tornavis/source/blender/blenkernel/intern/image_gpu.c

1028 lines
34 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "BLI_bitmap.h"
#include "BLI_boxpack_2d.h"
#include "BLI_linklist.h"
#include "BLI_listbase.h"
#include "BLI_threads.h"
#include "DNA_image_types.h"
#include "DNA_userdef_types.h"
#include "IMB_colormanagement.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "BKE_global.h"
#include "BKE_image.h"
#include "BKE_main.h"
#include "GPU_capabilities.h"
#include "GPU_state.h"
#include "GPU_texture.h"
#include "PIL_time.h"
/* Prototypes. */
static void gpu_free_unused_buffers(void);
static void image_free_gpu(Image *ima, const bool immediate);
static void image_free_gpu_limited_scale(Image *ima);
static void image_update_gputexture_ex(
Image *ima, ImageTile *tile, ImBuf *ibuf, int x, int y, int w, int h);
/* Internal structs. */
#define IMA_PARTIAL_REFRESH_TILE_SIZE 256
typedef struct ImagePartialRefresh {
struct ImagePartialRefresh *next, *prev;
int tile_x;
int tile_y;
} ImagePartialRefresh;
/* Is the alpha of the `GPUTexture` for a given image/ibuf premultiplied. */
bool BKE_image_has_gpu_texture_premultiplied_alpha(Image *image, ImBuf *ibuf)
{
if (image) {
/* Render result and compositor output are always premultiplied */
if (ELEM(image->type, IMA_TYPE_R_RESULT, IMA_TYPE_COMPOSITE)) {
return true;
}
/* Generated images use pre multiplied float buffer, but straight alpha for byte buffers. */
if (image->type == IMA_TYPE_UV_TEST && ibuf) {
return ibuf->rect_float != NULL;
}
}
if (ibuf) {
if (ibuf->rect_float) {
return image ? (image->alpha_mode != IMA_ALPHA_STRAIGHT) : false;
}
return image ? (image->alpha_mode == IMA_ALPHA_PREMUL) : true;
}
return false;
}
/* -------------------------------------------------------------------- */
/** \name UDIM gpu texture
* \{ */
static bool is_over_resolution_limit(int w, int h, bool limit_gl_texture_size)
{
return (w > GPU_texture_size_with_limit(w, limit_gl_texture_size) ||
h > GPU_texture_size_with_limit(h, limit_gl_texture_size));
}
static int smaller_power_of_2_limit(int num, bool limit_gl_texture_size)
{
return power_of_2_min_i(GPU_texture_size_with_limit(num, limit_gl_texture_size));
}
static GPUTexture *gpu_texture_create_tile_mapping(
Image *ima, const int multiview_eye, const eImageTextureResolution texture_resolution)
{
const int resolution = (texture_resolution == IMA_TEXTURE_RESOLUTION_LIMITED) ? 1 : 0;
GPUTexture *tilearray = ima->gputexture[TEXTARGET_2D_ARRAY][multiview_eye][resolution];
if (tilearray == NULL) {
return 0;
}
float array_w = GPU_texture_width(tilearray);
float array_h = GPU_texture_height(tilearray);
/* Determine maximum tile number. */
BKE_image_sort_tiles(ima);
ImageTile *last_tile = (ImageTile *)ima->tiles.last;
int max_tile = last_tile->tile_number - 1001;
/* create image */
int width = max_tile + 1;
float *data = (float *)MEM_callocN(width * 8 * sizeof(float), __func__);
for (int i = 0; i < width; i++) {
data[4 * i] = -1.0f;
}
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
int i = tile->tile_number - 1001;
ImageTile_RuntimeTextureSlot *tile_runtime = &tile->runtime.slots[resolution];
data[4 * i] = tile_runtime->tilearray_layer;
float *tile_info = &data[4 * width + 4 * i];
tile_info[0] = tile_runtime->tilearray_offset[0] / array_w;
tile_info[1] = tile_runtime->tilearray_offset[1] / array_h;
tile_info[2] = tile_runtime->tilearray_size[0] / array_w;
tile_info[3] = tile_runtime->tilearray_size[1] / array_h;
}
GPUTexture *tex = GPU_texture_create_1d_array(ima->id.name + 2, width, 2, 1, GPU_RGBA32F, data);
GPU_texture_mipmap_mode(tex, false, false);
MEM_freeN(data);
return tex;
}
typedef struct PackTile {
FixedSizeBoxPack boxpack;
