ibuf2, ibuf1);
return ibuf2;
}
ImBuf *IMB_double_fast_x(ImBuf *ibuf1)
{
ImBuf *ibuf2;
int *p1, *dest, i, col, do_rect, do_float;
float *p1f, *destf;
if (ibuf1 == nullptr) {
return nullptr;
}
if (ibuf1->byte_buffer.data == nullptr && ibuf1->float_buffer.data == nullptr) {
return nullptr;
}
do_rect = (ibuf1->byte_buffer.data != nullptr);
do_float = (ibuf1->float_buffer.data != nullptr);
ibuf2 = IMB_allocImBuf(2 * ibuf1->x, ibuf1->y, ibuf1->planes, ibuf1->flags);
if (ibuf2 == nullptr) {
return nullptr;
}
p1 = (int *)ibuf1->byte_buffer.data;
dest = (int *)ibuf2->byte_buffer.data;
p1f = (float *)ibuf1->float_buffer.data;
destf = (float *)ibuf2->float_buffer.data;
for (i = ibuf1->y * ibuf1->x; i > 0; i--) {
if (do_rect) {
col = *p1++;
*dest++ = col;
*dest++ = col;
}
if (do_float) {
destf[0] = destf[4] = p1f[0];
destf[1] = destf[5] = p1f[1];
destf[2] = destf[6] = p1f[2];
destf[3] = destf[7] = p1f[3];
destf += 8;
p1f += 4;
}
}
return ibuf2;
}
ImBuf *IMB_double_x(ImBuf *ibuf1)
{
ImBuf *ibuf2;
if (ibuf1 == nullptr) {
return nullptr;
}
if (ibuf1->byte_buffer.data == nullptr && ibuf1->float_buffer.data == nullptr) {
return nullptr;
}
ibuf2 = IMB_double_fast_x(ibuf1);
imb_filterx(ibuf2);
return ibuf2;
}
static void imb_half_y_no_alloc(ImBuf *ibuf2, ImBuf *ibuf1)
{
uchar *p1, *p2, *_p1, *dest;
short a, r, g, b;
int x, y;
float af, rf, gf, bf, *p1f, *p2f, *_p1f, *destf;
p1 = p2 = nullptr;
p1f = p2f = nullptr;
const bool do_rect = (ibuf1->byte_buffer.data != nullptr);
const bool do_float = (ibuf1->float_buffer.data != nullptr &&
ibuf2->float_buffer.data != nullptr);
_p1 = ibuf1->byte_buffer.data;
dest = ibuf2->byte_buffer.data;
_p1f = (float *)ibuf1->float_buffer.data;
destf = (float *)ibuf2->float_buffer.data;
for (y = ibuf2->y; y > 0; y--) {
if (do_rect) {
p1 = _p1;
p2 = _p1 + (ibuf1->x << 2);
}
if (do_float) {
p1f = _p1f;
p2f = _p1f + (ibuf1->x << 2);
}
for (x = ibuf2->x; x > 0; x--) {
if (do_rect) {
a = *(p1++);
b = *(p1++);
g = *(p1++);
r = *(p1++);
a += *(p2++);
b += *(p2++);
g += *(p2++);
r += *(p2++);
*(dest++) = a >> 1;
*(dest++) = b >> 1;
*(dest++) = g >> 1;
*(dest++) = r >> 1;
}
if (do_float) {
af = *(p1f++);
bf = *(p1f++);
gf = *(p1f++);
rf = *(p1f++);
af += *(p2f++);
bf += *(p2f++);
gf += *(p2f++);
rf += *(p2f++);
*(destf++) = 0.5f * af;
*(destf++) = 0.5f * bf;
*(destf++) = 0.5f * gf;
*(destf++) = 0.5f * rf;
}
}
if (do_rect) {
_p1 += (ibuf1->x << 3);
}
if (do_float) {
_p1f += (ibuf1->x << 3);
}
}
}
ImBuf *IMB_half_y(ImBuf *ibuf1)
{
ImBuf *ibuf2;
if (ibuf1 == nullptr) {
return nullptr;
}
if (ibuf1->byte_buffer.data == nullptr && ibuf1->float_buffer.data == nullptr) {
return nullptr;
}
if (ibuf1->y <= 1) {
return IMB_dupImBuf(ibuf1);
}
ibuf2 = IMB_allocImBuf(ibuf1->x, (ibuf1->y) / 2, ibuf1->planes, ibuf1->flags);
if (ibuf2 == nullptr) {
return nullptr;
}
imb_half_y_no_alloc(ibuf2, ibuf1);
return ibuf2;
}
ImBuf *IMB_double_fast_y(ImBuf *ibuf1)
{
ImBuf *ibuf2;
int *p1, *dest1, *dest2;
float *p1f, *dest1f, *dest2f;
int x, y;
if (ibuf1 == nullptr) {
return nullptr;
}
if (ibuf1->byte_buffer.data == nullptr && ibuf1->float_buffer.data == nullptr) {
return nullptr;
}
const bool do_rect = (ibuf1->byte_buffer.data != nullptr);
const bool do_float = (ibuf1->float_buffer.data != nullptr);
ibuf2 = IMB_allocImBuf(ibuf1->x, 2 * ibuf1->y, ibuf1->planes, ibuf1->flags);
if (ibuf2 == nullptr) {
return nullptr;
}
p1 = (int *)ibuf1->byte_buffer.data;
dest1 = (int *)ibuf2->byte_buffer.data;
p1f = (float *)ibuf1->float_buffer.data;
dest1f = (float *)ibuf2->float_buffer.data;
for (y = ibuf1->y; y > 0; y--) {
if (do_rect) {
dest2 = dest1 + ibuf2->x;
for (x = ibuf2->x; x > 0; x--) {
*dest1++ = *dest2++ = *p1++;
}
dest1 = dest2;
}
if (do_float) {
dest2f = dest1f + (4 * ibuf2->x);
for (x = ibuf2->x * 4; x > 0; x--) {
*dest1f++ = *dest2f++ = *p1f++;
}
dest1f = dest2f;
}
}
return ibuf2;
}
ImBuf *IMB_double_y(ImBuf *ibuf1)
{
ImBuf *ibuf2;
if (ibuf1 == nullptr) {
return nullptr;
}
if (ibuf1->byte_buffer.data == nullptr) {
return nullptr;
}
ibuf2 = IMB_double_fast_y(ibuf1);
IMB_filtery(ibuf2);
return ibuf2;
}
/* pretty much specific functions which converts uchar <-> ushort but assumes
* ushort range of 255*255 which is more convenient here
*/
MINLINE void straight_uchar_to_premul_ushort(ushort result[4], const uchar color[4])
{
ushort alpha = color[3];
result[0] = color[0] * alpha;
result[1] = color[1] * alpha;
result[2] = color[2] * alpha;
result[3] = alpha * 256;
}
MINLINE void premul_ushort_to_straight_uchar(uchar *result, const ushort color[4])
