tornavis/source/blender/blenkernel/BKE_attribute_math.hh

675 lines
21 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
#include "BLI_array.hh"
#include "BLI_color.hh"
#include "BLI_cpp_type.hh"
#include "BLI_generic_span.hh"
#include "BLI_generic_virtual_array.hh"
#include "BLI_math_axis_angle.hh"
#include "BLI_math_color.hh"
#include "BLI_math_quaternion.hh"
#include "BLI_math_vector.h"
#include "BLI_math_vector.hh"
#include "BLI_offset_indices.hh"
#include "BKE_attribute.hh"
namespace blender::bke::attribute_math {
/**
* Utility function that simplifies calling a templated function based on a run-time data type.
*/
template<typename Func>
inline void convert_to_static_type(const CPPType &cpp_type, const Func &func)
{
cpp_type.to_static_type_tag<float,
float2,
float3,
int,
int2,
bool,
int8_t,
ColorGeometry4f,
ColorGeometry4b,
math::Quaternion,
float4x4>([&](auto type_tag) {
using T = typename decltype(type_tag)::type;
if constexpr (std::is_same_v<T, void>) {
/* It's expected that the given cpp type is one of the supported ones. */
BLI_assert_unreachable();
}
else {
func(T());
}
});
}
template<typename Func>
inline void convert_to_static_type(const eCustomDataType data_type, const Func &func)
{
const CPPType &cpp_type = *bke::custom_data_type_to_cpp_type(data_type);
convert_to_static_type(cpp_type, func);
}
/* -------------------------------------------------------------------- */
/** \name Mix two values of the same type.
*
* This is just basic linear interpolation.
* \{ */
template<typename T> T mix2(float factor, const T &a, const T &b);
template<> inline bool mix2(const float factor, const bool &a, const bool &b)
{
return ((1.0f - factor) * a + factor * b) >= 0.5f;
}
template<> inline int8_t mix2(const float factor, const int8_t &a, const int8_t &b)
{
return int8_t(std::round((1.0f - factor) * a + factor * b));
}
template<> inline int mix2(const float factor, const int &a, const int &b)
{
return int(std::round((1.0f - factor) * a + factor * b));
}
template<> inline int2 mix2(const float factor, const int2 &a, const int2 &b)
{
return math::interpolate(a, b, factor);
}
template<> inline float mix2(const float factor, const float &a, const float &b)
{
return (1.0f - factor) * a + factor * b;
}
template<> inline float2 mix2(const float factor, const float2 &a, const float2 &b)
{
return math::interpolate(a, b, factor);
}
template<> inline float3 mix2(const float factor, const float3 &a, const float3 &b)
{
return math::interpolate(a, b, factor);
}
template<>
inline ColorGeometry4f mix2(const float factor, const ColorGeometry4f &a, const ColorGeometry4f &b)
{
return math::interpolate(a, b, factor);
}
template<>
inline ColorGeometry4b mix2(const float factor, const ColorGeometry4b &a, const ColorGeometry4b &b)
{
return math::interpolate(a, b, factor);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mix three values of the same type.
*
* This is typically used to interpolate values within a triangle.