ImageTile *tile;
float pack_score;
} PackTile;
static int compare_packtile(const void *a, const void *b)
{
const PackTile *tile_a = (const PackTile *)a;
const PackTile *tile_b = (const PackTile *)b;
return tile_a->pack_score < tile_b->pack_score;
}
static GPUTexture *gpu_texture_create_tile_array(Image *ima,
ImBuf *main_ibuf,
const eImageTextureResolution texture_resolution)
{
const bool limit_gl_texture_size = texture_resolution == IMA_TEXTURE_RESOLUTION_LIMITED;
const int resolution = texture_resolution == IMA_TEXTURE_RESOLUTION_LIMITED ? 1 : 0;
int arraywidth = 0, arrayheight = 0;
ListBase boxes = {NULL};
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
ImageUser iuser;
BKE_imageuser_default(&iuser);
iuser.tile = tile->tile_number;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, &iuser, NULL);
if (ibuf) {
PackTile *packtile = (PackTile *)MEM_callocN(sizeof(PackTile), __func__);
packtile->tile = tile;
packtile->boxpack.w = ibuf->x;
packtile->boxpack.h = ibuf->y;
if (is_over_resolution_limit(
packtile->boxpack.w, packtile->boxpack.h, limit_gl_texture_size)) {
packtile->boxpack.w = smaller_power_of_2_limit(packtile->boxpack.w, limit_gl_texture_size);
packtile->boxpack.h = smaller_power_of_2_limit(packtile->boxpack.h, limit_gl_texture_size);
}
arraywidth = max_ii(arraywidth, packtile->boxpack.w);
arrayheight = max_ii(arrayheight, packtile->boxpack.h);
/* We sort the tiles by decreasing size, with an additional penalty term
* for high aspect ratios. This improves packing efficiency. */
float w = packtile->boxpack.w, h = packtile->boxpack.h;
packtile->pack_score = max_ff(w, h) / min_ff(w, h) * w * h;
BKE_image_release_ibuf(ima, ibuf, NULL);
BLI_addtail(&boxes, packtile);
}
}
BLI_assert(arraywidth > 0 && arrayheight > 0);
BLI_listbase_sort(&boxes, compare_packtile);
int arraylayers = 0;
/* Keep adding layers until all tiles are packed. */
while (boxes.first != NULL) {
ListBase packed = {NULL};
BLI_box_pack_2d_fixedarea(&boxes, arraywidth, arrayheight, &packed);
BLI_assert(packed.first != NULL);
LISTBASE_FOREACH (PackTile *, packtile, &packed) {
ImageTile *tile = packtile->tile;
ImageTile_RuntimeTextureSlot *tile_runtime = &tile->runtime.slots[resolution];
int *tileoffset = tile_runtime->tilearray_offset;
int *tilesize = tile_runtime->tilearray_size;
tileoffset[0] = packtile->boxpack.x;
tileoffset[1] = packtile->boxpack.y;
tilesize[0] = packtile->boxpack.w;
tilesize[1] = packtile->boxpack.h;
tile_runtime->tilearray_layer = arraylayers;
}
BLI_freelistN(&packed);
arraylayers++;
}
const bool use_high_bitdepth = (ima->flag & IMA_HIGH_BITDEPTH);
/* Create Texture without content. */
GPUTexture *tex = IMB_touch_gpu_texture(
ima->id.name + 2, main_ibuf, arraywidth, arrayheight, arraylayers, use_high_bitdepth);
/* Upload each tile one by one. */
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
ImageTile_RuntimeTextureSlot *tile_runtime = &tile->runtime.slots[resolution];
int tilelayer = tile_runtime->tilearray_layer;
int *tileoffset = tile_runtime->tilearray_offset;
int *tilesize = tile_runtime->tilearray_size;
if (tilesize[0] == 0 || tilesize[1] == 0) {
continue;
}
ImageUser iuser;
BKE_imageuser_default(&iuser);
iuser.tile = tile->tile_number;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, &iuser, NULL);
if (ibuf) {
const bool store_premultiplied = BKE_image_has_gpu_texture_premultiplied_alpha(ima, ibuf);
IMB_update_gpu_texture_sub(tex,
ibuf,
UNPACK2(tileoffset),
tilelayer,
UNPACK2(tilesize),
use_high_bitdepth,
store_premultiplied);
}
BKE_image_release_ibuf(ima, ibuf, NULL);
}
if (GPU_mipmap_enabled()) {
GPU_texture_generate_mipmap(tex);
GPU_texture_mipmap_mode(tex, true, true);
