tornavis/release/datafiles/blender_icons_geom.py

345 lines
9.2 KiB
Python

# Apache License, Version 2.0
"""
Example Usage
=============
Command line::
./blender.bin \
icon_file.blend --background --python ./release/datafiles/blender_icons_geom.py -- \
--output-dir=./release/datafiles/blender_icons_geom
Icon Format
===========
This is a simple binary format (all bytes, so no endian).
The header is 8 bytes:
:0..3: ``VCO``: identifier.
:4: ``0``: icon file version.
:5: icon size-x.
:6: icon size-y.
:7: icon start-x.
:8: icon start-y.
Icon width and height are for icons that don't use the full byte range
(so we don't get bad alignment for 48 pixel grid for eg).
Start values are currently unused.
After the header, the remaining length of the data defines the geometry size.
:6 bytes each: triangle (XY) locations.
:12 bytes each: triangle (RGBA) locations.
All coordinates are written, then all colors.
Since this is a binary format which isn't intended for general use
the ``.dat`` file extension should be used.
"""
# This script writes out geometry-icons.
import bpy
# Generic functions
def area_tri_signed_2x_v2(v1, v2, v3):
return (v1[0] - v2[0]) * (v2[1] - v3[1]) + (v1[1] - v2[1]) * (v3[0] - v2[0])
class TriMesh:
"""
Triangulate, may apply other changes here too.
"""
__slots__ = ("object", "mesh")
def __init__(self, ob):
self.object = ob
self.mesh = None
def __enter__(self):
self.mesh = self._tri_copy_from_object(self.object)
return self.mesh
def __exit__(self, *args):
bpy.data.meshes.remove(self.mesh)
@staticmethod
def _tri_copy_from_object(ob):
import bmesh
assert(ob.type == 'MESH')
bm = bmesh.new()
bm.from_mesh(ob.data)
bmesh.ops.triangulate(bm, faces=bm.faces)
me = bpy.data.meshes.new(ob.name + ".copy")
bm.to_mesh(me)
bm.free()
return me
def object_material_colors(ob):
material_colors = []
color_default = (1.0, 1.0, 1.0, 1.0)
for slot in ob.material_slots:
material = slot.material
color = color_default
if material is not None and material.use_nodes:
node_tree = material.node_tree
if node_tree is not None:
color = next((
node.outputs[0].default_value[:]
for node in node_tree.nodes
if node.type == 'RGB'
), color_default)
if min(color) < 0.0 or max(color) > 1.0:
print(f"Material: {material.name!r} has color out of 0..1 range {color!r}")
color = tuple(max(min(c, 1.0), 0.0) for c in color)
material_colors.append(color)
return material_colors
def object_child_map(objects):
objects_children = {}
for ob in objects:
ob_parent = ob.parent
# Get the root.
if ob_parent is not None:
while ob_parent and ob_parent.parent:
ob_parent = ob_parent.parent
if ob_parent is not None:
objects_children.setdefault(ob_parent, []).append(ob)
for ob_all in objects_children.values():
ob_all.sort(key=lambda ob: ob.name)
return objects_children
def mesh_data_lists_from_mesh(me, material_colors):
me_loops = me.loops[:]
me_loops_color = me.vertex_colors.active.data[:]
me_verts = me.vertices[:]
me_polys = me.polygons[:]
tris_data = []
for p in me_polys:
# Note, all faces are handled, backfacing/zero area is checked just before writing.
material_index = p.material_index
if material_index < len(material_colors):
base_color = material_colors[p.material_index]
else:
base_color = (1.0, 1.0, 1.0, 1.0)
l_sta = p.loop_start
l_len = p.loop_total
loops_poly = me_loops[l_sta:l_sta + l_len]
color_poly = me_loops_color[l_sta:l_sta + l_len]
i0 = 0
i1 = 1
# we only write tris now
assert(len(loops_poly) == 3)
for i2 in range(2, l_len):
l0 = loops_poly[i0]
l1 = loops_poly[i1]
l2 = loops_poly[i2]
c0 = color_poly[i0]
c1 = color_poly[i1]
c2 = color_poly[i2]
v0 = me_verts[l0.vertex_index]
v1 = me_verts[l1.vertex_index]
v2 = me_verts[l2.vertex_index]
