tornavis/source/blender/blenlib/BLI_math_geom.h

1391 lines
52 KiB
C

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup bli
*/
#include "BLI_compiler_attrs.h"
#include "BLI_math_inline.h"
#ifdef BLI_MATH_GCC_WARN_PRAGMA
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wredundant-decls"
#endif
#ifdef __cplusplus
extern "C" {
#endif
/* -------------------------------------------------------------------- */
/** \name Polygons
* \{ */
float normal_tri_v3(float n[3], const float v1[3], const float v2[3], const float v3[3]);
float normal_quad_v3(
float n[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3]);
/**
* Computes the normal of a planar polygon See Graphics Gems for computing newell normal.
*/
float normal_poly_v3(float n[3], const float verts[][3], unsigned int nr);
MINLINE float area_tri_v2(const float v1[2], const float v2[2], const float v3[2]);
MINLINE float area_squared_tri_v2(const float v1[2], const float v2[2], const float v3[2]);
MINLINE float area_tri_signed_v2(const float v1[2], const float v2[2], const float v3[2]);
/* Triangles */
float area_tri_v3(const float v1[3], const float v2[3], const float v3[3]);
float area_squared_tri_v3(const float v1[3], const float v2[3], const float v3[3]);
float area_tri_signed_v3(const float v1[3],
const float v2[3],
const float v3[3],
const float normal[3]);
float area_quad_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]);
float area_squared_quad_v3(const float v1[3],
const float v2[3],
const float v3[3],
const float v4[3]);
float area_poly_v3(const float verts[][3], unsigned int nr);
float area_poly_v2(const float verts[][2], unsigned int nr);
float area_squared_poly_v3(const float verts[][3], unsigned int nr);
float area_squared_poly_v2(const float verts[][2], unsigned int nr);
float area_poly_signed_v2(const float verts[][2], unsigned int nr);
float cotangent_tri_weight_v3(const float v1[3], const float v2[3], const float v3[3]);
void cross_tri_v3(float n[3], const float v1[3], const float v2[3], const float v3[3]);
/**
* Scalar cross product of a 2D triangle.
*
* - Equivalent to `area * 2`.
* - Useful for checking polygon winding (a negative value is clockwise).
*/
MINLINE float cross_tri_v2(const float v1[2], const float v2[2], const float v3[2]);
void cross_poly_v3(float n[3], const float verts[][3], unsigned int nr);
/**
* Scalar cross product of a 2D polygon.
*
* - Equivalent to `area * 2`.
* - Useful for checking polygon winding (a negative value is clockwise).
*/
float cross_poly_v2(const float verts[][2], unsigned int nr);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Planes
* \{ */
/**
* Calculate a plane from a point and a direction,
* \note \a point_no isn't required to be normalized.
*/
void plane_from_point_normal_v3(float r_plane[4],
const float plane_co[3],
const float plane_no[3]);
/**
* Get a point and a direction from a plane.
*/
void plane_to_point_vector_v3(const float plane[4], float r_plane_co[3], float r_plane_no[3]);
/**
* Version of #plane_to_point_vector_v3 that gets a unit length vector.
*/
void plane_to_point_vector_v3_normalized(const float plane[4],
float r_plane_co[3],
float r_plane_no[3]);
MINLINE float plane_point_side_v3(const float plane[4], const float co[3]);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Volume
* \{ */
/**
* The volume from a tetrahedron, points can be in any order
*/
float volume_tetrahedron_v3(const float v1[3],
const float v2[3],
const float v3[3],
const float v4[3]);
/**
* The volume from a tetrahedron, normal pointing inside gives negative volume
*/
float volume_tetrahedron_signed_v3(const float v1[3],
const float v2[3],
const float v3[3],
const float v4[3]);
/**
* The volume from a triangle that is made into a tetrahedron.
* This uses a simplified formula where the tip of the tetrahedron is in the world origin.
* Using this method, the total volume of a closed triangle mesh can be calculated.
* Note that you need to divide the result by 6 to get the actual volume.
*/
float volume_tri_tetrahedron_signed_v3_6x(const float v1[3], const float v2[3], const float v3[3]);
float volume_tri_tetrahedron_signed_v3(const float v1[3], const float v2[3], const float v3[3]);
/**
* Check if the edge is convex or concave
* (depends on face winding)
* Copied from BM_edge_is_convex().
*/
bool is_edge_convex_v3(const float v1[3],
const float v2[3],
const float f1_no[3],
const float f2_no[3]);
/**
* Evaluate if entire quad is a proper convex quad
*/
bool is_quad_convex_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]);
bool is_quad_convex_v2(const float v1[2], const float v2[2], const float v3[2], const float v4[2]);
bool is_poly_convex_v2(const float verts[][2], unsigned int nr);
/**
* Check if either of the diagonals along this quad create flipped triangles
* (normals pointing away from each other).
* - (1 << 0): (v1-v3) is flipped.
* - (1 << 1): (v2-v4) is flipped.
*/
int is_quad_flip_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3]);
bool is_quad_flip_v3_first_third_fast(const float v1[3],
const float v2[3],
const float v3[3],
const float v4[3]);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Distance
* \{ */
/**
* Distance p to line v1-v2 using Hesse formula (NO LINE PIECE!)
*/
float dist_squared_to_line_v2(const float p[2], const float l1[2], const float l2[2]);
float dist_to_line_v2(const float p[2], const float l1[2], const float l2[2]);
/**
* Distance p to line-piece v1-v2.