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
}
else {
GPU_texture_mipmap_mode(tex, false, true);
}
return tex;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Regular gpu texture
* \{ */
static bool image_max_resolution_texture_fits_in_limited_scale(Image *ima,
eGPUTextureTarget textarget,
const int multiview_eye)
{
BLI_assert_msg(U.glreslimit != 0,
"limited scale function called without limited scale being set.");
GPUTexture *max_resolution_texture =
ima->gputexture[textarget][multiview_eye][IMA_TEXTURE_RESOLUTION_FULL];
if (max_resolution_texture && GPU_texture_width(max_resolution_texture) <= U.glreslimit &&
GPU_texture_height(max_resolution_texture) <= U.glreslimit) {
return true;
}
return false;
}
static GPUTexture **get_image_gpu_texture_ptr(Image *ima,
eGPUTextureTarget textarget,
const int multiview_eye,
const eImageTextureResolution texture_resolution)
{
const bool in_range = (textarget >= 0) && (textarget < TEXTARGET_COUNT);
BLI_assert(in_range);
BLI_assert(multiview_eye == 0 || multiview_eye == 1);
const int resolution = (texture_resolution == IMA_TEXTURE_RESOLUTION_LIMITED) ? 1 : 0;
if (in_range) {
return &(ima->gputexture[textarget][multiview_eye][resolution]);
}
return NULL;
}
static GPUTexture *image_gpu_texture_error_create(eGPUTextureTarget textarget)
{
fprintf(stderr, "GPUTexture: Blender Texture Not Loaded!\n");
switch (textarget) {
case TEXTARGET_2D_ARRAY:
return GPU_texture_create_error(2, true);
case TEXTARGET_TILE_MAPPING:
return GPU_texture_create_error(1, true);
case TEXTARGET_2D:
default:
return GPU_texture_create_error(2, false);
}
}
static void image_update_reusable_textures(Image *ima,
eGPUTextureTarget textarget,
const int multiview_eye)
{
if ((ima->gpuflag & IMA_GPU_HAS_LIMITED_SCALE_TEXTURES) == 0) {
return;
}
if (ELEM(textarget, TEXTARGET_2D, TEXTARGET_2D_ARRAY)) {
if (image_max_resolution_texture_fits_in_limited_scale(ima, textarget, multiview_eye)) {
image_free_gpu_limited_scale(ima);
}
}
}
static GPUTexture *image_get_gpu_texture(Image *ima,
ImageUser *iuser,
ImBuf *ibuf,
eGPUTextureTarget textarget)
{
if (ima == NULL) {
return NULL;
}
/* Free any unused GPU textures, since we know we are in a thread with OpenGL
* context and might as well ensure we have as much space free as possible. */
gpu_free_unused_buffers();
/* Free GPU textures when requesting a different render pass/layer.
* When `iuser` isn't set (texture painting single image mode) we assume that
* the current `pass` and `layer` should be 0. */
short requested_pass = iuser ? iuser->pass : 0;
short requested_layer = iuser ? iuser->layer : 0;
short requested_view = iuser ? iuser->multi_index : 0;
/* There is room for 2 multiview textures. When a higher number is requested we should always
* target the first view slot. This is fine as multi view images aren't used together. */
if (requested_view < 2) {
requested_view = 0;
}
if (ima->gpu_pass != requested_pass || ima->gpu_layer != requested_layer ||
ima->gpu_view != requested_view) {
ima->gpu_pass = requested_pass;
ima->gpu_layer = requested_layer;
ima->gpu_view = requested_view;
ima->gpuflag |= IMA_GPU_REFRESH;
}
#undef GPU_FLAGS_TO_CHECK
/* Check if image has been updated and tagged to be updated (full or partial). */
ImageTile *tile = BKE_image_get_tile(ima, 0);
if (((ima->gpuflag & IMA_GPU_REFRESH) != 0) ||
((ibuf == NULL || tile == NULL || !tile->ok) &&
((ima->gpuflag & IMA_GPU_PARTIAL_REFRESH) != 0))) {
image_free_gpu(ima, true);
BLI_freelistN(&ima->gpu_refresh_areas);
ima->gpuflag &= ~(IMA_GPU_REFRESH | IMA_GPU_PARTIAL_REFRESH);
}
else if (ima->gpuflag & IMA_GPU_PARTIAL_REFRESH) {
BLI_assert(ibuf);
BLI_assert(tile && tile->ok);
ImagePartialRefresh *refresh_area;
