tornavis/source/blender/blenkernel/intern/subdiv_mesh.c

1202 lines
48 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2018 Blender Foundation. All rights reserved. */
/** \file
* \ingroup bke
*/
#include "atomic_ops.h"
#include "DNA_key_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "BLI_alloca.h"
#include "BLI_bitmap.h"
#include "BLI_math_vector.h"
#include "BKE_customdata.h"
#include "BKE_key.h"
#include "BKE_mesh.h"
#include "BKE_subdiv.h"
#include "BKE_subdiv_eval.h"
#include "BKE_subdiv_foreach.h"
#include "BKE_subdiv_mesh.h"
#include "MEM_guardedalloc.h"
/* -------------------------------------------------------------------- */
/** \name Subdivision Context
* \{ */
typedef struct SubdivMeshContext {
const SubdivToMeshSettings *settings;
const Mesh *coarse_mesh;
Subdiv *subdiv;
Mesh *subdiv_mesh;
/* Cached custom data arrays for faster access. */
int *vert_origindex;
int *edge_origindex;
int *loop_origindex;
int *poly_origindex;
/* UV layers interpolation. */
int num_uv_layers;
MLoopUV *uv_layers[MAX_MTFACE];
/* Original coordinates (ORCO) interpolation. */
float (*orco)[3];
float (*cloth_orco)[3];
/* Per-subdivided vertex counter of averaged values. */
int *accumulated_counters;
bool have_displacement;
} SubdivMeshContext;
static void subdiv_mesh_ctx_cache_uv_layers(SubdivMeshContext *ctx)
{
Mesh *subdiv_mesh = ctx->subdiv_mesh;
ctx->num_uv_layers = CustomData_number_of_layers(&subdiv_mesh->ldata, CD_MLOOPUV);
for (int layer_index = 0; layer_index < ctx->num_uv_layers; layer_index++) {
ctx->uv_layers[layer_index] = CustomData_get_layer_n(
&subdiv_mesh->ldata, CD_MLOOPUV, layer_index);
}
}
static void subdiv_mesh_ctx_cache_custom_data_layers(SubdivMeshContext *ctx)
{
Mesh *subdiv_mesh = ctx->subdiv_mesh;
/* Pointers to original indices layers. */
ctx->vert_origindex = CustomData_get_layer(&subdiv_mesh->vdata, CD_ORIGINDEX);
ctx->edge_origindex = CustomData_get_layer(&subdiv_mesh->edata, CD_ORIGINDEX);
ctx->loop_origindex = CustomData_get_layer(&subdiv_mesh->ldata, CD_ORIGINDEX);
ctx->poly_origindex = CustomData_get_layer(&subdiv_mesh->pdata, CD_ORIGINDEX);
/* UV layers interpolation. */
subdiv_mesh_ctx_cache_uv_layers(ctx);
/* Orco interpolation. */
ctx->orco = CustomData_get_layer(&subdiv_mesh->vdata, CD_ORCO);
ctx->cloth_orco = CustomData_get_layer(&subdiv_mesh->vdata, CD_CLOTH_ORCO);
}
static void subdiv_mesh_prepare_accumulator(SubdivMeshContext *ctx, int num_vertices)
{
if (!ctx->have_displacement) {
return;
}
ctx->accumulated_counters = MEM_calloc_arrayN(
num_vertices, sizeof(*ctx->accumulated_counters), "subdiv accumulated counters");
}
static void subdiv_mesh_context_free(SubdivMeshContext *ctx)
{
MEM_SAFE_FREE(ctx->accumulated_counters);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Loop custom data copy helpers
* \{ */
typedef struct LoopsOfPtex {
/* First loop of the ptex, starts at ptex (0, 0) and goes in u direction. */
const MLoop *first_loop;
/* Last loop of the ptex, starts at ptex (0, 0) and goes in v direction. */
const MLoop *last_loop;
/* For quad coarse faces only. */
const MLoop *second_loop;
const MLoop *third_loop;
} LoopsOfPtex;
static void loops_of_ptex_get(const SubdivMeshContext *ctx,
LoopsOfPtex *loops_of_ptex,
const MPoly *coarse_poly,
const int ptex_of_poly_index)
{
const MLoop *coarse_mloop = ctx->coarse_mesh->mloop;
const int first_ptex_loop_index = coarse_poly->loopstart + ptex_of_poly_index;
/* Loop which look in the (opposite) V direction of the current
* ptex face.