*/
float dist_squared_to_line_segment_v2(const float p[2], const float l1[2], const float l2[2]);
float dist_to_line_segment_v2(const float p[2], const float l1[2], const float l2[2]);
float dist_signed_squared_to_plane_v3(const float p[3], const float plane[4]);
float dist_squared_to_plane_v3(const float p[3], const float plane[4]);
/**
* Return the signed distance from the point to the plane.
*/
float dist_signed_to_plane_v3(const float p[3], const float plane[4]);
float dist_to_plane_v3(const float p[3], const float plane[4]);
/* Plane3 versions. */
float dist_signed_squared_to_plane3_v3(const float p[3], const float plane[3]);
float dist_squared_to_plane3_v3(const float p[3], const float plane[3]);
float dist_signed_to_plane3_v3(const float p[3], const float plane[3]);
float dist_to_plane3_v3(const float p[3], const float plane[3]);
/**
* Distance v1 to line-piece l1-l2 in 3D.
*/
float dist_squared_to_line_segment_v3(const float p[3], const float l1[3], const float l2[3]);
float dist_to_line_segment_v3(const float p[3], const float l1[3], const float l2[3]);
float dist_squared_to_line_v3(const float p[3], const float l1[3], const float l2[3]);
float dist_to_line_v3(const float p[3], const float l1[3], const float l2[3]);
/**
* Check if \a p is inside the 2x planes defined by `(v1, v2, v3)`
* where the 3x points define 2x planes.
*
* \param axis_ref: used when v1,v2,v3 form a line and to check if the corner is concave/convex.
*
* \note the distance from \a v1 & \a v3 to \a v2 doesn't matter
* (it just defines the planes).
*
* \return the lowest squared distance to either of the planes.
* where `(return < 0.0)` is outside.
*
* \code{.unparsed}
* v1
* +
* /
* x - out / x - inside
* /
* +----+
* v2 v3
* x - also outside
* \endcode
*/
float dist_signed_squared_to_corner_v3v3v3(const float p[3],
const float v1[3],
const float v2[3],
const float v3[3],
const float axis_ref[3]);
/**
* Compute the squared distance of a point to a line (defined as ray).
* \param ray_origin: A point on the line.
* \param ray_direction: Normalized direction of the line.
* \param co: Point to which the distance is to be calculated.
*/
float dist_squared_to_ray_v3_normalized(const float ray_origin[3],
const float ray_direction[3],
const float co[3]);
/**
* Find the closest point in a seg to a ray and return the distance squared.
* \param r_point: Is the point on segment closest to ray
* (or to ray_origin if the ray and the segment are parallel).
* \param r_depth: the distance of r_point projection on ray to the ray_origin.
*/
float dist_squared_ray_to_seg_v3(const float ray_origin[3],
const float ray_direction[3],
const float v0[3],
const float v1[3],
float r_point[3],
float *r_depth);
/**
* Returns the coordinates of the nearest vertex and the farthest vertex from a plane (or normal).
*/
void aabb_get_near_far_from_plane(const float plane_no[3],
const float bbmin[3],
const float bbmax[3],
float bb_near[3],
float bb_afar[3]);
struct DistRayAABB_Precalc {
float ray_origin[3];
float ray_direction[3];
float ray_inv_dir[3];
};
struct DistRayAABB_Precalc dist_squared_ray_to_aabb_v3_precalc(const float ray_origin[3],
const float ray_direction[3]);
/**
* Returns the distance from a ray to a bound-box (projected on ray)
*/
float dist_squared_ray_to_aabb_v3(const struct DistRayAABB_Precalc *data,
const float bb_min[3],
const float bb_max[3],
float r_point[3],
float *r_depth);
/**
* Use when there is no advantage to pre-calculation.
*/
float dist_squared_ray_to_aabb_v3_simple(const float ray_origin[3],
const float ray_direction[3],
const float bb_min[3],
const float bb_max[3],
float r_point[3],
float *r_depth);
struct DistProjectedAABBPrecalc {
float ray_origin[3];
float ray_direction[3];
float ray_inv_dir[3];
float pmat[4][4];
float mval[2];
};
/**
* \param projmat: Projection Matrix (usually perspective
* matrix multiplied by object matrix).
*/
void dist_squared_to_projected_aabb_precalc(struct DistProjectedAABBPrecalc *precalc,
const float projmat[4][4],
const float winsize[2],
const float mval[2]);
/**
* Returns the distance from a 2D coordinate to a bound-box (projected).
*/
float dist_squared_to_projected_aabb(struct DistProjectedAABBPrecalc *data,
const float bbmin[3],
const float bbmax[3],
bool r_axis_closest[3]);
float dist_squared_to_projected_aabb_simple(const float projmat[4][4],
const float winsize[2],
const float mval[2],
const float bbmin[3],
const float bbmax[3]);
/** Returns the distance between two 2D line segments. */
float dist_seg_seg_v2(const float a1[3], const float a2[3], const float b1[3], const float b2[3]);
float closest_to_ray_v3(float r_close[3],
const float p[3],
const float ray_orig[3],
const float ray_dir[3]);
float closest_to_line_v2(float r_close[2], const float p[2], const float l1[2], const float l2[2]);
double closest_to_line_v2_db(double r_close[2],
const double p[2],
const double l1[2],
const double l2[2]);
/**
* Find closest point to p on line through (`l1`, `l2`) and return lambda,
* where (0 <= lambda <= 1) when `p` is in the line segment (`l1`, `l2`).