while ((refresh_area = BLI_pophead(&ima->gpu_refresh_areas))) {
const int tile_offset_x = refresh_area->tile_x * IMA_PARTIAL_REFRESH_TILE_SIZE;
const int tile_offset_y = refresh_area->tile_y * IMA_PARTIAL_REFRESH_TILE_SIZE;
const int tile_width = MIN2(IMA_PARTIAL_REFRESH_TILE_SIZE, ibuf->x - tile_offset_x);
const int tile_height = MIN2(IMA_PARTIAL_REFRESH_TILE_SIZE, ibuf->y - tile_offset_y);
image_update_gputexture_ex(
ima, tile, ibuf, tile_offset_x, tile_offset_y, tile_width, tile_height);
MEM_freeN(refresh_area);
}
ima->gpuflag &= ~IMA_GPU_PARTIAL_REFRESH;
}
/* Tag as in active use for garbage collector. */
BKE_image_tag_time(ima);
/* Test if we already have a texture. */
int current_view = iuser ? iuser->multi_index : 0;
if (current_view >= 2) {
current_view = 0;
}
const bool limit_resolution = U.glreslimit != 0 &&
((iuser && (iuser->flag & IMA_SHOW_MAX_RESOLUTION) == 0) ||
(iuser == NULL)) &&
((ima->gpuflag & IMA_GPU_REUSE_MAX_RESOLUTION) == 0);
const eImageTextureResolution texture_resolution = limit_resolution ?
IMA_TEXTURE_RESOLUTION_LIMITED :
IMA_TEXTURE_RESOLUTION_FULL;
GPUTexture **tex = get_image_gpu_texture_ptr(ima, textarget, current_view, texture_resolution);
if (*tex) {
return *tex;
}
/* Check if we have a valid image. If not, we return a dummy
* texture with zero bind-code so we don't keep trying. */
if (tile == NULL || tile->ok == 0) {
*tex = image_gpu_texture_error_create(textarget);
return *tex;
}
/* check if we have a valid image buffer */
ImBuf *ibuf_intern = ibuf;
if (ibuf_intern == NULL) {
ibuf_intern = BKE_image_acquire_ibuf(ima, iuser, NULL);
if (ibuf_intern == NULL) {
*tex = image_gpu_texture_error_create(textarget);
return *tex;
}
}
if (textarget == TEXTARGET_2D_ARRAY) {
*tex = gpu_texture_create_tile_array(ima, ibuf_intern, texture_resolution);
}
else if (textarget == TEXTARGET_TILE_MAPPING) {
*tex = gpu_texture_create_tile_mapping(
ima, iuser ? iuser->multiview_eye : 0, texture_resolution);
}
else {
const bool use_high_bitdepth = (ima->flag & IMA_HIGH_BITDEPTH);
const bool store_premultiplied = BKE_image_has_gpu_texture_premultiplied_alpha(ima,
ibuf_intern);
*tex = IMB_create_gpu_texture(
ima->id.name + 2, ibuf_intern, use_high_bitdepth, store_premultiplied, limit_resolution);
if (*tex) {
GPU_texture_wrap_mode(*tex, true, false);
if (GPU_mipmap_enabled()) {
GPU_texture_generate_mipmap(*tex);
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
GPU_texture_mipmap_mode(*tex, true, true);
}
else {
GPU_texture_mipmap_mode(*tex, false, true);
}
}
}
switch (texture_resolution) {
case IMA_TEXTURE_RESOLUTION_LIMITED:
ima->gpuflag |= IMA_GPU_HAS_LIMITED_SCALE_TEXTURES;
break;
case IMA_TEXTURE_RESOLUTION_FULL:
image_update_reusable_textures(ima, textarget, current_view);
break;
case IMA_TEXTURE_RESOLUTION_LEN:
BLI_assert_unreachable();
break;
}
/* if `ibuf` was given, we don't own the `ibuf_intern` */
if (ibuf == NULL) {
BKE_image_release_ibuf(ima, ibuf_intern, NULL);
}
if (*tex) {
GPU_texture_orig_size_set(*tex, ibuf_intern->x, ibuf_intern->y);
}
return *tex;
}
GPUTexture *BKE_image_get_gpu_texture(Image *image, ImageUser *iuser, ImBuf *ibuf)
{
return image_get_gpu_texture(image, iuser, ibuf, TEXTARGET_2D);
}
GPUTexture *BKE_image_get_gpu_tiles(Image *image, ImageUser *iuser, ImBuf *ibuf)
{
return image_get_gpu_texture(image, iuser, ibuf, TEXTARGET_2D_ARRAY);
}
GPUTexture *BKE_image_get_gpu_tilemap(Image *image, ImageUser *iuser, ImBuf *ibuf)
{
return image_get_gpu_texture(image, iuser, ibuf, TEXTARGET_TILE_MAPPING);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Delayed GPU texture free
*
* Image datablocks can be deleted by any thread, but there may not be any active OpenGL context.