*
* TODO(sergey): Get rid of using module on every iteration. */
const int last_ptex_loop_index = coarse_poly->loopstart +
(ptex_of_poly_index + coarse_poly->totloop - 1) %
coarse_poly->totloop;
loops_of_ptex->first_loop = &coarse_mloop[first_ptex_loop_index];
loops_of_ptex->last_loop = &coarse_mloop[last_ptex_loop_index];
if (coarse_poly->totloop == 4) {
loops_of_ptex->second_loop = loops_of_ptex->first_loop + 1;
loops_of_ptex->third_loop = loops_of_ptex->first_loop + 2;
}
else {
loops_of_ptex->second_loop = NULL;
loops_of_ptex->third_loop = NULL;
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vertex custom data interpolation helpers
* \{ */
/* TODO(sergey): Somehow de-duplicate with loops storage, without too much
* exception cases all over the code. */
typedef struct VerticesForInterpolation {
/* This field points to a vertex data which is to be used for interpolation.
* The idea is to avoid unnecessary allocations for regular faces, where
* we can simply use corner vertices. */
const CustomData *vertex_data;
/* Vertices data calculated for ptex corners. There are always 4 elements
* in this custom data, aligned the following way:
*
* index 0 -> uv (0, 0)
* index 1 -> uv (0, 1)
* index 2 -> uv (1, 1)
* index 3 -> uv (1, 0)
*
* Is allocated for non-regular faces (triangles and n-gons). */
CustomData vertex_data_storage;
bool vertex_data_storage_allocated;
/* Indices within vertex_data to interpolate for. The indices are aligned
* with uv coordinates in a similar way as indices in loop_data_storage. */
int vertex_indices[4];
} VerticesForInterpolation;
static void vertex_interpolation_init(const SubdivMeshContext *ctx,
VerticesForInterpolation *vertex_interpolation,
const MPoly *coarse_poly)
{
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MLoop *coarse_mloop = coarse_mesh->mloop;
if (coarse_poly->totloop == 4) {
vertex_interpolation->vertex_data = &coarse_mesh->vdata;
vertex_interpolation->vertex_indices[0] = coarse_mloop[coarse_poly->loopstart + 0].v;
vertex_interpolation->vertex_indices[1] = coarse_mloop[coarse_poly->loopstart + 1].v;
vertex_interpolation->vertex_indices[2] = coarse_mloop[coarse_poly->loopstart + 2].v;
vertex_interpolation->vertex_indices[3] = coarse_mloop[coarse_poly->loopstart + 3].v;
vertex_interpolation->vertex_data_storage_allocated = false;
}
else {
vertex_interpolation->vertex_data = &vertex_interpolation->vertex_data_storage;
/* Allocate storage for loops corresponding to ptex corners. */
CustomData_copy(&ctx->coarse_mesh->vdata,
&vertex_interpolation->vertex_data_storage,
CD_MASK_EVERYTHING.vmask,
CD_CALLOC,
4);
/* Initialize indices. */
vertex_interpolation->vertex_indices[0] = 0;
vertex_interpolation->vertex_indices[1] = 1;