*/
float closest_to_line_v3(float r_close[3], const float p[3], const float l1[3], const float l2[3]);
/**
* Point closest to v1 on line v2-v3 in 2D.
*
* \return A value in [0, 1] that corresponds to the position of #r_close on the line segment.
*/
float closest_to_line_segment_v2(float r_close[2],
const float p[2],
const float l1[2],
const float l2[2]);
/**
* Finds the points where two line segments are closest to each other.
*
* `lambda_*` is a value between 0 and 1 for each segment that indicates where `r_closest_*` is on
* the corresponding segment.
*
* \return Squared distance between both segments.
*/
float closest_seg_seg_v2(float r_closest_a[2],
float r_closest_b[2],
float *r_lambda_a,
float *r_lambda_b,
const float a1[2],
const float a2[2],
const float b1[2],
const float b2[2]);
/**
* Point closest to v1 on line v2-v3 in 3D.
*
* \return A value in [0, 1] that corresponds to the position of #r_close on the line segment.
*/
float closest_to_line_segment_v3(float r_close[3],
const float p[3],
const float l1[3],
const float l2[3]);
void closest_to_plane_normalized_v3(float r_close[3], const float plane[4], const float pt[3]);
/**
* Find the closest point on a plane.
*
* \param r_close: Return coordinate
* \param plane: The plane to test against.
* \param pt: The point to find the nearest of
*
* \note non-unit-length planes are supported.
*/
void closest_to_plane_v3(float r_close[3], const float plane[4], const float pt[3]);
void closest_to_plane3_normalized_v3(float r_close[3], const float plane[3], const float pt[3]);
void closest_to_plane3_v3(float r_close[3], const float plane[3], const float pt[3]);
/**
* Set 'r' to the point in triangle (v1, v2, v3) closest to point 'p'.
*/
void closest_on_tri_to_point_v3(
float r[3], const float p[3], const float v1[3], const float v2[3], const float v3[3]);
float ray_point_factor_v3_ex(const float p[3],
const float ray_origin[3],
const float ray_direction[3],
float epsilon,
float fallback);
float ray_point_factor_v3(const float p[3],
const float ray_origin[3],
const float ray_direction[3]);
/**
* A simplified version of #closest_to_line_v3
* we only need to return the `lambda`
*
* \param epsilon: avoid approaching divide-by-zero.
* Passing a zero will just check for nonzero division.
*/
float line_point_factor_v3_ex(
const float p[3], const float l1[3], const float l2[3], float epsilon, float fallback);
float line_point_factor_v3(const float p[3], const float l1[3], const float l2[3]);
float line_point_factor_v2_ex(
const float p[2], const float l1[2], const float l2[2], float epsilon, float fallback);
float line_point_factor_v2(const float p[2], const float l1[2], const float l2[2]);
/**
* \note #isect_line_plane_v3() shares logic.
*/
float line_plane_factor_v3(const float plane_co[3],
const float plane_no[3],
const float l1[3],
const float l2[3]);
/**
* Ensure the distance between these points is no greater than 'dist'.
* If it is, scale them both into the center.
*/
void limit_dist_v3(float v1[3], float v2[3], float dist);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Intersection
* \{ */
/* TODO: int return value consistency. */
/* line-line */
#define ISECT_LINE_LINE_COLINEAR -1
#define ISECT_LINE_LINE_NONE 0
#define ISECT_LINE_LINE_EXACT 1
#define ISECT_LINE_LINE_CROSS 2
/**
* Intersect Line-Line, floats.
*/
int isect_seg_seg_v2(const float v1[2], const float v2[2], const float v3[2], const float v4[2]);
/**
* Returns a point on each segment that is closest to the other.
*/
void isect_seg_seg_v3(const float a0[3],
const float a1[3],
const float b0[3],
const float b1[3],
float r_a[3],
float r_b[3]);
/**
* Intersect Line-Line, integer.
*/
int isect_seg_seg_v2_int(const int v1[2], const int v2[2], const int v3[2], const int v4[2]);
/**
* Get intersection point of two 2D segments.
*
* \param endpoint_bias: Bias to use when testing for end-point overlap.
* A positive value considers intersections that extend past the endpoints,
* negative values contract the endpoints.
* Note the bias is applied to a 0-1 factor, not scaled to the length of segments.
*
* \returns intersection type:
* - -1: collinear.
* - 1: intersection.
* - 0: no intersection.
*/
int isect_seg_seg_v2_point_ex(const float v0[2],
const float v1[2],
const float v2[2],
const float v3[2],
float endpoint_bias,
float vi[2]);
int isect_seg_seg_v2_point(
const float v0[2], const float v1[2], const float v2[2], const float v3[2], float vi[2]);
bool isect_seg_seg_v2_simple(const float v1[2],
const float v2[2],
const float v3[2],
const float v4[2]);
/**
* If intersection == ISECT_LINE_LINE_CROSS or ISECT_LINE_LINE_NONE:
* <pre>
* pt = v1 + lambda * (v2 - v1) = v3 + mu * (v4 - v3)
* </pre>
* \returns intersection type:
* - ISECT_LINE_LINE_COLINEAR: collinear.
* - ISECT_LINE_LINE_EXACT: intersection at an endpoint of either.
* - ISECT_LINE_LINE_CROSS: interaction, not at an endpoint.
* - ISECT_LINE_LINE_NONE: no intersection.