{
if (color[3] <= 255) {
result[0] = unit_ushort_to_uchar(color[0]);
result[1] = unit_ushort_to_uchar(color[1]);
result[2] = unit_ushort_to_uchar(color[2]);
result[3] = unit_ushort_to_uchar(color[3]);
}
else {
ushort alpha = color[3] / 256;
result[0] = unit_ushort_to_uchar(ushort(color[0] / alpha * 256));
result[1] = unit_ushort_to_uchar(ushort(color[1] / alpha * 256));
result[2] = unit_ushort_to_uchar(ushort(color[2] / alpha * 256));
result[3] = unit_ushort_to_uchar(color[3]);
}
}
void imb_onehalf_no_alloc(ImBuf *ibuf2, ImBuf *ibuf1)
{
int x, y;
const bool do_rect = (ibuf1->byte_buffer.data != nullptr);
const bool do_float = (ibuf1->float_buffer.data != nullptr) &&
(ibuf2->float_buffer.data != nullptr);
if (do_rect && (ibuf2->byte_buffer.data == nullptr)) {
imb_addrectImBuf(ibuf2);
}
if (ibuf1->x <= 1) {
imb_half_y_no_alloc(ibuf2, ibuf1);
return;
}
if (ibuf1->y <= 1) {
imb_half_x_no_alloc(ibuf2, ibuf1);
return;
}
if (do_rect) {
uchar *cp1, *cp2, *dest;
cp1 = ibuf1->byte_buffer.data;
dest = ibuf2->byte_buffer.data;
for (y = ibuf2->y; y > 0; y--) {
cp2 = cp1 + (ibuf1->x << 2);
for (x = ibuf2->x; x > 0; x--) {
ushort p1i[8], p2i[8], desti[4];
straight_uchar_to_premul_ushort(p1i, cp1);
straight_uchar_to_premul_ushort(p2i, cp2);
straight_uchar_to_premul_ushort(p1i + 4, cp1 + 4);
straight_uchar_to_premul_ushort(p2i + 4, cp2 + 4);
desti[0] = (uint(p1i[0]) + p2i[0] + p1i[4] + p2i[4]) >> 2;
desti[1] = (uint(p1i[1]) + p2i[1] + p1i[5] + p2i[5]) >> 2;
desti[2] = (uint(p1i[2]) + p2i[2] + p1i[6] + p2i[6]) >> 2;
desti[3] = (uint(p1i[3]) + p2i[3] + p1i[7] + p2i[7]) >> 2;
premul_ushort_to_straight_uchar(dest, desti);
cp1 += 8;
cp2 += 8;
dest += 4;
}
cp1 = cp2;
if (ibuf1->x & 1) {
cp1 += 4;
}
}
}
if (do_float) {
float *p1f, *p2f, *destf;
p1f = ibuf1->float_buffer.data;
destf = ibuf2->float_buffer.data;
for (y = ibuf2->y; y > 0; y--) {
p2f = p1f + (ibuf1->x << 2);
for (x = ibuf2->x; x > 0; x--) {
destf[0] = 0.25f * (p1f[0] + p2f[0] + p1f[4] + p2f[4]);
destf[1] = 0.25f * (p1f[1] + p2f[1] + p1f[5] + p2f[5]);
destf[2] = 0.25f * (p1f[2] + p2f[2] + p1f[6] + p2f[6]);
destf[3] = 0.25f * (p1f[3] + p2f[3] + p1f[7] + p2f[7]);
p1f += 8;
p2f += 8;
destf += 4;
}
p1f = p2f;
if (ibuf1->x & 1) {
p1f += 4;
}
}
}
}
ImBuf *IMB_onehalf(ImBuf *ibuf1)
{
ImBuf *ibuf2;
if (ibuf1 == nullptr) {
return nullptr;
}
if (ibuf1->byte_buffer.data == nullptr && ibuf1->float_buffer.data == nullptr) {
return nullptr;
}
if (ibuf1->x <= 1) {
return IMB_half_y(ibuf1);
}
if (ibuf1->y <= 1) {
return IMB_half_x(ibuf1);
}
ibuf2 = IMB_allocImBuf((ibuf1->x) / 2, (ibuf1->y) / 2, ibuf1->planes, ibuf1->flags);
if (ibuf2 == nullptr) {
return nullptr;
}
imb_onehalf_no_alloc(ibuf2, ibuf1);
return ibuf2;
}
/* q_scale_linear_interpolation helper functions */
static void enlarge_picture_byte(
uchar *src, uchar *dst, int src_width, int src_height, int dst_width, int dst_height)
{
double ratiox = double(dst_width - 1.0) / double(src_width - 1.001);
double ratioy = double(dst_height - 1.0) / double(src_height - 1.001);
uintptr_t x_src, dx_src, x_dst;
uintptr_t y_src, dy_src, y_dst;
dx_src = 65536.0 / ratiox;
dy_src = 65536.0 / ratioy;
y_src = 0;
for (y_dst = 0; y_dst < dst_height; y_dst++) {
uchar *line1 = src + (y_src >> 16) * 4 * src_width;
uchar *line2 = line1 + 4 * src_width;
uintptr_t weight1y = 65536 - (y_src & 0xffff);
uintptr_t weight2y = 65536 - weight1y;
if ((y_src >> 16) == src_height - 1) {
line2 = line1;
}
x_src = 0;
for (x_dst = 0; x_dst < dst_width; x_dst++) {
uintptr_t weight1x = 65536 - (x_src & 0xffff);
uintptr_t weight2x = 65536 - weight1x;
ulong x = (x_src >> 16) * 4;
*dst++ = ((((line1[x] * weight1y) >> 16) * weight1x) >> 16) +
((((line2[x] * weight2y) >> 16) * weight1x) >> 16) +
((((line1[4 + x] * weight1y) >> 16) * weight2x) >> 16) +
((((line2[4 + x] * weight2y) >> 16) * weight2x) >> 16);
*dst++ = ((((line1[x + 1] * weight1y) >> 16) * weight1x) >> 16) +
((((line2[x + 1] * weight2y) >> 16) * weight1x) >> 16) +
((((line1[4 + x + 1] * weight1y) >> 16) * weight2x) >> 16) +
((((line2[4 + x + 1] * weight2y) >> 16) * weight2x) >> 16);
*dst++ = ((((line1[x + 2] * weight1y) >> 16) * weight1x) >> 16) +
((((line2[x + 2] * weight2y) >> 16) * weight1x) >> 16) +
((((line1[4 + x + 2] * weight1y) >> 16) * weight2x) >> 16) +
((((line2[4 + x + 2] * weight2y) >> 16) * weight2x) >> 16);
*dst++ = ((((line1[x + 3] * weight1y) >> 16) * weight1x) >> 16) +
((((line2[x + 3] * weight2y) >> 16) * weight1x) >> 16) +