vertex_interpolation->vertex_indices[2] = 2;
vertex_interpolation->vertex_indices[3] = 3;
vertex_interpolation->vertex_data_storage_allocated = true;
/* Interpolate center of poly right away, it stays unchanged for all
* ptex faces. */
const float weight = 1.0f / (float)coarse_poly->totloop;
float *weights = BLI_array_alloca(weights, coarse_poly->totloop);
int *indices = BLI_array_alloca(indices, coarse_poly->totloop);
for (int i = 0; i < coarse_poly->totloop; i++) {
weights[i] = weight;
indices[i] = coarse_mloop[coarse_poly->loopstart + i].v;
}
CustomData_interp(&coarse_mesh->vdata,
&vertex_interpolation->vertex_data_storage,
indices,
weights,
NULL,
coarse_poly->totloop,
2);
}
}
static void vertex_interpolation_from_corner(const SubdivMeshContext *ctx,
VerticesForInterpolation *vertex_interpolation,
const MPoly *coarse_poly,
const int corner)
{
if (coarse_poly->totloop == 4) {
/* Nothing to do, all indices and data is already assigned. */
}
else {
const CustomData *vertex_data = &ctx->coarse_mesh->vdata;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MLoop *coarse_mloop = coarse_mesh->mloop;
LoopsOfPtex loops_of_ptex;
loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, corner);
/* Ptex face corner corresponds to a poly loop with same index. */
CustomData_copy_data(vertex_data,
&vertex_interpolation->vertex_data_storage,
coarse_mloop[coarse_poly->loopstart + corner].v,
0,
1);
/* Interpolate remaining ptex face corners, which hits loops
* middle points.
*
* TODO(sergey): Re-use one of interpolation results from previous
* iteration. */
const float weights[2] = {0.5f, 0.5f};
const int first_loop_index = loops_of_ptex.first_loop - coarse_mloop;
const int last_loop_index = loops_of_ptex.last_loop - coarse_mloop;
const int first_indices[2] = {
coarse_mloop[first_loop_index].v,
coarse_mloop[coarse_poly->loopstart +
(first_loop_index - coarse_poly->loopstart + 1) % coarse_poly->totloop]
.v};
const int last_indices[2] = {
coarse_mloop[first_loop_index].v,
coarse_mloop[last_loop_index].v,
};
CustomData_interp(vertex_data,
&vertex_interpolation->vertex_data_storage,
first_indices,
weights,
NULL,
2,
1);
CustomData_interp(vertex_data,
&vertex_interpolation->vertex_data_storage,
last_indices,
weights,
NULL,
2,
3);
}
}
static void vertex_interpolation_end(VerticesForInterpolation *vertex_interpolation)
{
if (vertex_interpolation->vertex_data_storage_allocated) {
CustomData_free(&vertex_interpolation->vertex_data_storage, 4);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Loop custom data interpolation helpers
* \{ */
typedef struct LoopsForInterpolation {
/* This field points to a loop data which is to be used for interpolation.