* Also returns lambda and mu in r_lambda and r_mu.
*/
int isect_seg_seg_v2_lambda_mu_db(const double v1[2],
const double v2[2],
const double v3[2],
const double v4[2],
double *r_lambda,
double *r_mu);
/**
* \param l1, l2: Coordinates (point of line).
* \param sp, r: Coordinate and radius (sphere).
* \return r_p1, r_p2: Intersection coordinates.
*
* \note The order of assignment for intersection points (\a r_p1, \a r_p2) is predictable,
* based on the direction defined by `l2 - l1`,
* this direction compared with the normal of each point on the sphere:
* \a r_p1 always has a >= 0.0 dot product.
* \a r_p2 always has a <= 0.0 dot product.
* For example, when \a l1 is inside the sphere and \a l2 is outside,
* \a r_p1 will always be between \a l1 and \a l2.
*/
int isect_line_sphere_v3(const float l1[3],
const float l2[3],
const float sp[3],
float r,
float r_p1[3],
float r_p2[3]);
int isect_line_sphere_v2(const float l1[2],
const float l2[2],
const float sp[2],
float r,
float r_p1[2],
float r_p2[2]);
/**
* Intersect Line-Line, floats - gives intersection point.
*/
int isect_line_line_v2_point(
const float v0[2], const float v1[2], const float v2[2], const float v3[2], float r_vi[2]);
/**
* \return The number of point of interests
* 0 - lines are collinear
* 1 - lines are coplanar, i1 is set to intersection
* 2 - i1 and i2 are the nearest points on line 1 (v1, v2) and line 2 (v3, v4) respectively
*/
int isect_line_line_epsilon_v3(const float v1[3],
const float v2[3],
const float v3[3],
const float v4[3],
float i1[3],
float i2[3],
float epsilon);
int isect_line_line_v3(const float v1[3],
const float v2[3],
const float v3[3],
const float v4[3],
float r_i1[3],
float r_i2[3]);
/**
* Intersection point strictly between the two lines
* \return false when no intersection is found.
*/
bool isect_line_line_strict_v3(const float v1[3],
const float v2[3],
const float v3[3],
const float v4[3],
float vi[3],
float *r_lambda);
/**
* Check if two rays are not parallel and returns a factor that indicates
* the distance from \a ray_origin_b to the closest point on ray-a to ray-b.
*
* \note Neither directions need to be normalized.
*/
bool isect_ray_ray_epsilon_v3(const float ray_origin_a[3],
const float ray_direction_a[3],
const float ray_origin_b[3],
const float ray_direction_b[3],
float epsilon,
float *r_lambda_a,
float *r_lambda_b);
bool isect_ray_ray_v3(const float ray_origin_a[3],
const float ray_direction_a[3],
const float ray_origin_b[3],
const float ray_direction_b[3],
float *r_lambda_a,
float *r_lambda_b);
/**
* if clip is nonzero, will only return true if lambda is >= 0.0
* (i.e. intersection point is along positive \a ray_direction)
*
* \note #line_plane_factor_v3() shares logic.
*/
bool isect_ray_plane_v3_factor(const float ray_origin[3],
const float ray_direction[3],
const float plane_co[3],
const float plane_no[3],
float *r_lambda);
bool isect_ray_plane_v3(const float ray_origin[3],
const float ray_direction[3],
const float plane[4],
float *r_lambda,
bool clip);
/**
* Check if a point is behind all planes.
*/
bool isect_point_planes_v3(const float (*planes)[4], int totplane, const float p[3]);
/**
* Check if a point is in front all planes.
* Same as isect_point_planes_v3 but with planes facing the opposite direction.
*/
bool isect_point_planes_v3_negated(const float (*planes)[4], int totplane, const float p[3]);
/**
* Intersect line/plane.
*
* \param r_isect_co: The intersection point.
* \param l1: The first point of the line.
* \param l2: The second point of the line.
* \param plane_co: A point on the plane to intersect with.
* \param plane_no: The direction of the plane (does not need to be normalized).
*
* \note #line_plane_factor_v3() shares logic.
*/
bool isect_line_plane_v3(float r_isect_co[3],
const float l1[3],
const float l2[3],
const float plane_co[3],
const float plane_no[3]) ATTR_WARN_UNUSED_RESULT;
/**
* Intersect three planes, return the point where all 3 meet.
* See Graphics Gems 1 pg 305
*
* \param plane_a, plane_b, plane_c: Planes.
* \param r_isect_co: The resulting intersection point.
*/
bool isect_plane_plane_plane_v3(const float plane_a[4],
const float plane_b[4],
const float plane_c[4],
float r_isect_co[3]) ATTR_WARN_UNUSED_RESULT;
/**
* Intersect two planes, return a point on the intersection and a vector
* that runs on the direction of the intersection.
* \note this is a slightly reduced version of #isect_plane_plane_plane_v3
*
* \param plane_a, plane_b: Planes.
* \param r_isect_co: The resulting intersection point.
* \param r_isect_no: The resulting vector of the intersection.
*
* \note \a r_isect_no isn't unit length.
*/
bool isect_plane_plane_v3(const float plane_a[4],
const float plane_b[4],
float r_isect_co[3],
float r_isect_no[3]) ATTR_WARN_UNUSED_RESULT;
/**
* Intersect all planes, calling `callback_fn` for each point that intersects
* 3 of the planes that isn't outside any of the other planes.