((((line1[4 + x + 3] * weight1y) >> 16) * weight2x) >> 16) +
((((line2[4 + x + 3] * weight2y) >> 16) * weight2x) >> 16);
x_src += dx_src;
}
y_src += dy_src;
}
}
struct scale_outpix_byte {
uintptr_t r;
uintptr_t g;
uintptr_t b;
uintptr_t a;
uintptr_t weight;
};
static void shrink_picture_byte(
uchar *src, uchar *dst, int src_width, int src_height, int dst_width, int dst_height)
{
double ratiox = double(dst_width) / double(src_width);
double ratioy = double(dst_height) / double(src_height);
uintptr_t x_src, dx_dst, x_dst;
uintptr_t y_src, dy_dst, y_dst;
intptr_t y_counter;
uchar *dst_begin = dst;
scale_outpix_byte *dst_line1 = nullptr;
scale_outpix_byte *dst_line2 = nullptr;
dst_line1 = (scale_outpix_byte *)MEM_callocN((dst_width + 1) * sizeof(scale_outpix_byte),
"shrink_picture_byte 1");
dst_line2 = (scale_outpix_byte *)MEM_callocN((dst_width + 1) * sizeof(scale_outpix_byte),
"shrink_picture_byte 2");
dx_dst = 65536.0 * ratiox;
dy_dst = 65536.0 * ratioy;
y_dst = 0;
y_counter = 65536;
for (y_src = 0; y_src < src_height; y_src++) {
uchar *line = src + y_src * 4 * src_width;
uintptr_t weight1y = 65535 - (y_dst & 0xffff);
uintptr_t weight2y = 65535 - weight1y;
x_dst = 0;
for (x_src = 0; x_src < src_width; x_src++) {
uintptr_t weight1x = 65535 - (x_dst & 0xffff);
uintptr_t weight2x = 65535 - weight1x;
uintptr_t x = x_dst >> 16;
uintptr_t w;
w = (weight1y * weight1x) >> 16;
/* Ensure correct rounding, without this you get ugly banding,
* or too low color values (ton). */
dst_line1[x].r += (line[0] * w + 32767) >> 16;
dst_line1[x].g += (line[1] * w + 32767) >> 16;
dst_line1[x].b += (line[2] * w + 32767) >> 16;
dst_line1[x].a += (line[3] * w + 32767) >> 16;
dst_line1[x].weight += w;
w = (weight2y * weight1x) >> 16;
dst_line2[x].r += (line[0] * w + 32767) >> 16;
dst_line2[x].g += (line[1] * w + 32767) >> 16;
dst_line2[x].b += (line[2] * w + 32767) >> 16;
dst_line2[x].a += (line[3] * w + 32767) >> 16;
dst_line2[x].weight += w;
w = (weight1y * weight2x) >> 16;
dst_line1[x + 1].r += (line[0] * w + 32767) >> 16;
dst_line1[x + 1].g += (line[1] * w + 32767) >> 16;
dst_line1[x + 1].b += (line[2] * w + 32767) >> 16;
dst_line1[x + 1].a += (line[3] * w + 32767) >> 16;
dst_line1[x + 1].weight += w;
w = (weight2y * weight2x) >> 16;
dst_line2[x + 1].r += (line[0] * w + 32767) >> 16;
dst_line2[x + 1].g += (line[1] * w + 32767) >> 16;
dst_line2[x + 1].b += (line[2] * w + 32767) >> 16;
dst_line2[x + 1].a += (line[3] * w + 32767) >> 16;
dst_line2[x + 1].weight += w;
x_dst += dx_dst;
line += 4;
}
y_dst += dy_dst;
y_counter -= dy_dst;
if (y_counter < 0) {
int val;
uintptr_t x;
scale_outpix_byte *temp;
y_counter += 65536;
for (x = 0; x < dst_width; x++) {
uintptr_t f = 0x80000000UL / dst_line1[x].weight;
*dst++ = (val = (dst_line1[x].r * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].g * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].b * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].a * f) >> 15) > 255 ? 255 : val;
}
memset(dst_line1, 0, dst_width * sizeof(scale_outpix_byte));
temp = dst_line1;
dst_line1 = dst_line2;
dst_line2 = temp;
}
}
if (dst - dst_begin < dst_width * dst_height * 4) {
int val;
uintptr_t x;
for (x = 0; x < dst_width; x++) {
uintptr_t f = 0x80000000UL / dst_line1[x].weight;
*dst++ = (val = (dst_line1[x].r * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].g * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].b * f) >> 15) > 255 ? 255 : val;
*dst++ = (val = (dst_line1[x].a * f) >> 15) > 255 ? 255 : val;
}
}
MEM_freeN(dst_line1);
MEM_freeN(dst_line2);
}
static void q_scale_byte(
uchar *in, uchar *out, int in_width, int in_height, int dst_width, int dst_height)
{
if (dst_width > in_width && dst_height > in_height) {
enlarge_picture_byte(in, out, in_width, in_height, dst_width, dst_height);
}
else if (dst_width < in_width && dst_height < in_height) {
shrink_picture_byte(in, out, in_width, in_height, dst_width, dst_height);
}
}
static void enlarge_picture_float(
float *src, float *dst, int src_width, int src_height, int dst_width, int dst_height)
{
double ratiox = double(dst_width - 1.0) / double(src_width - 1.001);
double ratioy = double(dst_height - 1.0) / double(src_height - 1.001);
uintptr_t x_dst;
uintptr_t y_dst;
double x_src, dx_src;
double y_src, dy_src;
dx_src = 1.0 / ratiox;
dy_src = 1.0 / ratioy;
y_src = 0;
for (y_dst = 0; y_dst < dst_height; y_dst++) {
float *line1 = src + int(y_src) * 4 * src_width;
const float *line2 = line1 + 4 * src_width;
const float weight1y = float(1.0 - (y_src - int(y_src)));