* The idea is to avoid unnecessary allocations for regular faces, where
* we can simply interpolate corner vertices. */
const CustomData *loop_data;
/* Loops data calculated for ptex corners. There are always 4 elements
* in this custom data, aligned the following way:
*
* index 0 -> uv (0, 0)
* index 1 -> uv (0, 1)
* index 2 -> uv (1, 1)
* index 3 -> uv (1, 0)
*
* Is allocated for non-regular faces (triangles and n-gons). */
CustomData loop_data_storage;
bool loop_data_storage_allocated;
/* Infices within loop_data to interpolate for. The indices are aligned with
* uv coordinates in a similar way as indices in loop_data_storage. */
int loop_indices[4];
} LoopsForInterpolation;
static void loop_interpolation_init(const SubdivMeshContext *ctx,
LoopsForInterpolation *loop_interpolation,
const MPoly *coarse_poly)
{
const Mesh *coarse_mesh = ctx->coarse_mesh;
if (coarse_poly->totloop == 4) {
loop_interpolation->loop_data = &coarse_mesh->ldata;
loop_interpolation->loop_indices[0] = coarse_poly->loopstart + 0;
loop_interpolation->loop_indices[1] = coarse_poly->loopstart + 1;
loop_interpolation->loop_indices[2] = coarse_poly->loopstart + 2;
loop_interpolation->loop_indices[3] = coarse_poly->loopstart + 3;
loop_interpolation->loop_data_storage_allocated = false;
}
else {
loop_interpolation->loop_data = &loop_interpolation->loop_data_storage;
/* Allocate storage for loops corresponding to ptex corners. */
CustomData_copy(&ctx->coarse_mesh->ldata,
&loop_interpolation->loop_data_storage,
CD_MASK_EVERYTHING.lmask,
CD_CALLOC,
4);
/* Initialize indices. */
loop_interpolation->loop_indices[0] = 0;
loop_interpolation->loop_indices[1] = 1;
loop_interpolation->loop_indices[2] = 2;
loop_interpolation->loop_indices[3] = 3;
loop_interpolation->loop_data_storage_allocated = true;
/* Interpolate center of poly right away, it stays unchanged for all
* ptex faces. */
const float weight = 1.0f / (float)coarse_poly->totloop;
float *weights = BLI_array_alloca(weights, coarse_poly->totloop);
int *indices = BLI_array_alloca(indices, coarse_poly->totloop);
for (int i = 0; i < coarse_poly->totloop; i++) {
weights[i] = weight;
indices[i] = coarse_poly->loopstart + i;
}
CustomData_interp(&coarse_mesh->ldata,
&loop_interpolation->loop_data_storage,
indices,
weights,
NULL,
coarse_poly->totloop,
2);
}
}
static void loop_interpolation_from_corner(const SubdivMeshContext *ctx,
LoopsForInterpolation *loop_interpolation,
const MPoly *coarse_poly,
const int corner)
{
if (coarse_poly->totloop == 4) {
/* Nothing to do, all indices and data is already assigned. */
}
else {
const CustomData *loop_data = &ctx->coarse_mesh->ldata;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MLoop *coarse_mloop = coarse_mesh->mloop;
LoopsOfPtex loops_of_ptex;
loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, corner);
/* Ptex face corner corresponds to a poly loop with same index. */
CustomData_free_elem(&loop_interpolation->loop_data_storage, 0, 1);
CustomData_copy_data(
loop_data, &loop_interpolation->loop_data_storage, coarse_poly->loopstart + corner, 0, 1);
/* Interpolate remaining ptex face corners, which hits loops
* middle points.
*
* TODO(sergey): Re-use one of interpolation results from previous
* iteration. */
const float weights[2] = {0.5f, 0.5f};
const int base_loop_index = coarse_poly->loopstart;