*
* This can be thought of as calculating a convex-hull from an array of planes.
*
* \param eps_coplanar: Epsilon for testing if two planes are aligned (co-planar).
* \param eps_isect: Epsilon for testing of a point is behind any of the planes.
*
* \warning As complexity is a little under `O(N^3)`, this is only suitable for small arrays.
*
* \note This function could be optimized by some spatial structure.
*/
bool isect_planes_v3_fn(
const float planes[][4],
int planes_len,
float eps_coplanar,
float eps_isect,
void (*callback_fn)(const float co[3], int i, int j, int k, void *user_data),
void *user_data);
/* line/ray triangle */
/**
* Test if the line starting at p1 ending at p2 intersects the triangle v0..v2
* return non zero if it does.
*/
bool isect_line_segment_tri_v3(const float p1[3],
const float p2[3],
const float v0[3],
const float v1[3],
const float v2[3],
float *r_lambda,
float r_uv[2]);
/**
* Like #isect_line_segment_tri_v3, but allows epsilon tolerance around triangle.
*/
bool isect_line_segment_tri_epsilon_v3(const float p1[3],
const float p2[3],
const float v0[3],
const float v1[3],
const float v2[3],
float *r_lambda,
float r_uv[2],
float epsilon);
bool isect_axial_line_segment_tri_v3(int axis,
const float p1[3],
const float p2[3],
const float v0[3],
const float v1[3],
const float v2[3],
float *r_lambda);
/**
* Test if the ray starting at p1 going in d direction intersects the triangle v0..v2
* return non zero if it does.
*/
bool isect_ray_tri_v3(const float ray_origin[3],
const float ray_direction[3],
const float v0[3],
const float v1[3],
const float v2[3],
float *r_lambda,
float r_uv[2]);
bool isect_ray_tri_threshold_v3(const float ray_origin[3],
const float ray_direction[3],
const float v0[3],
const float v1[3],
const float v2[3],
float *r_lambda,
float r_uv[2],
float threshold);
bool isect_ray_tri_epsilon_v3(const float ray_origin[3],
const float ray_direction[3],
const float v0[3],
const float v1[3],
const float v2[3],
float *r_lambda,
float r_uv[2],
float epsilon);
/**
* Intersect two triangles.
*
* \param r_i1, r_i2: Retrieve the overlapping edge between the 2 triangles.
* \param r_tri_a_edge_isect_count: Indicates how many edges in the first triangle are intersected.
* \return true when the triangles intersect.
*
* \note If it exists, \a r_i1 will be a point on the edge of the 1st triangle.
* \note intersections between coplanar triangles are currently undetected.
*/
bool isect_tri_tri_v3_ex(const float tri_a[3][3],
const float tri_b[3][3],
float r_i1[3],
float r_i2[3],
int *r_tri_a_edge_isect_count);
bool isect_tri_tri_v3(const float t_a0[3],
const float t_a1[3],
const float t_a2[3],
const float t_b0[3],
const float t_b1[3],
const float t_b2[3],
float r_i1[3],
float r_i2[3]);
bool isect_tri_tri_v2(const float p1[2],
const float q1[2],
const float r1[2],
const float p2[2],
const float q2[2],
const float r2[2]);
/**
* Water-tight ray-cast (requires pre-calculation).
*/
struct IsectRayPrecalc {
/* Maximal dimension `kz`, and orthogonal dimensions. */
int kx, ky, kz;
/* Shear constants. */
float sx, sy, sz;
};
void isect_ray_tri_watertight_v3_precalc(struct IsectRayPrecalc *isect_precalc,
const float ray_direction[3]);
bool isect_ray_tri_watertight_v3(const float ray_origin[3],
const struct IsectRayPrecalc *isect_precalc,
const float v0[3],
const float v1[3],
const float v2[3],
float *r_lambda,
float r_uv[2]);
/**
* Slower version which calculates #IsectRayPrecalc each time.
*/
bool isect_ray_tri_watertight_v3_simple(const float ray_origin[3],
const float ray_direction[3],
const float v0[3],
const float v1[3],
const float v2[3],
float *r_lambda,
float r_uv[2]);
bool isect_ray_seg_v2(const float ray_origin[2],
const float ray_direction[2],
const float v0[2],
const float v1[2],
float *r_lambda,
float *r_u);
bool isect_ray_line_v3(const float ray_origin[3],
const float ray_direction[3],
const float v0[3],
const float v1[3],
float *r_lambda);
/* Point in polygon. */
bool isect_point_poly_v2(const float pt[2], const float verts[][2], unsigned int nr);
bool isect_point_poly_v2_int(const int pt[2], const int verts[][2], unsigned int nr);
/**
* Point in quad - only convex quads.
*/
int isect_point_quad_v2(
const float p[2], const float v1[2], const float v2[2], const float v3[2], const float v4[2]);
int isect_point_tri_v2(const float pt[2], const float v1[2], const float v2[2], const float v3[2]);
/**
* Only single direction.
*/
bool isect_point_tri_v2_cw(const float pt[2],
const float v1[2],
const float v2[2],
const float v3[2]);
/**
* \code{.unparsed}
* x1,y2
* | \
* | \ .(a,b)
* | \
* x1,y1-- x2,y1
* \endcode
*/
int isect_point_tri_v2_int(int x1, int y1, int x2, int y2, int a, int b);
bool isect_point_tri_prism_v3(const float p[3],
const float v1[3],
const float v2[3],
const float v3[3]);
/**
* \param r_isect_co: The point \a p projected onto the triangle.