* \{ */
template<typename T> T mix3(const float3 &weights, const T &v0, const T &v1, const T &v2);
template<>
inline int8_t mix3(const float3 &weights, const int8_t &v0, const int8_t &v1, const int8_t &v2)
{
return int8_t(std::round(weights.x * v0 + weights.y * v1 + weights.z * v2));
}
template<> inline bool mix3(const float3 &weights, const bool &v0, const bool &v1, const bool &v2)
{
return (weights.x * v0 + weights.y * v1 + weights.z * v2) >= 0.5f;
}
template<> inline int mix3(const float3 &weights, const int &v0, const int &v1, const int &v2)
{
return int(std::round(weights.x * v0 + weights.y * v1 + weights.z * v2));
}
template<> inline int2 mix3(const float3 &weights, const int2 &v0, const int2 &v1, const int2 &v2)
{
return int2(weights.x * float2(v0) + weights.y * float2(v1) + weights.z * float2(v2));
}
template<>
inline float mix3(const float3 &weights, const float &v0, const float &v1, const float &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
inline float2 mix3(const float3 &weights, const float2 &v0, const float2 &v1, const float2 &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
inline float3 mix3(const float3 &weights, const float3 &v0, const float3 &v1, const float3 &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
inline ColorGeometry4f mix3(const float3 &weights,
const ColorGeometry4f &v0,
const ColorGeometry4f &v1,
const ColorGeometry4f &v2)
{
ColorGeometry4f result;
interp_v4_v4v4v4(result, v0, v1, v2, weights);
return result;
}
template<>
inline ColorGeometry4b mix3(const float3 &weights,
const ColorGeometry4b &v0,
const ColorGeometry4b &v1,
const ColorGeometry4b &v2)
{
const float4 v0_f{&v0.r};
const float4 v1_f{&v1.r};
const float4 v2_f{&v2.r};
const float4 mixed = v0_f * weights[0] + v1_f * weights[1] + v2_f * weights[2];
return ColorGeometry4b{
uint8_t(mixed[0]), uint8_t(mixed[1]), uint8_t(mixed[2]), uint8_t(mixed[3])};
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mix four values of the same type.
*
* \{ */
template<typename T>
T mix4(const float4 &weights, const T &v0, const T &v1, const T &v2, const T &v3);
template<>
inline int8_t mix4(
const float4 &weights, const int8_t &v0, const int8_t &v1, const int8_t &v2, const int8_t &v3)
{
return int8_t(std::round(weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3));
}
template<>
inline bool mix4(
const float4 &weights, const bool &v0, const bool &v1, const bool &v2, const bool &v3)
{
return (weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3) >= 0.5f;
}
template<>
inline int mix4(const float4 &weights, const int &v0, const int &v1, const int &v2, const int &v3)
{
return int(std::round(weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3));
}
template<>
inline int2 mix4(
const float4 &weights, const int2 &v0, const int2 &v1, const int2 &v2, const int2 &v3)
{
return int2(weights.x * float2(v0) + weights.y * float2(v1) + weights.z * float2(v2) +
weights.w * float2(v3));
}
template<>
inline float mix4(
const float4 &weights, const float &v0, const float &v1, const float &v2, const float &v3)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3;
}
template<>
inline float2 mix4(
const float4 &weights, const float2 &v0, const float2 &v1, const float2 &v2, const float2 &v3)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3;
}
template<>
inline float3 mix4(
const float4 &weights, const float3 &v0, const float3 &v1, const float3 &v2, const float3 &v3)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2 + weights.w * v3;
}
template<>
inline ColorGeometry4f mix4(const float4 &weights,
const ColorGeometry4f &v0,
const ColorGeometry4f &v1,
const ColorGeometry4f &v2,
const ColorGeometry4f &v3)
{
ColorGeometry4f result;
interp_v4_v4v4v4v4(result, v0, v1, v2, v3, weights);
return result;
}
template<>
inline ColorGeometry4b mix4(const float4 &weights,
const ColorGeometry4b &v0,
const ColorGeometry4b &v1,
const ColorGeometry4b &v2,
const ColorGeometry4b &v3)
{
const float4 v0_f{&v0.r};
const float4 v1_f{&v1.r};
const float4 v2_f{&v2.r};
const float4 v3_f{&v3.r};
float4 mixed;
interp_v4_v4v4v4v4(mixed, v0_f, v1_f, v2_f, v3_f, weights);
return ColorGeometry4b{
uint8_t(mixed[0]), uint8_t(mixed[1]), uint8_t(mixed[2]), uint8_t(mixed[3])};
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mix a dynamic amount of values with weights for many elements.
*
* This section provides an abstraction for "mixers". The abstraction encapsulates details about
* how different types should be mixed. Usually #DefaultMixer<T> should be used to get a mixer for
* a specific type.