const int first_loop_index = loops_of_ptex.first_loop - coarse_mloop;
const int second_loop_index = base_loop_index +
(first_loop_index - base_loop_index + 1) % coarse_poly->totloop;
const int first_indices[2] = {first_loop_index, second_loop_index};
const int last_indices[2] = {
loops_of_ptex.last_loop - coarse_mloop,
loops_of_ptex.first_loop - coarse_mloop,
};
CustomData_interp(
loop_data, &loop_interpolation->loop_data_storage, first_indices, weights, NULL, 2, 1);
CustomData_interp(
loop_data, &loop_interpolation->loop_data_storage, last_indices, weights, NULL, 2, 3);
}
}
static void loop_interpolation_end(LoopsForInterpolation *loop_interpolation)
{
if (loop_interpolation->loop_data_storage_allocated) {
CustomData_free(&loop_interpolation->loop_data_storage, 4);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name TLS
* \{ */
typedef struct SubdivMeshTLS {
bool vertex_interpolation_initialized;
VerticesForInterpolation vertex_interpolation;
const MPoly *vertex_interpolation_coarse_poly;
int vertex_interpolation_coarse_corner;
bool loop_interpolation_initialized;
LoopsForInterpolation loop_interpolation;
const MPoly *loop_interpolation_coarse_poly;
int loop_interpolation_coarse_corner;
} SubdivMeshTLS;
static void subdiv_mesh_tls_free(void *tls_v)
{
SubdivMeshTLS *tls = tls_v;
if (tls->vertex_interpolation_initialized) {
vertex_interpolation_end(&tls->vertex_interpolation);
}
if (tls->loop_interpolation_initialized) {
loop_interpolation_end(&tls->loop_interpolation);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Evaluation helper functions
* \{ */
static void subdiv_vertex_orco_evaluate(const SubdivMeshContext *ctx,
const int ptex_face_index,
const float u,
const float v,
const int subdiv_vertex_index)
{
if (ctx->orco || ctx->cloth_orco) {
float vertex_data[6];
BKE_subdiv_eval_vertex_data(ctx->subdiv, ptex_face_index, u, v, vertex_data);
if (ctx->orco) {
copy_v3_v3(ctx->orco[subdiv_vertex_index], vertex_data);
if (ctx->cloth_orco) {
copy_v3_v3(ctx->orco[subdiv_vertex_index], vertex_data + 3);
}
}
else if (ctx->cloth_orco) {
copy_v3_v3(ctx->orco[subdiv_vertex_index], vertex_data);
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Accumulation helpers
* \{ */
static void subdiv_accumulate_vertex_displacement(SubdivMeshContext *ctx,
const int ptex_face_index,
const float u,
const float v,
MVert *subdiv_vert)
{
/* Accumulate displacement. */
Subdiv *subdiv = ctx->subdiv;
const int subdiv_vertex_index = subdiv_vert - ctx->subdiv_mesh->mvert;
float dummy_P[3], dPdu[3], dPdv[3], D[3];
BKE_subdiv_eval_limit_point_and_derivatives(subdiv, ptex_face_index, u, v, dummy_P, dPdu, dPdv);
/* NOTE: The subdivided mesh is allocated in this module, and its vertices are kept at zero
* locations as a default calloc(). */
BKE_subdiv_eval_displacement(subdiv, ptex_face_index, u, v, dPdu, dPdv, D);
add_v3_v3(subdiv_vert->co, D);
if (ctx->accumulated_counters) {
++ctx->accumulated_counters[subdiv_vertex_index];
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Callbacks
* \{ */
static bool subdiv_mesh_topology_info(const SubdivForeachContext *foreach_context,
const int num_vertices,
const int num_edges,
const int num_loops,
const int num_polygons,
const int *UNUSED(subdiv_polygon_offset))
{
/* Multi-resolution grid data will be applied or become invalid after subdivision,