* \return True when \a p is inside the triangle.
* \note Its up to the caller to check the distance between \a p and \a r_vi
* against an error margin.
*/
bool isect_point_tri_v3(const float p[3],
const float v1[3],
const float v2[3],
const float v3[3],
float r_isect_co[3]);
/**
* Axis-aligned bounding box.
*/
bool isect_aabb_aabb_v3(const float min1[3],
const float max1[3],
const float min2[3],
const float max2[3]);
struct IsectRayAABB_Precalc {
float ray_origin[3];
float ray_inv_dir[3];
int sign[3];
};
void isect_ray_aabb_v3_precalc(struct IsectRayAABB_Precalc *data,
const float ray_origin[3],
const float ray_direction[3]);
bool isect_ray_aabb_v3(const struct IsectRayAABB_Precalc *data,
const float bb_min[3],
const float bb_max[3],
float *tmin);
/**
* Test a bounding box (AABB) for ray intersection.
* Assumes the ray is already local to the boundbox space.
*
* \note \a direction should be normalized
* if you intend to use the \a tmin or \a tmax distance results!
*/
bool isect_ray_aabb_v3_simple(const float orig[3],
const float dir[3],
const float bb_min[3],
const float bb_max[3],
float *tmin,
float *tmax);
/* other */
#define ISECT_AABB_PLANE_BEHIND_ANY 0
#define ISECT_AABB_PLANE_CROSS_ANY 1
#define ISECT_AABB_PLANE_IN_FRONT_ALL 2
/**
* Checks status of an AABB in relation to a list of planes.
*
* \returns intersection type:
* - ISECT_AABB_PLANE_BEHIND_ONE (0): AABB is completely behind at least 1 plane;
* - ISECT_AABB_PLANE_CROSS_ANY (1): AABB intersects at least 1 plane;
* - ISECT_AABB_PLANE_IN_FRONT_ALL (2): AABB is completely in front of all planes;
*/
int isect_aabb_planes_v3(const float (*planes)[4],
int totplane,
const float bbmin[3],
const float bbmax[3]);
bool isect_sweeping_sphere_tri_v3(const float p1[3],
const float p2[3],
float radius,
const float v0[3],
const float v1[3],
const float v2[3],
float *r_lambda,
float ipoint[3]);
bool clip_segment_v3_plane(
const float p1[3], const float p2[3], const float plane[4], float r_p1[3], float r_p2[3]);
bool clip_segment_v3_plane_n(const float p1[3],
const float p2[3],
const float plane_array[][4],
int plane_num,
float r_p1[3],
float r_p2[3]);
bool point_in_slice_seg(float p[3], float l1[3], float l2[3]);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Interpolation
* \{ */
void interp_weights_tri_v3(
float w[3], const float v1[3], const float v2[3], const float v3[3], const float co[3]);
void interp_weights_quad_v3(float w[4],
const float v1[3],
const float v2[3],
const float v3[3],
const float v4[3],
const float co[3]);
void interp_weights_poly_v3(float w[], float v[][3], int n, const float co[3]);
void interp_weights_poly_v2(float w[], float v[][2], int n, const float co[2]);
/** `(x1, v1)(t1=0)------(x2, v2)(t2=1), 0<t<1 --> (x, v)(t)`. */
void interp_cubic_v3(float x[3],
float v[3],
const float x1[3],
const float v1[3],
const float x2[3],
const float v2[3],
float t);
/**
* Given an array with some invalid values this function interpolates valid values
* replacing the invalid ones.
*/
int interp_sparse_array(float *array, int list_size, float skipval);
/**
* Given 2 triangles in 3D space, and a point in relation to the first triangle.
* calculate the location of a point in relation to the second triangle.
* Useful for finding relative positions with geometry.
*/
void transform_point_by_tri_v3(float pt_tar[3],
float const pt_src[3],
const float tri_tar_p1[3],
const float tri_tar_p2[3],
const float tri_tar_p3[3],
const float tri_src_p1[3],
const float tri_src_p2[3],
const float tri_src_p3[3]);
/**
* Simply re-interpolates,
* assumes p_src is between \a l_src_p1-l_src_p2
*/
void transform_point_by_seg_v3(float p_dst[3],
const float p_src[3],
const float l_dst_p1[3],
const float l_dst_p2[3],
const float l_src_p1[3],
const float l_src_p2[3]);
/**
* \note Using #cross_tri_v2 means locations outside the triangle are correctly weighted.
*
* \note This is *exactly* the same calculation as #resolve_tri_uv_v2,
* although it has double precision and is used for texture baking, so keep both.
*/
void barycentric_weights_v2(
const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3]);
/**
* A version of #barycentric_weights_v2 that doesn't allow negative weights.
* Useful when negative values cause problems and points are only
* ever slightly outside of the triangle.
*/
void barycentric_weights_v2_clamped(
const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3]);
/**
* still use 2D X,Y space but this works for verts transformed by a perspective matrix,
* using their 4th component as a weight
*/
void barycentric_weights_v2_persp(
const float v1[4], const float v2[4], const float v3[4], const float co[2], float w[3]);
/**
* same as #barycentric_weights_v2 but works with a quad,
* NOTE: untested for values outside the quad's bounds
* this is #interp_weights_poly_v2 expanded for quads only
*/
void barycentric_weights_v2_quad(const float v1[2],
const float v2[2],
const float v3[2],
const float v4[2],
const float co[2],
float w[4]);
/**
* \return false for degenerated triangles.