* \{ */
template<typename T> class SimpleMixer {
private:
MutableSpan<T> buffer_;
T default_value_;
Array<float> total_weights_;
public:
/**
* \param buffer: Span where the interpolated values should be stored.
* \param default_value: Output value for an element that has not been affected by a #mix_in.
*/
SimpleMixer(MutableSpan<T> buffer, T default_value = {})
: SimpleMixer(buffer, buffer.index_range(), default_value)
{
}
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
SimpleMixer(MutableSpan<T> buffer, const IndexMask &mask, T default_value = {})
: buffer_(buffer), default_value_(default_value), total_weights_(buffer.size(), 0.0f)
{
BLI_STATIC_ASSERT(std::is_trivial_v<T>, "");
mask.foreach_index([&](const int64_t i) { buffer_[i] = default_value_; });
}
/**
* Set a #value into the element with the given #index.
*/
void set(const int64_t index, const T &value, const float weight = 1.0f)
{
buffer_[index] = value * weight;
total_weights_[index] = weight;
}
/**
* Mix a #value into the element with the given #index.
*/
void mix_in(const int64_t index, const T &value, const float weight = 1.0f)
{
buffer_[index] += value * weight;
total_weights_[index] += weight;
}
/**
* Has to be called before the buffer provided in the constructor is used.
*/
void finalize()
{
this->finalize(IndexMask(buffer_.size()));
}
void finalize(const IndexMask &mask)
{
mask.foreach_index([&](const int64_t i) {
const float weight = total_weights_[i];
if (weight > 0.0f) {
buffer_[i] *= 1.0f / weight;
}
else {
buffer_[i] = default_value_;
}
});
}
};
/**
* Mixes together booleans with "or" while fitting the same interface as the other
* mixers in order to be simpler to use. This mixing method has a few benefits:
* - An "average" for selections is relatively meaningless.
* - Predictable selection propagation is very super important.
* - It's generally easier to remove an element from a selection that is slightly too large than
* the opposite.
*/
class BooleanPropagationMixer {
private:
MutableSpan<bool> buffer_;
public:
/**
* \param buffer: Span where the interpolated values should be stored.
*/
BooleanPropagationMixer(MutableSpan<bool> buffer)
: BooleanPropagationMixer(buffer, buffer.index_range())
{
}
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
BooleanPropagationMixer(MutableSpan<bool> buffer, const IndexMask &mask) : buffer_(buffer)
{
mask.foreach_index([&](const int64_t i) { buffer_[i] = false; });
}
/**
* Set a #value into the element with the given #index.
*/
void set(const int64_t index, const bool value, [[maybe_unused]] const float weight = 1.0f)
{
buffer_[index] = value;
}
/**
* Mix a #value into the element with the given #index.
*/
void mix_in(const int64_t index, const bool value, [[maybe_unused]] const float weight = 1.0f)
{
buffer_[index] |= value;
}
/**
* Does not do anything, since the mixing is trivial.
*/
void finalize() {}
void finalize(const IndexMask & /*mask*/) {}
};
/**
* This mixer accumulates values in a type that is different from the one that is mixed.
* Some types cannot encode the floating point weights in their values (e.g. int and bool).