* In that case we push them into a queue and free the buffers later.
* \{ */
static LinkNode *gpu_texture_free_queue = NULL;
static ThreadMutex gpu_texture_queue_mutex = BLI_MUTEX_INITIALIZER;
static void gpu_free_unused_buffers(void)
{
if (gpu_texture_free_queue == NULL) {
return;
}
BLI_mutex_lock(&gpu_texture_queue_mutex);
while (gpu_texture_free_queue != NULL) {
GPUTexture *tex = BLI_linklist_pop(&gpu_texture_free_queue);
GPU_texture_free(tex);
}
BLI_mutex_unlock(&gpu_texture_queue_mutex);
}
void BKE_image_free_unused_gpu_textures()
{
if (BLI_thread_is_main()) {
gpu_free_unused_buffers();
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Deletion
* \{ */
static void image_free_gpu(Image *ima, const bool immediate)
{
for (int eye = 0; eye < 2; eye++) {
for (int i = 0; i < TEXTARGET_COUNT; i++) {
for (int resolution = 0; resolution < IMA_TEXTURE_RESOLUTION_LEN; resolution++) {
if (ima->gputexture[i][eye][resolution] != NULL) {
if (immediate) {
GPU_texture_free(ima->gputexture[i][eye][resolution]);
}
else {
BLI_mutex_lock(&gpu_texture_queue_mutex);
BLI_linklist_prepend(&gpu_texture_free_queue, ima->gputexture[i][eye][resolution]);
BLI_mutex_unlock(&gpu_texture_queue_mutex);
}
ima->gputexture[i][eye][resolution] = NULL;
}
}
}
}
ima->gpuflag &= ~(IMA_GPU_MIPMAP_COMPLETE | IMA_GPU_HAS_LIMITED_SCALE_TEXTURES);
}
static void image_free_gpu_limited_scale(Image *ima)
{
const eImageTextureResolution resolution = IMA_TEXTURE_RESOLUTION_LIMITED;
for (int eye = 0; eye < 2; eye++) {
for (int i = 0; i < TEXTARGET_COUNT; i++) {
if (ima->gputexture[i][eye][resolution] != NULL) {
GPU_texture_free(ima->gputexture[i][eye][resolution]);
ima->gputexture[i][eye][resolution] = NULL;
}
}
}
ima->gpuflag &= ~(IMA_GPU_MIPMAP_COMPLETE | IMA_GPU_HAS_LIMITED_SCALE_TEXTURES);
}
void BKE_image_free_gputextures(Image *ima)
{
image_free_gpu(ima, BLI_thread_is_main());
}
void BKE_image_free_all_gputextures(Main *bmain)
{
if (bmain) {
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
BKE_image_free_gputextures(ima);
}
}
}
/* same as above but only free animated images */
void BKE_image_free_anim_gputextures(Main *bmain)
{
if (bmain) {
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
if (BKE_image_is_animated(ima)) {
BKE_image_free_gputextures(ima);
}
}
}
}
void BKE_image_free_old_gputextures(Main *bmain)
{
static int lasttime = 0;
int ctime = (int)PIL_check_seconds_timer();
/*
* Run garbage collector once for every collecting period of time
* if textimeout is 0, that's the option to NOT run the collector
*/
if (U.textimeout == 0 || ctime % U.texcollectrate || ctime == lasttime) {
return;
}
/* of course not! */
if (G.is_rendering) {
return;
}
lasttime = ctime;
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
if ((ima->flag & IMA_NOCOLLECT) == 0 && ctime - ima->lastused > U.textimeout) {
/* If it's in GL memory, deallocate and set time tag to current time
* This gives textures a "second chance" to be used before dying. */
if (BKE_image_has_opengl_texture(ima)) {
BKE_image_free_gputextures(ima);
ima->lastused = ctime;
}
/* Otherwise, just kill the buffers */
else {
BKE_image_free_buffers(ima);
}
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Paint Update
* \{ */
static ImBuf *update_do_scale(uchar *rect,
float *rect_float,
int *x,
int *y,
int *w,
int *h,
int limit_w,
int limit_h,
int full_w,
int full_h)
{
/* Partial update with scaling. */
float xratio = limit_w / (float)full_w;
float yratio = limit_h / (float)full_h;