* so don't try to preserve it and use memory. */
CustomData_MeshMasks mask = CD_MASK_EVERYTHING;
mask.lmask &= ~CD_MASK_MULTIRES_GRIDS;
SubdivMeshContext *subdiv_context = foreach_context->user_data;
subdiv_context->subdiv_mesh = BKE_mesh_new_nomain_from_template_ex(
subdiv_context->coarse_mesh, num_vertices, num_edges, 0, num_loops, num_polygons, mask);
subdiv_mesh_ctx_cache_custom_data_layers(subdiv_context);
subdiv_mesh_prepare_accumulator(subdiv_context, num_vertices);
MEM_SAFE_FREE(subdiv_context->subdiv_mesh->runtime.subsurf_face_dot_tags);
subdiv_context->subdiv_mesh->runtime.subsurf_face_dot_tags = BLI_BITMAP_NEW(num_vertices,
__func__);
return true;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vertex subdivision process
* \{ */
static void subdiv_vertex_data_copy(const SubdivMeshContext *ctx,
const MVert *coarse_vertex,
MVert *subdiv_vertex)
{
const Mesh *coarse_mesh = ctx->coarse_mesh;
Mesh *subdiv_mesh = ctx->subdiv_mesh;
const int coarse_vertex_index = coarse_vertex - coarse_mesh->mvert;
const int subdiv_vertex_index = subdiv_vertex - subdiv_mesh->mvert;
CustomData_copy_data(
&coarse_mesh->vdata, &ctx->subdiv_mesh->vdata, coarse_vertex_index, subdiv_vertex_index, 1);
}
static void subdiv_vertex_data_interpolate(const SubdivMeshContext *ctx,
MVert *subdiv_vertex,
const VerticesForInterpolation *vertex_interpolation,
const float u,
const float v)
{
const int subdiv_vertex_index = subdiv_vertex - ctx->subdiv_mesh->mvert;
const float weights[4] = {(1.0f - u) * (1.0f - v), u * (1.0f - v), u * v, (1.0f - u) * v};
CustomData_interp(vertex_interpolation->vertex_data,
&ctx->subdiv_mesh->vdata,
vertex_interpolation->vertex_indices,
weights,
NULL,
4,
subdiv_vertex_index);
if (ctx->vert_origindex != NULL) {
ctx->vert_origindex[subdiv_vertex_index] = ORIGINDEX_NONE;
}
}
static void evaluate_vertex_and_apply_displacement_copy(const SubdivMeshContext *ctx,
const int ptex_face_index,
const float u,
const float v,
const MVert *coarse_vert,
MVert *subdiv_vert)
{
const int subdiv_vertex_index = subdiv_vert - ctx->subdiv_mesh->mvert;
/* Displacement is accumulated in subdiv vertex position.
* Needs to be backed up before copying data from original vertex. */
float D[3] = {0.0f, 0.0f, 0.0f};
if (ctx->have_displacement) {
const float inv_num_accumulated = 1.0f / ctx->accumulated_counters[subdiv_vertex_index];
copy_v3_v3(D, subdiv_vert->co);
mul_v3_fl(D, inv_num_accumulated);
}
/* Copy custom data and evaluate position. */
subdiv_vertex_data_copy(ctx, coarse_vert, subdiv_vert);
BKE_subdiv_eval_limit_point(ctx->subdiv, ptex_face_index, u, v, subdiv_vert->co);
/* Apply displacement. */
add_v3_v3(subdiv_vert->co, D);
/* Evaluate undeformed texture coordinate. */
subdiv_vertex_orco_evaluate(ctx, ptex_face_index, u, v, subdiv_vertex_index);
/* Remove facedot flag. This can happen if there is more than one subsurf modifier. */
BLI_BITMAP_DISABLE(ctx->subdiv_mesh->runtime.subsurf_face_dot_tags, subdiv_vertex_index);
}
static void evaluate_vertex_and_apply_displacement_interpolate(
const SubdivMeshContext *ctx,
const int ptex_face_index,
const float u,
const float v,
VerticesForInterpolation *vertex_interpolation,
MVert *subdiv_vert)
{
const int subdiv_vertex_index = subdiv_vert - ctx->subdiv_mesh->mvert;
/* Displacement is accumulated in subdiv vertex position.