*/
bool barycentric_coords_v2(
const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3]);
/**
* \return
* - 0 if the point is outside of triangle.
* - 1 if the point is inside triangle.
* - 2 if it's on the edge.
*/
int barycentric_inside_triangle_v2(const float w[3]);
/**
* Barycentric reverse
*
* Compute coordinates (u, v) for point \a st with respect to triangle (\a st0, \a st1, \a st2)
*
* \note same basic result as #barycentric_weights_v2, see its comment for details.
*/
void resolve_tri_uv_v2(
float r_uv[2], const float st[2], const float st0[2], const float st1[2], const float st2[2]);
/**
* Barycentric reverse 3d
*
* Compute coordinates (u, v) for point \a st with respect to triangle (\a st0, \a st1, \a st2)
*/
void resolve_tri_uv_v3(
float r_uv[2], const float st[3], const float st0[3], const float st1[3], const float st2[3]);
/**
* Bilinear reverse.
*/
void resolve_quad_uv_v2(float r_uv[2],
const float st[2],
const float st0[2],
const float st1[2],
const float st2[2],
const float st3[2]);
/**
* Bilinear reverse with derivatives.
*/
void resolve_quad_uv_v2_deriv(float r_uv[2],
float r_deriv[2][2],
const float st[2],
const float st0[2],
const float st1[2],
const float st2[2],
const float st3[2]);
/**
* A version of resolve_quad_uv_v2 that only calculates the 'u'.
*/
float resolve_quad_u_v2(const float st[2],
const float st0[2],
const float st1[2],
const float st2[2],
const float st3[2]);
/**
* Use to find the point of a UV on a face.
* Reverse of `resolve_*` functions.
*/
void interp_bilinear_quad_v3(float data[4][3], float u, float v, float res[3]);
void interp_barycentric_tri_v3(float data[3][3], float u, float v, float res[3]);
/** \} */
/* -------------------------------------------------------------------- */
/** \name View & Projection
* \{ */
void lookat_m4(
float mat[4][4], float vx, float vy, float vz, float px, float py, float pz, float twist);
void polarview_m4(float mat[4][4], float dist, float azimuth, float incidence, float twist);
/**
* Matches `glFrustum` result.
*/
void perspective_m4(float mat[4][4],
float left,
float right,
float bottom,
float top,
float nearClip,
float farClip);
void perspective_m4_fov(float mat[4][4],
float angle_left,
float angle_right,
float angle_up,
float angle_down,
float nearClip,
float farClip);
/**
* Matches `glOrtho` result.
*/
void orthographic_m4(float mat[4][4],
float left,
float right,
float bottom,
float top,
float nearClip,
float farClip);
/**
* Translate a matrix created by orthographic_m4 or perspective_m4 in XY coords
* (used to jitter the view).
*/
void window_translate_m4(float winmat[4][4], float perspmat[4][4], float x, float y);
/**
* Frustum planes extraction from a projection matrix
* (homogeneous 4d vector representations of planes).
*
* plane parameters can be NULL if you do not need them.
*/
void planes_from_projmat(const float mat[4][4],
float left[4],
float right[4],
float bottom[4],
float top[4],
float near[4],
float far[4]);
void projmat_dimensions(const float winmat[4][4],
float *r_left,
float *r_right,
float *r_bottom,
float *r_top,
float *r_near,
float *r_far);
void projmat_dimensions_db(const float winmat[4][4],
double *r_left,
double *r_right,
double *r_bottom,
double *r_top,
double *r_near,
double *r_far);
/**
* Creates a projection matrix for a small region of the viewport.
*
* \param projmat: Projection Matrix.
* \param win_size: Viewport Size.
* \param x_min, x_max, y_min, y_max: Coordinates of the subregion.
* \return r_projmat: Resulting Projection Matrix.
*/
void projmat_from_subregion(const float projmat[4][4],
const int win_size[2],
int x_min,
int x_max,
int y_min,
int y_max,
float r_projmat[4][4]);
int box_clip_bounds_m4(float boundbox[2][3], const float bounds[4], float winmat[4][4]);
void box_minmax_bounds_m4(float min[3], float max[3], float boundbox[2][3], float mat[4][4]);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mapping
* \{ */
bool map_to_tube(float *r_u, float *r_v, float x, float y, float z);
bool map_to_sphere(float *r_u, float *r_v, float x, float y, float z);
void map_to_plane_v2_v3v3(float r_co[2], const float co[3], const float no[3]);
void map_to_plane_axis_angle_v2_v3v3fl(float r_co[2],
const float co[3],
const float axis[3],
float angle);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Normals
* \{ */
void accumulate_vertex_normals_tri_v3(float n1[3],
float n2[3],
float n3[3],
const float f_no[3],
const float co1[3],
const float co2[3],
const float co3[3]);
void accumulate_vertex_normals_v3(float n1[3],
float n2[3],
float n3[3],
float n4[3],
const float f_no[3],
const float co1[3],
const float co2[3],
const float co3[3],
const float co4[3]);
/**
* Add weighted face normal component into normals of the face vertices.
* Caller must pass pre-allocated vdiffs of nverts length.