*/
template<typename T,
typename AccumulationT,
AccumulationT (*ValueToAccumulate)(const T &value),
T (*AccumulateToValue)(const AccumulationT &value)>
class SimpleMixerWithAccumulationType {
private:
struct Item {
/* Store both values together, because they are accessed together. */
AccumulationT value = AccumulationT(0);
float weight = 0.0f;
};
MutableSpan<T> buffer_;
T default_value_;
Array<Item> accumulation_buffer_;
public:
SimpleMixerWithAccumulationType(MutableSpan<T> buffer, T default_value = {})
: SimpleMixerWithAccumulationType(buffer, buffer.index_range(), default_value)
{
}
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
SimpleMixerWithAccumulationType(MutableSpan<T> buffer,
const IndexMask &mask,
T default_value = {})
: buffer_(buffer), default_value_(default_value), accumulation_buffer_(buffer.size())
{
mask.foreach_index([&](const int64_t index) { buffer_[index] = default_value_; });
}
void set(const int64_t index, const T &value, const float weight = 1.0f)
{
const AccumulationT converted_value = ValueToAccumulate(value);
Item &item = accumulation_buffer_[index];
item.value = converted_value * weight;
item.weight = weight;
}
void mix_in(const int64_t index, const T &value, const float weight = 1.0f)
{
const AccumulationT converted_value = ValueToAccumulate(value);
Item &item = accumulation_buffer_[index];
item.value += converted_value * weight;
item.weight += weight;
}
void finalize()
{
this->finalize(buffer_.index_range());
}
void finalize(const IndexMask &mask)
{
mask.foreach_index([&](const int64_t i) {
const Item &item = accumulation_buffer_[i];
if (item.weight > 0.0f) {
const float weight_inv = 1.0f / item.weight;
const T converted_value = AccumulateToValue(item.value * weight_inv);
buffer_[i] = converted_value;
}
else {
buffer_[i] = default_value_;
}
});
}
};
class ColorGeometry4fMixer {
private:
MutableSpan<ColorGeometry4f> buffer_;
ColorGeometry4f default_color_;
Array<float> total_weights_;
public:
ColorGeometry4fMixer(MutableSpan<ColorGeometry4f> buffer,
ColorGeometry4f default_color = ColorGeometry4f(0.0f, 0.0f, 0.0f, 1.0f));
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
ColorGeometry4fMixer(MutableSpan<ColorGeometry4f> buffer,
const IndexMask &mask,
ColorGeometry4f default_color = ColorGeometry4f(0.0f, 0.0f, 0.0f, 1.0f));
void set(int64_t index, const ColorGeometry4f &color, float weight = 1.0f);
void mix_in(int64_t index, const ColorGeometry4f &color, float weight = 1.0f);
void finalize();
void finalize(const IndexMask &mask);
};
class ColorGeometry4bMixer {
private:
MutableSpan<ColorGeometry4b> buffer_;
ColorGeometry4b default_color_;
Array<float> total_weights_;
Array<float4> accumulation_buffer_;
public:
ColorGeometry4bMixer(MutableSpan<ColorGeometry4b> buffer,
ColorGeometry4b default_color = ColorGeometry4b(0, 0, 0, 255));
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
ColorGeometry4bMixer(MutableSpan<ColorGeometry4b> buffer,
const IndexMask &mask,
ColorGeometry4b default_color = ColorGeometry4b(0, 0, 0, 255));
void set(int64_t index, const ColorGeometry4b &color, float weight = 1.0f);
void mix_in(int64_t index, const ColorGeometry4b &color, float weight = 1.0f);
void finalize();
void finalize(const IndexMask &mask);
};
class float4x4Mixer {
private:
MutableSpan<float4x4> buffer_;
Array<float> total_weights_;
Array<float3> location_buffer_;
Array<float3> expmap_buffer_;
Array<float3> scale_buffer_;
public:
float4x4Mixer(MutableSpan<float4x4> buffer);
/**
* \param mask: Only initialize these indices. Other indices in the buffer will be invalid.