const float weight2y = 1.0f - weight1y;
if (int(y_src) == src_height - 1) {
line2 = line1;
}
x_src = 0;
for (x_dst = 0; x_dst < dst_width; x_dst++) {
const float weight1x = float(1.0 - (x_src - int(x_src)));
const float weight2x = float(1.0f - weight1x);
const float w11 = weight1y * weight1x;
const float w21 = weight2y * weight1x;
const float w12 = weight1y * weight2x;
const float w22 = weight2y * weight2x;
uintptr_t x = int(x_src) * 4;
*dst++ = line1[x] * w11 + line2[x] * w21 + line1[4 + x] * w12 + line2[4 + x] * w22;
*dst++ = line1[x + 1] * w11 + line2[x + 1] * w21 + line1[4 + x + 1] * w12 +
line2[4 + x + 1] * w22;
*dst++ = line1[x + 2] * w11 + line2[x + 2] * w21 + line1[4 + x + 2] * w12 +
line2[4 + x + 2] * w22;
*dst++ = line1[x + 3] * w11 + line2[x + 3] * w21 + line1[4 + x + 3] * w12 +
line2[4 + x + 3] * w22;
x_src += dx_src;
}
y_src += dy_src;
}
}
struct scale_outpix_float {
float r;
float g;
float b;
float a;
float weight;
};
static void shrink_picture_float(
const float *src, float *dst, int src_width, int src_height, int dst_width, int dst_height)
{
double ratiox = double(dst_width) / double(src_width);
double ratioy = double(dst_height) / double(src_height);
uintptr_t x_src;
uintptr_t y_src;
float dx_dst, x_dst;
float dy_dst, y_dst;
float y_counter;
const float *dst_begin = dst;
scale_outpix_float *dst_line1;
scale_outpix_float *dst_line2;
dst_line1 = (scale_outpix_float *)MEM_callocN((dst_width + 1) * sizeof(scale_outpix_float),
"shrink_picture_float 1");
dst_line2 = (scale_outpix_float *)MEM_callocN((dst_width + 1) * sizeof(scale_outpix_float),
"shrink_picture_float 2");
dx_dst = ratiox;
dy_dst = ratioy;
y_dst = 0;
y_counter = 1.0;
for (y_src = 0; y_src < src_height; y_src++) {
const float *line = src + y_src * 4 * src_width;
uintptr_t weight1y = 1.0f - (y_dst - int(y_dst));
uintptr_t weight2y = 1.0f - weight1y;
x_dst = 0;
for (x_src = 0; x_src < src_width; x_src++) {
uintptr_t weight1x = 1.0f - (x_dst - int(x_dst));
uintptr_t weight2x = 1.0f - weight1x;
uintptr_t x = int(x_dst);
float w;
w = weight1y * weight1x;
dst_line1[x].r += line[0] * w;
dst_line1[x].g += line[1] * w;
dst_line1[x].b += line[2] * w;
dst_line1[x].a += line[3] * w;
dst_line1[x].weight += w;
w = weight2y * weight1x;
dst_line2[x].r += line[0] * w;
dst_line2[x].g += line[1] * w;
dst_line2[x].b += line[2] * w;
dst_line2[x].a += line[3] * w;
dst_line2[x].weight += w;
w = weight1y * weight2x;
dst_line1[x + 1].r += line[0] * w;
dst_line1[x + 1].g += line[1] * w;
dst_line1[x + 1].b += line[2] * w;
dst_line1[x + 1].a += line[3] * w;
dst_line1[x + 1].weight += w;
w = weight2y * weight2x;
dst_line2[x + 1].r += line[0] * w;
dst_line2[x + 1].g += line[1] * w;
dst_line2[x + 1].b += line[2] * w;
dst_line2[x + 1].a += line[3] * w;
dst_line2[x + 1].weight += w;
x_dst += dx_dst;
line += 4;
}
y_dst += dy_dst;
y_counter -= dy_dst;
if (y_counter < 0) {
uintptr_t x;
scale_outpix_float *temp;
y_counter += 1.0f;
for (x = 0; x < dst_width; x++) {
float f = 1.0f / dst_line1[x].weight;
*dst++ = dst_line1[x].r * f;
*dst++ = dst_line1[x].g * f;
*dst++ = dst_line1[x].b * f;
*dst++ = dst_line1[x].a * f;
}
memset(dst_line1, 0, dst_width * sizeof(scale_outpix_float));
temp = dst_line1;
dst_line1 = dst_line2;
dst_line2 = temp;
}
}
if (dst - dst_begin < dst_width * dst_height * 4) {
uintptr_t x;
for (x = 0; x < dst_width; x++) {
float f = 1.0f / dst_line1[x].weight;
*dst++ = dst_line1[x].r * f;
*dst++ = dst_line1[x].g * f;
*dst++ = dst_line1[x].b * f;
*dst++ = dst_line1[x].a * f;
}
}
MEM_freeN(dst_line1);
MEM_freeN(dst_line2);
}
static void q_scale_float(
float *in, float *out, int in_width, int in_height, int dst_width, int dst_height)
{
if (dst_width > in_width && dst_height > in_height) {
enlarge_picture_float(in, out, in_width, in_height, dst_width, dst_height);
}
else if (dst_width < in_width && dst_height < in_height) {
shrink_picture_float(in, out, in_width, in_height, dst_width, dst_height);
}
}
/**
* q_scale_linear_interpolation (derived from `ppmqscale`, http://libdv.sf.net)
*
* q stands for quick _and_ quality :)
*
* only handles common cases when we either
*
* scale both, x and y or
* shrink both, x and y
*
* but that is pretty fast:
* - does only blit once instead of two passes like the old code
* (fewer cache misses)
* - uses fixed point integer arithmetic for byte buffers
* - doesn't branch in tight loops
*
* Should be comparable in speed to the ImBuf ..._fast functions at least
* for byte-buffers.
