tornavis/source/blender/blenlib/intern/math_statistics.c

128 lines
3.6 KiB
C

/* SPDX-FileCopyrightText: 2015 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bli
*/
#include "BLI_math_base.h"
#include "BLI_math_statistics.h"
#include "BLI_math_vector.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "BLI_strict_flags.h" /* Keep last. */
/********************************** Covariance Matrices *********************************/
typedef struct CovarianceData {
const float *cos_vn;
const float *center;
float *r_covmat;
float covfac;
int n;
int cos_vn_num;
} CovarianceData;
static void covariance_m_vn_ex_task_cb(void *__restrict userdata,
const int a,
const TaskParallelTLS *__restrict UNUSED(tls))
{
CovarianceData *data = userdata;
const float *cos_vn = data->cos_vn;
const float *center = data->center;
float *r_covmat = data->r_covmat;
const int n = data->n;
const int cos_vn_num = data->cos_vn_num;
int k;
/* Covariance matrices are always symmetrical, so we can compute only one half of it,
* and mirror it to the other half (at the end of the func).
*
* This allows using a flat loop of n*n with same results as imbricated one over half the matrix:
*
* for (i = 0; i < n; i++) {
* for (j = i; j < n; j++) {
* ...
* }
* }
*/
const int i = a / n;
const int j = a % n;
if (j < i) {
return;
}
if (center) {
for (k = 0; k < cos_vn_num; k++) {
r_covmat[a] += (cos_vn[k * n + i] - center[i]) * (cos_vn[k * n + j] - center[j]);
}
}
else {
for (k = 0; k < cos_vn_num; k++) {
r_covmat[a] += cos_vn[k * n + i] * cos_vn[k * n + j];
}
}
r_covmat[a] *= data->covfac;
if (j != i) {
/* Mirror result to other half... */
r_covmat[j * n + i] = r_covmat[a];
}
}
void BLI_covariance_m_vn_ex(const int n,
const float *cos_vn,
const int cos_vn_num,
const float *center,
const bool use_sample_correction,
float *r_covmat)
{
/* Note about that division: see https://en.wikipedia.org/wiki/Bessel%27s_correction.
* In a nutshell, it must be 1 / (n - 1) for 'sample data', and 1 / n for 'population data'...
*/
const float covfac = 1.0f / (float)(use_sample_correction ? cos_vn_num - 1 : cos_vn_num);
memset(r_covmat, 0, sizeof(*r_covmat) * (size_t)(n * n));
CovarianceData data = {
.cos_vn = cos_vn,
.center = center,
.r_covmat = r_covmat,
.covfac = covfac,
.n = n,
.cos_vn_num = cos_vn_num,
};
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = ((cos_vn_num * n * n) >= 10000);
BLI_task_parallel_range(0, n * n, &data, covariance_m_vn_ex_task_cb, &settings);
}
void BLI_covariance_m3_v3n(const float (*cos_v3)[3],
const int cos_v3_num,
const bool use_sample_correction,
float r_covmat[3][3],
float r_center[3])
{
float center[3];
const float mean_fac = 1.0f / (float)cos_v3_num;
int i;
zero_v3(center);
for (i = 0; i < cos_v3_num; i++) {
/* Applying mean_fac here rather than once at the end reduce compute errors... */
madd_v3_v3fl(center, cos_v3[i], mean_fac);
}
if (r_center) {
copy_v3_v3(r_center, center);
}
BLI_covariance_m_vn_ex(
3, (const float *)cos_v3, cos_v3_num, center, use_sample_correction, (float *)r_covmat);
}