int part_w = *w, part_h = *h;
/* Find sub coordinates in scaled image. Take ceiling because we will be
* losing 1 pixel due to rounding errors in x,y. */
*x *= xratio;
*y *= yratio;
*w = (int)ceil(xratio * (*w));
*h = (int)ceil(yratio * (*h));
/* ...but take back if we are over the limit! */
if (*x + *w > limit_w) {
(*w)--;
}
if (*y + *h > limit_h) {
(*h)--;
}
/* Scale pixels. */
ImBuf *ibuf = IMB_allocFromBuffer((uint *)rect, rect_float, part_w, part_h, 4);
IMB_scaleImBuf(ibuf, *w, *h);
return ibuf;
}
static void gpu_texture_update_scaled(GPUTexture *tex,
uchar *rect,
float *rect_float,
int full_w,
int full_h,
int x,
int y,
int layer,
const int *tile_offset,
const int *tile_size,
int w,
int h)
{
ImBuf *ibuf;
if (layer > -1) {
ibuf = update_do_scale(
rect, rect_float, &x, &y, &w, &h, tile_size[0], tile_size[1], full_w, full_h);
/* Shift to account for tile packing. */
x += tile_offset[0];
y += tile_offset[1];
}
else {
/* Partial update with scaling. */
int limit_w = GPU_texture_width(tex);
int limit_h = GPU_texture_height(tex);
ibuf = update_do_scale(rect, rect_float, &x, &y, &w, &h, limit_w, limit_h, full_w, full_h);
}
void *data = (ibuf->rect_float) ? (void *)(ibuf->rect_float) : (void *)(ibuf->rect);
eGPUDataFormat data_format = (ibuf->rect_float) ? GPU_DATA_FLOAT : GPU_DATA_UBYTE;
GPU_texture_update_sub(tex, data_format, data, x, y, layer, w, h, 1);
IMB_freeImBuf(ibuf);
}
static void gpu_texture_update_unscaled(GPUTexture *tex,
uchar *rect,
float *rect_float,
int x,
int y,
int layer,
const int tile_offset[2],
int w,
int h,
int tex_stride,
int tex_offset)
{
if (layer > -1) {
/* Shift to account for tile packing. */
x += tile_offset[0];
y += tile_offset[1];
}
void *data = (rect_float) ? (void *)(rect_float + tex_offset) : (void *)(rect + tex_offset);
eGPUDataFormat data_format = (rect_float) ? GPU_DATA_FLOAT : GPU_DATA_UBYTE;
/* Partial update without scaling. Stride and offset are used to copy only a
* subset of a possible larger buffer than what we are updating. */
GPU_unpack_row_length_set(tex_stride);
GPU_texture_update_sub(tex, data_format, data, x, y, layer, w, h, 1);
/* Restore default. */
GPU_unpack_row_length_set(0);
}
static void gpu_texture_update_from_ibuf(GPUTexture *tex,
Image *ima,
ImBuf *ibuf,
ImageTile *tile,
int x,
int y,
int w,
int h,
eImageTextureResolution texture_resolution)
{
const int resolution = texture_resolution == IMA_TEXTURE_RESOLUTION_LIMITED ? 1 : 0;
bool scaled;
if (tile != NULL) {
ImageTile_RuntimeTextureSlot *tile_runtime = &tile->runtime.slots[resolution];
int *tilesize = tile_runtime->tilearray_size;
scaled = (ibuf->x != tilesize[0]) || (ibuf->y != tilesize[1]);
}
else {
scaled = (GPU_texture_width(tex) != ibuf->x) || (GPU_texture_height(tex) != ibuf->y);
}
if (scaled) {
/* Extra padding to account for bleed from neighboring pixels. */
const int padding = 4;
const int xmax = min_ii(x + w + padding, ibuf->x);
const int ymax = min_ii(y + h + padding, ibuf->y);
x = max_ii(x - padding, 0);
y = max_ii(y - padding, 0);
w = xmax - x;
h = ymax - y;
}
/* Get texture data pointers. */
float *rect_float = ibuf->rect_float;
uchar *rect = (uchar *)ibuf->rect;
int tex_stride = ibuf->x;
int tex_offset = ibuf->channels * (y * ibuf->x + x);
const bool store_premultiplied = BKE_image_has_gpu_texture_premultiplied_alpha(ima, ibuf);
if (rect_float == NULL) {
/* Byte pixels. */
if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) {