*
* NOTE: disabled, due to unacceptable inaccuracy and quality loss, see bug #18609 (ton)
*/
static bool q_scale_linear_interpolation(ImBuf *ibuf, int newx, int newy)
{
if ((newx >= ibuf->x && newy <= ibuf->y) || (newx <= ibuf->x && newy >= ibuf->y)) {
return false;
}
if (ibuf->byte_buffer.data) {
uchar *newrect = static_cast<uchar *>(MEM_mallocN(sizeof(int) * newx * newy, "q_scale rect"));
q_scale_byte(ibuf->byte_buffer.data, newrect, ibuf->x, ibuf->y, newx, newy);
IMB_assign_byte_buffer(ibuf, newrect, IB_TAKE_OWNERSHIP);
}
if (ibuf->float_buffer.data) {
float *newrect = static_cast<float *>(
MEM_mallocN(sizeof(float[4]) * newx * newy, "q_scale rectfloat"));
q_scale_float(ibuf->float_buffer.data, newrect, ibuf->x, ibuf->y, newx, newy);
IMB_assign_float_buffer(ibuf, newrect, IB_TAKE_OWNERSHIP);
}
ibuf->x = newx;
ibuf->y = newy;
return true;
}
static ImBuf *scaledownx(ImBuf *ibuf, int newx)
{
const bool do_rect = (ibuf->byte_buffer.data != nullptr);
const bool do_float = (ibuf->float_buffer.data != nullptr);
const size_t rect_size = IMB_get_rect_len(ibuf) * 4;
uchar *rect, *_newrect, *newrect;
float *rectf, *_newrectf, *newrectf;
float sample, add, val[4], nval[4], valf[4], nvalf[4];
int x, y;
rectf = _newrectf = newrectf = nullptr;
rect = _newrect = newrect = nullptr;
nval[0] = nval[1] = nval[2] = nval[3] = 0.0f;
nvalf[0] = nvalf[1] = nvalf[2] = nvalf[3] = 0.0f;
if (!do_rect && !do_float) {
return ibuf;
}
if (do_rect) {
_newrect = static_cast<uchar *>(MEM_mallocN(sizeof(uchar[4]) * newx * ibuf->y, "scaledownx"));
if (_newrect == nullptr) {
return ibuf;
}
}
if (do_float) {
_newrectf = static_cast<float *>(
MEM_mallocN(sizeof(float[4]) * newx * ibuf->y, "scaledownxf"));
if (_newrectf == nullptr) {
if (_newrect) {
MEM_freeN(_newrect);
}
return ibuf;
}
}
add = (ibuf->x - 0.01) / newx;
if (do_rect) {
rect = ibuf->byte_buffer.data;
newrect = _newrect;
}
if (do_float) {
rectf = ibuf->float_buffer.data;
newrectf = _newrectf;
}
for (y = ibuf->y; y > 0; y--) {
sample = 0.0f;
val[0] = val[1] = val[2] = val[3] = 0.0f;
valf[0] = valf[1] = valf[2] = valf[3] = 0.0f;
for (x = newx; x > 0; x--) {
if (do_rect) {
nval[0] = -val[0] * sample;
nval[1] = -val[1] * sample;
nval[2] = -val[2] * sample;
nval[3] = -val[3] * sample;
}
if (do_float) {
nvalf[0] = -valf[0] * sample;
nvalf[1] = -valf[1] * sample;
nvalf[2] = -valf[2] * sample;
nvalf[3] = -valf[3] * sample;
}
sample += add;
while (sample >= 1.0f) {
sample -= 1.0f;
if (do_rect) {
nval[0] += rect[0];
nval[1] += rect[1];
nval[2] += rect[2];
nval[3] += rect[3];
rect += 4;
}
if (do_float) {
nvalf[0] += rectf[0];
nvalf[1] += rectf[1];
nvalf[2] += rectf[2];
nvalf[3] += rectf[3];
rectf += 4;
}
}
if (do_rect) {
val[0] = rect[0];
val[1] = rect[1];
val[2] = rect[2];
val[3] = rect[3];
rect += 4;
newrect[0] = roundf((nval[0] + sample * val[0]) / add);
newrect[1] = roundf((nval[1] + sample * val[1]) / add);
newrect[2] = roundf((nval[2] + sample * val[2]) / add);
newrect[3] = roundf((nval[3] + sample * val[3]) / add);
newrect += 4;
}
if (do_float) {
valf[0] = rectf[0];
valf[1] = rectf[1];
valf[2] = rectf[2];
valf[3] = rectf[3];
rectf += 4;
newrectf[0] = ((nvalf[0] + sample * valf[0]) / add);
newrectf[1] = ((nvalf[1] + sample * valf[1]) / add);
newrectf[2] = ((nvalf[2] + sample * valf[2]) / add);
newrectf[3] = ((nvalf[3] + sample * valf[3]) / add);
newrectf += 4;
}
sample -= 1.0f;
}
}
if (do_rect) {
// printf("%ld %ld\n", (uchar *)rect - ibuf->byte_buffer.data, rect_size);
BLI_assert((uchar *)rect - ibuf->byte_buffer.data == rect_size); /* see bug #26502. */
imb_freerectImBuf(ibuf);
IMB_assign_byte_buffer(ibuf, _newrect, IB_TAKE_OWNERSHIP);
}
if (do_float) {
// printf("%ld %ld\n", rectf - ibuf->float_buffer.data, rect_size);
BLI_assert((rectf - ibuf->float_buffer.data) == rect_size); /* see bug #26502. */
imb_freerectfloatImBuf(ibuf);
IMB_assign_float_buffer(ibuf, _newrectf, IB_TAKE_OWNERSHIP);
}
(void)rect_size; /* UNUSED in release builds */
ibuf->x = newx;
return ibuf;
}
static ImBuf *scaledowny(ImBuf *ibuf, int newy)
{
const bool do_rect = (ibuf->byte_buffer.data != nullptr);
const bool do_float = (ibuf->float_buffer.data != nullptr);
const size_t rect_size = IMB_get_rect_len(ibuf) * 4;
uchar *rect, *_newrect, *newrect;
float *rectf, *_newrectf, *newrectf;
float sample, add, val[4], nval[4], valf[4], nvalf[4];
int x, y, skipx;
rectf = _newrectf = newrectf = nullptr;
rect = _newrect = newrect = nullptr;
nval[0] = nval[1] = nval[2] = nval[3] = 0.0f;
nvalf[0] = nvalf[1] = nvalf[2] = nvalf[3] = 0.0f;
if (!do_rect && !do_float) {
return ibuf;
}
if (do_rect) {
_newrect = static_cast<uchar *>(MEM_mallocN(sizeof(uchar[4]) * newy * ibuf->x, "scaledowny"));
if (_newrect == nullptr) {
return ibuf;
}
}
if (do_float) {
_newrectf = static_cast<float *>(
MEM_mallocN(sizeof(float[4]) * newy * ibuf->x, "scaledownyf"));
if (_newrectf == nullptr) {
if (_newrect) {
MEM_freeN(_newrect);
}
return ibuf;
}
}
add = (ibuf->y - 0.01) / newy;
skipx = 4 * ibuf->x;
for (x = skipx - 4; x >= 0; x -= 4) {
if (do_rect) {
rect = ibuf->byte_buffer.data + x;
newrect = _newrect + x;
}
if (do_float) {
rectf = ibuf->float_buffer.data + x;