*/
float4x4Mixer(MutableSpan<float4x4> buffer, const IndexMask &mask);
void set(int64_t index, const float4x4 &value, float weight = 1.0f);
void mix_in(int64_t index, const float4x4 &value, float weight = 1.0f);
void finalize();
void finalize(const IndexMask &mask);
};
template<typename T> struct DefaultMixerStruct {
/* Use void by default. This can be checked for in `if constexpr` statements. */
using type = void;
};
template<> struct DefaultMixerStruct<float> {
using type = SimpleMixer<float>;
};
template<> struct DefaultMixerStruct<float2> {
using type = SimpleMixer<float2>;
};
template<> struct DefaultMixerStruct<float3> {
using type = SimpleMixer<float3>;
};
template<> struct DefaultMixerStruct<ColorGeometry4f> {
/* Use a special mixer for colors. ColorGeometry4f can't be added/multiplied, because this is not
* something one should usually do with colors. */
using type = ColorGeometry4fMixer;
};
template<> struct DefaultMixerStruct<ColorGeometry4b> {
using type = ColorGeometry4bMixer;
};
template<> struct DefaultMixerStruct<float4x4> {
using type = float4x4Mixer;
};
template<> struct DefaultMixerStruct<int> {
static double int_to_double(const int &value)
{
return double(value);
}
static int double_to_int(const double &value)
{
return int(std::round(value));
}
/* Store interpolated ints in a double temporarily, so that weights are handled correctly. It
* uses double instead of float so that it is accurate for all 32 bit integers. */
using type = SimpleMixerWithAccumulationType<int, double, int_to_double, double_to_int>;
};
template<> struct DefaultMixerStruct<int2> {
static double2 int_to_double(const int2 &value)
{
return double2(value);
}
static int2 double_to_int(const double2 &value)
{
return int2(math::round(value));
}
/* Store interpolated ints in a double temporarily, so that weights are handled correctly. It
* uses double instead of float so that it is accurate for all 32 bit integers. */
using type = SimpleMixerWithAccumulationType<int2, double2, int_to_double, double_to_int>;
};
template<> struct DefaultMixerStruct<bool> {
static float bool_to_float(const bool &value)
{
return value ? 1.0f : 0.0f;
}
static bool float_to_bool(const float &value)
{
return value >= 0.5f;
}
/* Store interpolated booleans in a float temporary.
* Otherwise information provided by weights is easily rounded away. */
using type = SimpleMixerWithAccumulationType<bool, float, bool_to_float, float_to_bool>;
};
template<> struct DefaultMixerStruct<int8_t> {
static float int8_t_to_float(const int8_t &value)
{
return float(value);
}
static int8_t float_to_int8_t(const float &value)
{
return int8_t(std::round(value));
}
/* Store interpolated 8 bit integers in a float temporarily to increase accuracy. */
using type = SimpleMixerWithAccumulationType<int8_t, float, int8_t_to_float, float_to_int8_t>;
};
template<> struct DefaultMixerStruct<math::Quaternion> {
static float3 quat_to_expmap(const math::Quaternion &value)
{
return value.expmap();
}
static math::Quaternion expmap_to_quat(const float3 &value)
{
return math::Quaternion::expmap(value);
}
using type =
SimpleMixerWithAccumulationType<math::Quaternion, float3, quat_to_expmap, expmap_to_quat>;
};
template<typename T> struct DefaultPropagationMixerStruct {
/* Use void by default. This can be checked for in `if constexpr` statements. */
using type = typename DefaultMixerStruct<T>::type;
};
template<> struct DefaultPropagationMixerStruct<bool> {
using type = BooleanPropagationMixer;
};
/**
* This mixer is meant for propagating attributes when creating new geometry. A key difference
* with the default mixer is that booleans are mixed with "or" instead of "at least half"
* (the default mixing for booleans).
*/
template<typename T>
using DefaultPropagationMixer = typename DefaultPropagationMixerStruct<T>::type;
/* Utility to get a good default mixer for a given type. This is `void` when there is no default
* mixer for the given type. */
template<typename T> using DefaultMixer = typename DefaultMixerStruct<T>::type;
/** \} */
/* -------------------------------------------------------------------- */
/** \name Generic Array Utils Implementations
*
* Extra implementations of functions from #BLI_array_utils.hh for all attribute types,
* used to avoid templating the same logic for each type in many places.
* \{ */
void gather(GSpan src, Span<int> map, GMutableSpan dst);
void gather(const GVArray &src, Span<int> map, GMutableSpan dst);
void gather_group_to_group(OffsetIndices<int> src_offsets,
OffsetIndices<int> dst_offsets,
const IndexMask &selection,
GSpan src,
GMutableSpan dst);
void gather_to_groups(OffsetIndices<int> dst_offsets,
const IndexMask &src_selection,
GSpan src,
GMutableSpan dst);
/** \} */
} // namespace blender::bke::attribute_math