tris_data.append((
# float depth
p.center.z,
# XY coords.
(
v0.co.xy[:],
v1.co.xy[:],
v2.co.xy[:],
),
# RGBA color.
tuple((
[int(c * b * 255) for c, b in zip(cn.color, base_color)]
for cn in (c0, c1, c2)
)),
))
i1 = i2
return tris_data
def mesh_data_lists_from_objects(ob_parent, ob_children):
tris_data = []
has_parent = False
if ob_children:
parent_matrix = ob_parent.matrix_world.copy()
parent_matrix_inverted = parent_matrix.inverted()
for ob in (ob_parent, *ob_children):
with TriMesh(ob) as me:
if has_parent:
me.transform(parent_matrix_inverted @ ob.matrix_world)
tris_data.extend(
mesh_data_lists_from_mesh(
me,
object_material_colors(ob),
)
)
has_parent = True
return tris_data
def write_mesh_to_py(fh, ob, ob_children):
def float_as_byte(f, axis_range):
assert(axis_range <= 255)
# -1..1 -> 0..255
f = (f + 1.0) * 0.5
f = int(round(f * axis_range))
return min(max(f, 0), axis_range)
def vert_as_byte_pair(v):
return (
float_as_byte(v[0], coords_range_align[0]),
float_as_byte(v[1], coords_range_align[1]),
)
tris_data = mesh_data_lists_from_objects(ob, ob_children)
# 100 levels of Z depth, round to avoid differences from precision error
# causing different computers to write triangles in more or less random order.
tris_data.sort(key=lambda data: int(data[0] * 100))
if 0:
# make as large as we can, keeping alignment
def size_scale_up(size):
assert(size != 0)
while size * 2 <= 255:
size *= 2
return size
coords_range = (
size_scale_up(ob.get("size_x")) or 255,
size_scale_up(ob.get("size_y")) or 255,
)
else:
# disable for now
coords_range = 255, 255
# Pixel size needs to be increased since a pixel needs one extra geom coordinate,
# if we're writing 32 pixel, align verts to 33.
coords_range_align = tuple(min(c + 1, 255) for c in coords_range)
print("Writing:", fh.name, coords_range)
fw = fh.write
# Header (version 0).
fw(b'VCO\x00')
# Width, Height
fw(bytes(coords_range))
# X, Y
fw(bytes((0, 0)))
# Once converted into bytes, the triangle might become zero area
tri_skip = [False] * len(tris_data)
for i, (_, tri_coords, _) in enumerate(tris_data):
tri_coords_as_byte = [vert_as_byte_pair(vert) for vert in tri_coords]
if area_tri_signed_2x_v2(*tri_coords_as_byte) <= 0:
tri_skip[i] = True
continue
for vert_byte in tri_coords_as_byte:
fw(bytes(vert_byte))
for i, (_, _, tri_color) in enumerate(tris_data):
if tri_skip[i]:
continue
for color in tri_color:
fw(bytes(color))
def create_argparse():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--output-dir",
dest="output_dir",
default=".",
type=str,
metavar="DIR",
required=False,
help="Directory to write icons to.",
)
parser.add_argument(
"--group",
dest="group",
default="",
type=str,
metavar="GROUP",
required=False,
help="Group name to export from (otherwise export all objects).",
)
return parser
def main():
import os
import sys
parser = create_argparse()
if "--" in sys.argv:
argv = sys.argv[sys.argv.index("--") + 1:]
else:
argv = []
args = parser.parse_args(argv)
objects = []
if args.group:
group = bpy.data.collections.get(args.group)
if group is None:
print(f"Group {args.group!r} not found!")
return
objects_source = group.objects
del group
else:
objects_source = bpy.data.objects
for ob in objects_source:
# Skip non-mesh objects
if ob.type != 'MESH':
continue
name = ob.name
# Skip copies of objects
if name.rpartition(".")[2].isdigit():
continue
if not ob.data.vertex_colors:
print("Skipping:", name, "(no vertex colors)")
continue
objects.append((name, ob))
objects.sort(key=lambda a: a[0])
objects_children = object_child_map(bpy.data.objects)
for name, ob in objects:
if ob.parent:
continue
filename = os.path.join(args.output_dir, name + ".dat")
with open(filename, 'wb') as fh:
write_mesh_to_py(fh, ob, objects_children.get(ob, []))
if __name__ == "__main__":
main()