newrectf = _newrectf + x;
}
sample = 0.0f;
val[0] = val[1] = val[2] = val[3] = 0.0f;
valf[0] = valf[1] = valf[2] = valf[3] = 0.0f;
for (y = newy; y > 0; y--) {
if (do_rect) {
nval[0] = -val[0] * sample;
nval[1] = -val[1] * sample;
nval[2] = -val[2] * sample;
nval[3] = -val[3] * sample;
}
if (do_float) {
nvalf[0] = -valf[0] * sample;
nvalf[1] = -valf[1] * sample;
nvalf[2] = -valf[2] * sample;
nvalf[3] = -valf[3] * sample;
}
sample += add;
while (sample >= 1.0f) {
sample -= 1.0f;
if (do_rect) {
nval[0] += rect[0];
nval[1] += rect[1];
nval[2] += rect[2];
nval[3] += rect[3];
rect += skipx;
}
if (do_float) {
nvalf[0] += rectf[0];
nvalf[1] += rectf[1];
nvalf[2] += rectf[2];
nvalf[3] += rectf[3];
rectf += skipx;
}
}
if (do_rect) {
val[0] = rect[0];
val[1] = rect[1];
val[2] = rect[2];
val[3] = rect[3];
rect += skipx;
newrect[0] = roundf((nval[0] + sample * val[0]) / add);
newrect[1] = roundf((nval[1] + sample * val[1]) / add);
newrect[2] = roundf((nval[2] + sample * val[2]) / add);
newrect[3] = roundf((nval[3] + sample * val[3]) / add);
newrect += skipx;
}
if (do_float) {
valf[0] = rectf[0];
valf[1] = rectf[1];
valf[2] = rectf[2];
valf[3] = rectf[3];
rectf += skipx;
newrectf[0] = ((nvalf[0] + sample * valf[0]) / add);
newrectf[1] = ((nvalf[1] + sample * valf[1]) / add);
newrectf[2] = ((nvalf[2] + sample * valf[2]) / add);
newrectf[3] = ((nvalf[3] + sample * valf[3]) / add);
newrectf += skipx;
}
sample -= 1.0f;
}
}
if (do_rect) {
// printf("%ld %ld\n", (uchar *)rect - byte_buffer.data, rect_size);
BLI_assert((uchar *)rect - ibuf->byte_buffer.data == rect_size); /* see bug #26502. */
imb_freerectImBuf(ibuf);
IMB_assign_byte_buffer(ibuf, _newrect, IB_TAKE_OWNERSHIP);
}
if (do_float) {
// printf("%ld %ld\n", rectf - ibuf->float_buffer.data, rect_size);
BLI_assert((rectf - ibuf->float_buffer.data) == rect_size); /* see bug #26502. */
imb_freerectfloatImBuf(ibuf);
IMB_assign_float_buffer(ibuf, _newrectf, IB_TAKE_OWNERSHIP);
}
(void)rect_size; /* UNUSED in release builds */
ibuf->y = newy;
return ibuf;
}
static ImBuf *scaleupx(ImBuf *ibuf, int newx)
{
uchar *rect, *_newrect = nullptr, *newrect;
float *rectf, *_newrectf = nullptr, *newrectf;
int x, y;
bool do_rect = false, do_float = false;
if (ibuf == nullptr) {
return nullptr;
}
if (ibuf->byte_buffer.data == nullptr && ibuf->float_buffer.data == nullptr) {
return ibuf;
}
if (ibuf->byte_buffer.data) {
do_rect = true;
_newrect = static_cast<uchar *>(MEM_mallocN(newx * ibuf->y * sizeof(int), "scaleupx"));
if (_newrect == nullptr) {
return ibuf;
}
}
if (ibuf->float_buffer.data) {
do_float = true;
_newrectf = static_cast<float *>(MEM_mallocN(sizeof(float[4]) * newx * ibuf->y, "scaleupxf"));
if (_newrectf == nullptr) {
if (_newrect) {
MEM_freeN(_newrect);
}
return ibuf;
}
}
rect = ibuf->byte_buffer.data;
rectf = ibuf->float_buffer.data;
newrect = _newrect;
newrectf = _newrectf;
/* Special case, copy all columns, needed since the scaling logic assumes there is at least
* two rows to interpolate between causing out of bounds read for 1px images, see #70356. */
if (UNLIKELY(ibuf->x == 1)) {
if (do_rect) {
for (y = ibuf->y; y > 0; y--) {
for (x = newx; x > 0; x--) {
memcpy(newrect, rect, sizeof(char[4]));
newrect += 4;
}
rect += 4;
}
}
if (do_float) {
for (y = ibuf->y; y > 0; y--) {
for (x = newx; x > 0; x--) {
memcpy(newrectf, rectf, sizeof(float[4]));
newrectf += 4;
}
rectf += 4;
}
}
}
else {
const float add = (ibuf->x - 1.001) / (newx - 1.0);
float sample;
float val_a, nval_a, diff_a;
float val_b, nval_b, diff_b;
float val_g, nval_g, diff_g;
float val_r, nval_r, diff_r;
float val_af, nval_af, diff_af;
float val_bf, nval_bf, diff_bf;
float val_gf, nval_gf, diff_gf;
float val_rf, nval_rf, diff_rf;
val_a = nval_a = diff_a = val_b = nval_b = diff_b = 0;
val_g = nval_g = diff_g = val_r = nval_r = diff_r = 0;
val_af = nval_af = diff_af = val_bf = nval_bf = diff_bf = 0;
val_gf = nval_gf = diff_gf = val_rf = nval_rf = diff_rf = 0;
for (y = ibuf->y; y > 0; y--) {
sample = 0;
if (do_rect) {
val_a = rect[0];
nval_a = rect[4];
diff_a = nval_a - val_a;
val_a += 0.5f;
val_b = rect[1];
nval_b = rect[5];
diff_b = nval_b - val_b;
val_b += 0.5f;
val_g = rect[2];
nval_g = rect[6];
diff_g = nval_g - val_g;
val_g += 0.5f;
val_r = rect[3];
nval_r = rect[7];
diff_r = nval_r - val_r;
val_r += 0.5f;
rect += 8;
}
if (do_float) {
val_af = rectf[0];
nval_af = rectf[4];
diff_af = nval_af - val_af;
val_bf = rectf[1];
nval_bf = rectf[5];
diff_bf = nval_bf - val_bf;
val_gf = rectf[2];
nval_gf = rectf[6];
diff_gf = nval_gf - val_gf;
val_rf = rectf[3];
nval_rf = rectf[7];
diff_rf = nval_rf - val_rf;
rectf += 8;
}
for (x = newx; x > 0; x--) {
if (sample >= 1.0f) {
sample -= 1.0f;
if (do_rect) {
val_a = nval_a;
nval_a = rect[0];
diff_a = nval_a - val_a;
val_a += 0.5f;
val_b = nval_b;
nval_b = rect[1];
diff_b = nval_b - val_b;
val_b += 0.5f;
val_g = nval_g;
nval_g = rect[2];
diff_g = nval_g - val_g;
val_g += 0.5f;
val_r = nval_r;
nval_r = rect[3];
diff_r = nval_r - val_r;
val_r += 0.5f;
rect += 4;
}
if (do_float) {
val_af = nval_af;
nval_af = rectf[0];
diff_af = nval_af - val_af;
val_bf = nval_bf;
nval_bf = rectf[1];
diff_bf = nval_bf - val_bf;