const bool compress_as_srgb = !IMB_colormanagement_space_is_scene_linear(
ibuf->rect_colorspace);
rect = (uchar *)MEM_mallocN(sizeof(uchar[4]) * w * h, __func__);
if (rect == NULL) {
return;
}
tex_stride = w;
tex_offset = 0;
/* Convert to scene linear with sRGB compression, and premultiplied for
* correct texture interpolation. */
IMB_colormanagement_imbuf_to_byte_texture(
rect, x, y, w, h, ibuf, compress_as_srgb, store_premultiplied);
}
}
else {
/* Float pixels. */
if (ibuf->channels != 4 || scaled || !store_premultiplied) {
rect_float = (float *)MEM_mallocN(sizeof(float[4]) * w * h, __func__);
if (rect_float == NULL) {
return;
}
tex_stride = w;
tex_offset = 0;
IMB_colormanagement_imbuf_to_float_texture(
rect_float, x, y, w, h, ibuf, store_premultiplied);
}
}
if (scaled) {
/* Slower update where we first have to scale the input pixels. */
if (tile != NULL) {
ImageTile_RuntimeTextureSlot *tile_runtime = &tile->runtime.slots[resolution];
int *tileoffset = tile_runtime->tilearray_offset;
int *tilesize = tile_runtime->tilearray_size;
int tilelayer = tile_runtime->tilearray_layer;
gpu_texture_update_scaled(
tex, rect, rect_float, ibuf->x, ibuf->y, x, y, tilelayer, tileoffset, tilesize, w, h);
}
else {
gpu_texture_update_scaled(
tex, rect, rect_float, ibuf->x, ibuf->y, x, y, -1, NULL, NULL, w, h);
}
}
else {
/* Fast update at same resolution. */
if (tile != NULL) {
ImageTile_RuntimeTextureSlot *tile_runtime = &tile->runtime.slots[resolution];
int *tileoffset = tile_runtime->tilearray_offset;
int tilelayer = tile_runtime->tilearray_layer;
gpu_texture_update_unscaled(
tex, rect, rect_float, x, y, tilelayer, tileoffset, w, h, tex_stride, tex_offset);
}
else {
gpu_texture_update_unscaled(
tex, rect, rect_float, x, y, -1, NULL, w, h, tex_stride, tex_offset);
}
}
/* Free buffers if needed. */
if (rect && rect != (uchar *)ibuf->rect) {
MEM_freeN(rect);
}
if (rect_float && rect_float != ibuf->rect_float) {
MEM_freeN(rect_float);
}
if (GPU_mipmap_enabled()) {
GPU_texture_generate_mipmap(tex);
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
GPU_texture_unbind(tex);
}
static void image_update_gputexture_ex(
Image *ima, ImageTile *tile, ImBuf *ibuf, int x, int y, int w, int h)
{
const int eye = 0;
for (int resolution = 0; resolution < IMA_TEXTURE_RESOLUTION_LEN; resolution++) {
GPUTexture *tex = ima->gputexture[TEXTARGET_2D][eye][resolution];
eImageTextureResolution texture_resolution = resolution;
/* Check if we need to update the main gputexture. */
if (tex != NULL && tile == ima->tiles.first) {
gpu_texture_update_from_ibuf(tex, ima, ibuf, NULL, x, y, w, h, texture_resolution);
}
/* Check if we need to update the array gputexture. */
tex = ima->gputexture[TEXTARGET_2D_ARRAY][eye][resolution];
if (tex != NULL) {
gpu_texture_update_from_ibuf(tex, ima, ibuf, tile, x, y, w, h, texture_resolution);
}
}
}
/* Partial update of texture for texture painting. This is often much
* quicker than fully updating the texture for high resolution images. */
void BKE_image_update_gputexture(Image *ima, ImageUser *iuser, int x, int y, int w, int h)
{
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL);
ImageTile *tile = BKE_image_get_tile_from_iuser(ima, iuser);
if ((ibuf == NULL) || (w == 0) || (h == 0)) {
/* Full reload of texture. */
BKE_image_free_gputextures(ima);
}
image_update_gputexture_ex(ima, tile, ibuf, x, y, w, h);
BKE_image_release_ibuf(ima, ibuf, NULL);
}
/* Mark areas on the GPUTexture that needs to be updated. The areas are marked in chunks.