*/
void accumulate_vertex_normals_poly_v3(
float **vertnos, const float polyno[3], const float **vertcos, float vdiffs[][3], int nverts);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Tangents
* \{ */
void tangent_from_uv_v3(const float uv1[2],
const float uv2[2],
const float uv3[2],
const float co1[3],
const float co2[3],
const float co3[3],
const float n[3],
float r_tang[3]);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Clouds
* \{ */
/**
* Input:
*
* \param list_size: 4 lists as pointer to array[list_size]
* \param pos: current pos array of 'new' positions
* \param weight: current weight array of 'new'weights (may be NULL pointer if you have no weights)
* \param rpos: Reference rpos array of 'old' positions
* \param rweight: Reference rweight array of 'old'weights
* (may be NULL pointer if you have no weights).
*
* Output:
*
* \param lloc: Center of mass pos.
* \param rloc: Center of mass rpos.
* \param lrot: Rotation matrix.
* \param lscale: Scale matrix.
*
* pointers may be NULL if not needed
*/
void vcloud_estimate_transform_v3(int list_size,
const float (*pos)[3],
const float *weight,
const float (*rpos)[3],
const float *rweight,
float lloc[3],
float rloc[3],
float lrot[3][3],
float lscale[3][3]);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Others
* \{ */
/**
* Same as axis_dominant_v3_to_m3, but flips the normal
*/
void axis_dominant_v3_to_m3_negate(float r_mat[3][3], const float normal[3]);
/**
* \brief Normal to x,y matrix
*
* Creates a 3x3 matrix from a normal.
* This matrix can be applied to vectors so their 'z' axis runs along \a normal.
* In practice it means you can use x,y as 2d coords. \see
*
* \param r_mat: The matrix to return.
* \param normal: A unit length vector.
*/
void axis_dominant_v3_to_m3(float r_mat[3][3], const float normal[3]);
/**
* Get the 2 dominant axis values, 0==X, 1==Y, 2==Z.
*/
MINLINE void axis_dominant_v3(int *r_axis_a, int *r_axis_b, const float axis[3]);
/**
* Same as #axis_dominant_v3 but return the max value.
*/
MINLINE float axis_dominant_v3_max(int *r_axis_a,
int *r_axis_b,
const float axis[3]) ATTR_WARN_UNUSED_RESULT;
/**
* Get the single dominant axis value, 0==X, 1==Y, 2==Z.
*/
MINLINE int axis_dominant_v3_single(const float vec[3]);
/**
* The dominant axis of an orthogonal vector.
*/
MINLINE int axis_dominant_v3_ortho_single(const float vec[3]);
MINLINE int max_axis_v3(const float vec[3]);
MINLINE int min_axis_v3(const float vec[3]);
/**
* Simple function to either:
* - Calculate how many triangles needed from the total number of polygons + loops.
* - Calculate the first triangle index from the polygon index & that polygons loop-start.
*
* \param poly_count: The number of polygons or polygon-index
* (3+ sided faces, 1-2 sided give incorrect results).
* \param corner_count: The number of corners (also called loop-index).
*/
MINLINE int poly_to_tri_count(int poly_count, int corner_count);
/**
* Useful to calculate an even width shell, by taking the angle between 2 planes.
* The return value is a scale on the offset.
* no angle between planes is 1.0, as the angle between the 2 planes approaches 180d
* the distance gets very high, 180d would be inf, but this case isn't valid.
*/
MINLINE float shell_angle_to_dist(float angle);
/**
* Equivalent to `shell_angle_to_dist(angle_normalized_v3v3(a, b))`.
*/
MINLINE float shell_v3v3_normalized_to_dist(const float a[3], const float b[3]);
/**
* Equivalent to `shell_angle_to_dist(angle_normalized_v2v2(a, b))`.
*/
MINLINE float shell_v2v2_normalized_to_dist(const float a[2], const float b[2]);
/**
* Equivalent to `shell_angle_to_dist(angle_normalized_v3v3(a, b) / 2)`.
*/
MINLINE float shell_v3v3_mid_normalized_to_dist(const float a[3], const float b[3]);
/**
* Equivalent to `shell_angle_to_dist(angle_normalized_v2v2(a, b) / 2)`.
*/
MINLINE float shell_v2v2_mid_normalized_to_dist(const float a[2], const float b[2]);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Cubic (Bezier)
* \{ */
/**
* Return the value which the distance between points will need to be scaled by,
* to define a handle, given both points are on a perfect circle.
*
* Use when we want a bezier curve to match a circle as closely as possible.
*
* \note the return value will need to be divided by 0.75 for correct results.
*/
float cubic_tangent_factor_circle_v3(const float tan_l[3], const float tan_r[3]);
/** \} */
/* -------------------------------------------------------------------- */
/** \name Geodesics
* \{ */
/**
* Utility for computing approximate geodesic distances on triangle meshes.
*
* Given triangle with vertex coordinates v0, v1, v2, and known geodesic distances
* dist1 and dist2 at v1 and v2, estimate a geodesic distance at vertex v0.
*
* From "Dart Throwing on Surfaces", EGSR 2009. Section 7, Geodesic Dart Throwing.
*/
float geodesic_distance_propagate_across_triangle(
const float v0[3], const float v1[3], const float v2[3], float dist1, float dist2);
/** \} */
#ifdef __cplusplus
}
#endif
/* -------------------------------------------------------------------- */
/** \name Inline Definitions
* \{ */
#if BLI_MATH_DO_INLINE
# include "intern/math_geom_inline.c"
#endif
#ifdef BLI_MATH_GCC_WARN_PRAGMA
# pragma GCC diagnostic pop
#endif
/** \} */