val_gf = nval_gf;
nval_gf = rectf[2];
diff_gf = nval_gf - val_gf;
val_rf = nval_rf;
nval_rf = rectf[3];
diff_rf = nval_rf - val_rf;
rectf += 4;
}
}
if (do_rect) {
newrect[0] = val_a + sample * diff_a;
newrect[1] = val_b + sample * diff_b;
newrect[2] = val_g + sample * diff_g;
newrect[3] = val_r + sample * diff_r;
newrect += 4;
}
if (do_float) {
newrectf[0] = val_af + sample * diff_af;
newrectf[1] = val_bf + sample * diff_bf;
newrectf[2] = val_gf + sample * diff_gf;
newrectf[3] = val_rf + sample * diff_rf;
newrectf += 4;
}
sample += add;
}
}
}
if (do_rect) {
imb_freerectImBuf(ibuf);
IMB_assign_byte_buffer(ibuf, _newrect, IB_TAKE_OWNERSHIP);
}
if (do_float) {
imb_freerectfloatImBuf(ibuf);
IMB_assign_float_buffer(ibuf, _newrectf, IB_TAKE_OWNERSHIP);
}
ibuf->x = newx;
return ibuf;
}
static ImBuf *scaleupy(ImBuf *ibuf, int newy)
{
uchar *rect, *_newrect = nullptr, *newrect;
float *rectf, *_newrectf = nullptr, *newrectf;
int x, y, skipx;
bool do_rect = false, do_float = false;
if (ibuf == nullptr) {
return nullptr;
}
if (ibuf->byte_buffer.data == nullptr && ibuf->float_buffer.data == nullptr) {
return ibuf;
}
if (ibuf->byte_buffer.data) {
do_rect = true;
_newrect = static_cast<uchar *>(MEM_mallocN(ibuf->x * newy * sizeof(int), "scaleupy"));
if (_newrect == nullptr) {
return ibuf;
}
}
if (ibuf->float_buffer.data) {
do_float = true;
_newrectf = static_cast<float *>(MEM_mallocN(sizeof(float[4]) * ibuf->x * newy, "scaleupyf"));
if (_newrectf == nullptr) {
if (_newrect) {
MEM_freeN(_newrect);
}
return ibuf;
}
}
rect = ibuf->byte_buffer.data;
rectf = ibuf->float_buffer.data;
newrect = _newrect;
newrectf = _newrectf;
skipx = 4 * ibuf->x;
/* Special case, copy all rows, needed since the scaling logic assumes there is at least
* two rows to interpolate between causing out of bounds read for 1px images, see #70356. */
if (UNLIKELY(ibuf->y == 1)) {
if (do_rect) {
for (y = newy; y > 0; y--) {
memcpy(newrect, rect, sizeof(char) * skipx);
newrect += skipx;
}
}
if (do_float) {
for (y = newy; y > 0; y--) {
memcpy(newrectf, rectf, sizeof(float) * skipx);
newrectf += skipx;
}
}
}
else {
const float add = (ibuf->y - 1.001) / (newy - 1.0);
float sample;
float val_a, nval_a, diff_a;
float val_b, nval_b, diff_b;
float val_g, nval_g, diff_g;
float val_r, nval_r, diff_r;
float val_af, nval_af, diff_af;
float val_bf, nval_bf, diff_bf;
float val_gf, nval_gf, diff_gf;
float val_rf, nval_rf, diff_rf;
val_a = nval_a = diff_a = val_b = nval_b = diff_b = 0;
val_g = nval_g = diff_g = val_r = nval_r = diff_r = 0;
val_af = nval_af = diff_af = val_bf = nval_bf = diff_bf = 0;
val_gf = nval_gf = diff_gf = val_rf = nval_rf = diff_rf = 0;
for (x = ibuf->x; x > 0; x--) {
sample = 0;
if (do_rect) {
rect = ibuf->byte_buffer.data + 4 * (x - 1);
newrect = _newrect + 4 * (x - 1);
val_a = rect[0];
nval_a = rect[skipx];
diff_a = nval_a - val_a;
val_a += 0.5f;
val_b = rect[1];
nval_b = rect[skipx + 1];
diff_b = nval_b - val_b;
val_b += 0.5f;
val_g = rect[2];
nval_g = rect[skipx + 2];
diff_g = nval_g - val_g;
val_g += 0.5f;
val_r = rect[3];
nval_r = rect[skipx + 3];
diff_r = nval_r - val_r;
val_r += 0.5f;
rect += 2 * skipx;
}
if (do_float) {
rectf = ibuf->float_buffer.data + 4 * (x - 1);
newrectf = _newrectf + 4 * (x - 1);
val_af = rectf[0];
nval_af = rectf[skipx];
diff_af = nval_af - val_af;
val_bf = rectf[1];
nval_bf = rectf[skipx + 1];
diff_bf = nval_bf - val_bf;
val_gf = rectf[2];
nval_gf = rectf[skipx + 2];
diff_gf = nval_gf - val_gf;
val_rf = rectf[3];
nval_rf = rectf[skipx + 3];
diff_rf = nval_rf - val_rf;
rectf += 2 * skipx;
}
for (y = newy; y > 0; y--) {
if (sample >= 1.0f) {
sample -= 1.0f;
if (do_rect) {
val_a = nval_a;
nval_a = rect[0];
diff_a = nval_a - val_a;
val_a += 0.5f;
val_b = nval_b;
nval_b = rect[1];
diff_b = nval_b - val_b;
val_b += 0.5f;
val_g = nval_g;
nval_g = rect[2];
diff_g = nval_g - val_g;
val_g += 0.5f;
val_r = nval_r;
nval_r = rect[3];
diff_r = nval_r - val_r;
val_r += 0.5f;
rect += skipx;
}
if (do_float) {
val_af = nval_af;
nval_af = rectf[0];
diff_af = nval_af - val_af;
val_bf = nval_bf;
nval_bf = rectf[1];
diff_bf = nval_bf - val_bf;
val_gf = nval_gf;
nval_gf = rectf[2];
diff_gf = nval_gf - val_gf;
val_rf = nval_rf;
nval_rf = rectf[3];
diff_rf = nval_rf - val_rf;
rectf += skipx;
}
}
if (do_rect) {
newrect[0] = val_a + sample * diff_a;
newrect[1] = val_b + sample * diff_b;
newrect[2] = val_g + sample * diff_g;
newrect[3] = val_r + sample * diff_r;
newrect += skipx;
}
if (do_float) {
newrectf[0] = val_af + sample * diff_af;
newrectf[1] = val_bf + sample * diff_bf;
newrectf[2] = val_gf + sample * diff_gf;
newrectf[3] = val_rf + sample * diff_rf;
newrectf += skipx;
}
sample += add;
}
}
}
if (do_rect) {
imb_freerectImBuf(ibuf);
IMB_assign_byte_buffer(ibuf, _newrect, IB_TAKE_OWNERSHIP);
}
if (do_float) {
imb_freerectfloatImBuf(ibuf);
IMB_assign_float_buffer(ibuf, _newrectf, IB_TAKE_OWNERSHIP);
}
ibuf->y = newy;
return ibuf;
}
bool IMB_scaleImBuf(ImBuf *ibuf, uint newx, uint newy)
{
BLI_assert_msg(newx > 0 && newy > 0, "Images must be at least 1 on both dimensions!");
if (ibuf == nullptr) {
return false;
}
if (ibuf->byte_buffer.data == nullptr && ibuf->float_buffer.data == nullptr) {