* The next time the GPUTexture is used these tiles will be refreshes. This saves time
* when writing to the same place multiple times This happens for during foreground
* rendering. */
void BKE_image_update_gputexture_delayed(
struct Image *ima, struct ImBuf *ibuf, int x, int y, int w, int h)
{
/* Check for full refresh. */
if (ibuf && x == 0 && y == 0 && w == ibuf->x && h == ibuf->y) {
ima->gpuflag |= IMA_GPU_REFRESH;
}
/* Check if we can promote partial refresh to a full refresh. */
if ((ima->gpuflag & (IMA_GPU_REFRESH | IMA_GPU_PARTIAL_REFRESH)) ==
(IMA_GPU_REFRESH | IMA_GPU_PARTIAL_REFRESH)) {
ima->gpuflag &= ~IMA_GPU_PARTIAL_REFRESH;
BLI_freelistN(&ima->gpu_refresh_areas);
}
/* Image is already marked for complete refresh. */
if (ima->gpuflag & IMA_GPU_REFRESH) {
return;
}
/* Schedule the tiles that covers the requested area. */
const int start_tile_x = x / IMA_PARTIAL_REFRESH_TILE_SIZE;
const int start_tile_y = y / IMA_PARTIAL_REFRESH_TILE_SIZE;
const int end_tile_x = (x + w) / IMA_PARTIAL_REFRESH_TILE_SIZE;
const int end_tile_y = (y + h) / IMA_PARTIAL_REFRESH_TILE_SIZE;
const int num_tiles_x = (end_tile_x + 1) - (start_tile_x);
const int num_tiles_y = (end_tile_y + 1) - (start_tile_y);
const int num_tiles = num_tiles_x * num_tiles_y;
const bool allocate_on_heap = BLI_BITMAP_SIZE(num_tiles) > 16;
BLI_bitmap *requested_tiles = NULL;
if (allocate_on_heap) {
requested_tiles = BLI_BITMAP_NEW(num_tiles, __func__);
}
else {
requested_tiles = BLI_BITMAP_NEW_ALLOCA(num_tiles);
}
/* Mark the tiles that have already been requested. They don't need to be requested again. */
int num_tiles_not_scheduled = num_tiles;
LISTBASE_FOREACH (ImagePartialRefresh *, area, &ima->gpu_refresh_areas) {
if (area->tile_x < start_tile_x || area->tile_x > end_tile_x || area->tile_y < start_tile_y ||
area->tile_y > end_tile_y) {
continue;
}
int requested_tile_index = (area->tile_x - start_tile_x) +
(area->tile_y - start_tile_y) * num_tiles_x;
BLI_BITMAP_ENABLE(requested_tiles, requested_tile_index);
num_tiles_not_scheduled--;
if (num_tiles_not_scheduled == 0) {
break;
}
}
/* Schedule the tiles that aren't requested yet. */
if (num_tiles_not_scheduled) {
int tile_index = 0;
for (int tile_y = start_tile_y; tile_y <= end_tile_y; tile_y++) {
for (int tile_x = start_tile_x; tile_x <= end_tile_x; tile_x++) {
if (!BLI_BITMAP_TEST_BOOL(requested_tiles, tile_index)) {
ImagePartialRefresh *area = MEM_mallocN(sizeof(ImagePartialRefresh), __func__);
area->tile_x = tile_x;
area->tile_y = tile_y;
BLI_addtail(&ima->gpu_refresh_areas, area);
}
tile_index++;
}
}
ima->gpuflag |= IMA_GPU_PARTIAL_REFRESH;
}
if (allocate_on_heap) {
MEM_freeN(requested_tiles);
}
}
/* these two functions are called on entering and exiting texture paint mode,
* temporary disabling/enabling mipmapping on all images for quick texture
* updates with glTexSubImage2D. images that didn't change don't have to be
* re-uploaded to OpenGL */
void BKE_image_paint_set_mipmap(Main *bmain, bool mipmap)
{
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
if (BKE_image_has_opengl_texture(ima)) {
if (ima->gpuflag & IMA_GPU_MIPMAP_COMPLETE) {
for (int a = 0; a < TEXTARGET_COUNT; a++) {
if (ELEM(a, TEXTARGET_2D, TEXTARGET_2D_ARRAY)) {
for (int eye = 0; eye < 2; eye++) {
for (int resolution = 0; resolution < IMA_TEXTURE_RESOLUTION_LEN; resolution++) {
GPUTexture *tex = ima->gputexture[a][eye][resolution];
if (tex != NULL) {
GPU_texture_mipmap_mode(tex, mipmap, true);
}
}
}
}
}
}
else {
BKE_image_free_gputextures(ima);
}
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
}
}
/** \} */