return false;
}
if (newx == ibuf->x && newy == ibuf->y) {
return false;
}
/* try to scale common cases in a fast way */
/* disabled, quality loss is unacceptable, see report #18609 (ton) */
if (false && q_scale_linear_interpolation(ibuf, newx, newy)) {
return true;
}
if (newx && (newx < ibuf->x)) {
scaledownx(ibuf, newx);
}
if (newy && (newy < ibuf->y)) {
scaledowny(ibuf, newy);
}
if (newx && (newx > ibuf->x)) {
scaleupx(ibuf, newx);
}
if (newy && (newy > ibuf->y)) {
scaleupy(ibuf, newy);
}
return true;
}
struct imbufRGBA {
float r, g, b, a;
};
bool IMB_scalefastImBuf(ImBuf *ibuf, uint newx, uint newy)
{
BLI_assert_msg(newx > 0 && newy > 0, "Images must be at least 1 on both dimensions!");
uint *rect, *_newrect, *newrect;
imbufRGBA *rectf, *_newrectf, *newrectf;
int x, y;
bool do_float = false, do_rect = false;
size_t ofsx, ofsy, stepx, stepy;
rect = nullptr;
_newrect = nullptr;
newrect = nullptr;
rectf = nullptr;
_newrectf = nullptr;
newrectf = nullptr;
if (ibuf == nullptr) {
return false;
}
if (ibuf->byte_buffer.data) {
do_rect = true;
}
if (ibuf->float_buffer.data) {
do_float = true;
}
if (do_rect == false && do_float == false) {
return false;
}
if (newx == ibuf->x && newy == ibuf->y) {
return false;
}
if (do_rect) {
_newrect = static_cast<uint *>(MEM_mallocN(newx * newy * sizeof(int), "scalefastimbuf"));
if (_newrect == nullptr) {
return false;
}
newrect = _newrect;
}
if (do_float) {
_newrectf = static_cast<imbufRGBA *>(
MEM_mallocN(sizeof(float[4]) * newx * newy, "scalefastimbuf f"));
if (_newrectf == nullptr) {
if (_newrect) {
MEM_freeN(_newrect);
}
return false;
}
newrectf = _newrectf;
}
stepx = round(65536.0 * (ibuf->x - 1.0) / (newx - 1.0));
stepy = round(65536.0 * (ibuf->y - 1.0) / (newy - 1.0));
ofsy = 32768;
for (y = newy; y > 0; y--, ofsy += stepy) {
if (do_rect) {
rect = (uint *)ibuf->byte_buffer.data;
rect += (ofsy >> 16) * ibuf->x;
ofsx = 32768;
for (x = newx; x > 0; x--, ofsx += stepx) {
*newrect++ = rect[ofsx >> 16];
}
}
if (do_float) {
rectf = (imbufRGBA *)ibuf->float_buffer.data;
rectf += (ofsy >> 16) * ibuf->x;
ofsx = 32768;
for (x = newx; x > 0; x--, ofsx += stepx) {
*newrectf++ = rectf[ofsx >> 16];
}
}
}
if (do_rect) {
imb_freerectImBuf(ibuf);
IMB_assign_byte_buffer(ibuf, reinterpret_cast<uint8_t *>(_newrect), IB_TAKE_OWNERSHIP);
}
if (do_float) {
imb_freerectfloatImBuf(ibuf);
IMB_assign_float_buffer(ibuf, reinterpret_cast<float *>(_newrectf), IB_TAKE_OWNERSHIP);
}
ibuf->x = newx;
ibuf->y = newy;
return true;
}
/* ******** threaded scaling ******** */
struct ScaleTreadInitData {
ImBuf *ibuf;
uint newx;
uint newy;
uchar *byte_buffer;
float *float_buffer;
};
struct ScaleThreadData {
ImBuf *ibuf;
uint newx;
uint newy;
int start_line;
int tot_line;
uchar *byte_buffer;
float *float_buffer;
};
static void scale_thread_init(void *data_v, int start_line, int tot_line, void *init_data_v)
{
ScaleThreadData *data = (ScaleThreadData *)data_v;
ScaleTreadInitData *init_data = (ScaleTreadInitData *)init_data_v;
data->ibuf = init_data->ibuf;
data->newx = init_data->newx;
data->newy = init_data->newy;
data->start_line = start_line;
data->tot_line = tot_line;
data->byte_buffer = init_data->byte_buffer;
data->float_buffer = init_data->float_buffer;
}
static void *do_scale_thread(void *data_v)
{
ScaleThreadData *data = (ScaleThreadData *)data_v;
ImBuf *ibuf = data->ibuf;
int i;
float factor_x = float(ibuf->x) / data->newx;
float factor_y = float(ibuf->y) / data->newy;
for (i = 0; i < data->tot_line; i++) {
int y = data->start_line + i;
int x;
for (x = 0; x < data->newx; x++) {
float u = float(x) * factor_x;
float v = float(y) * factor_y;
int offset = y * data->newx + x;
if (data->byte_buffer) {
uchar *pixel = data->byte_buffer + 4 * offset;
BLI_bilinear_interpolation_char(ibuf->byte_buffer.data, pixel, ibuf->x, ibuf->y, 4, u, v);
}
if (data->float_buffer) {
float *pixel = data->float_buffer + ibuf->channels * offset;
BLI_bilinear_interpolation_fl(
ibuf->float_buffer.data, pixel, ibuf->x, ibuf->y, ibuf->channels, u, v);
}
}
}
return nullptr;
}
void IMB_scaleImBuf_threaded(ImBuf *ibuf, uint newx, uint newy)
{
BLI_assert_msg(newx > 0 && newy > 0, "Images must be at least 1 on both dimensions!");
ScaleTreadInitData init_data = {nullptr};
/* prepare initialization data */
init_data.ibuf = ibuf;
init_data.newx = newx;
init_data.newy = newy;
if (ibuf->byte_buffer.data) {
init_data.byte_buffer = static_cast<uchar *>(
MEM_mallocN(4 * newx * newy * sizeof(char), "threaded scale byte buffer"));
}
if (ibuf->float_buffer.data) {
init_data.float_buffer = static_cast<float *>(
MEM_mallocN(ibuf->channels * newx * newy * sizeof(float), "threaded scale float buffer"));
}
/* actual scaling threads */
IMB_processor_apply_threaded(
newy, sizeof(ScaleThreadData), &init_data, scale_thread_init, do_scale_thread);
/* alter image buffer */
ibuf->x = newx;
ibuf->y = newy;
if (ibuf->byte_buffer.data) {
imb_freerectImBuf(ibuf);
IMB_assign_byte_buffer(ibuf, init_data.byte_buffer, IB_TAKE_OWNERSHIP);
}
if (ibuf->float_buffer.data) {
imb_freerectfloatImBuf(ibuf);
IMB_assign_float_buffer(ibuf, init_data.float_buffer, IB_TAKE_OWNERSHIP);
}
}