* Needs to be backed up before copying data from original vertex. */
float D[3] = {0.0f, 0.0f, 0.0f};
if (ctx->have_displacement) {
const float inv_num_accumulated = 1.0f / ctx->accumulated_counters[subdiv_vertex_index];
copy_v3_v3(D, subdiv_vert->co);
mul_v3_fl(D, inv_num_accumulated);
}
/* Interpolate custom data and evaluate position. */
subdiv_vertex_data_interpolate(ctx, subdiv_vert, vertex_interpolation, u, v);
BKE_subdiv_eval_limit_point(ctx->subdiv, ptex_face_index, u, v, subdiv_vert->co);
/* Apply displacement. */
add_v3_v3(subdiv_vert->co, D);
/* Evaluate undeformed texture coordinate. */
subdiv_vertex_orco_evaluate(ctx, ptex_face_index, u, v, subdiv_vertex_index);
}
static void subdiv_mesh_vertex_displacement_every_corner_or_edge(
const SubdivForeachContext *foreach_context,
void *UNUSED(tls),
const int ptex_face_index,
const float u,
const float v,
const int subdiv_vertex_index)
{
SubdivMeshContext *ctx = foreach_context->user_data;
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MVert *subdiv_mvert = subdiv_mesh->mvert;
MVert *subdiv_vert = &subdiv_mvert[subdiv_vertex_index];
subdiv_accumulate_vertex_displacement(ctx, ptex_face_index, u, v, subdiv_vert);
}
static void subdiv_mesh_vertex_displacement_every_corner(
const SubdivForeachContext *foreach_context,
void *tls,
const int ptex_face_index,
const float u,
const float v,
const int UNUSED(coarse_vertex_index),
const int UNUSED(coarse_poly_index),
const int UNUSED(coarse_corner),
const int subdiv_vertex_index)
{
subdiv_mesh_vertex_displacement_every_corner_or_edge(
foreach_context, tls, ptex_face_index, u, v, subdiv_vertex_index);
}
static void subdiv_mesh_vertex_displacement_every_edge(const SubdivForeachContext *foreach_context,
void *tls,
const int ptex_face_index,
const float u,
const float v,
const int UNUSED(coarse_edge_index),
const int UNUSED(coarse_poly_index),
const int UNUSED(coarse_corner),
const int subdiv_vertex_index)
{
subdiv_mesh_vertex_displacement_every_corner_or_edge(
foreach_context, tls, ptex_face_index, u, v, subdiv_vertex_index);
}
static void subdiv_mesh_vertex_corner(const SubdivForeachContext *foreach_context,
void *UNUSED(tls),
const int ptex_face_index,
const float u,
const float v,
const int coarse_vertex_index,
const int UNUSED(coarse_poly_index),
const int UNUSED(coarse_corner),
const int subdiv_vertex_index)
{
BLI_assert(coarse_vertex_index != ORIGINDEX_NONE);
SubdivMeshContext *ctx = foreach_context->user_data;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MVert *coarse_mvert = coarse_mesh->mvert;
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MVert *subdiv_mvert = subdiv_mesh->mvert;
const MVert *coarse_vert = &coarse_mvert[coarse_vertex_index];
MVert *subdiv_vert = &subdiv_mvert[subdiv_vertex_index];
evaluate_vertex_and_apply_displacement_copy(
ctx, ptex_face_index, u, v, coarse_vert, subdiv_vert);
}
static void subdiv_mesh_ensure_vertex_interpolation(SubdivMeshContext *ctx,
SubdivMeshTLS *tls,
const MPoly *coarse_poly,
const int coarse_corner)
{
/* Check whether we've moved to another corner or polygon. */
if (tls->vertex_interpolation_initialized) {
if (tls->vertex_interpolation_coarse_poly != coarse_poly ||
tls->vertex_interpolation_coarse_corner != coarse_corner) {
vertex_interpolation_end(&tls->vertex_interpolation);
tls->vertex_interpolation_initialized = false;
}
}
/* Initialize the interpolation. */
if (!tls->vertex_interpolation_initialized) {
vertex_interpolation_init(ctx, &tls->vertex_interpolation, coarse_poly);
}
/* Update it for a new corner if needed. */
if (!tls->vertex_interpolation_initialized ||
tls->vertex_interpolation_coarse_corner != coarse_corner) {
vertex_interpolation_from_corner(ctx, &tls->vertex_interpolation, coarse_poly, coarse_corner);
}
/* Store settings used for the current state of interpolator. */
tls->vertex_interpolation_initialized = true;
tls->vertex_interpolation_coarse_poly = coarse_poly;
tls->vertex_interpolation_coarse_corner = coarse_corner;
}
static void subdiv_mesh_vertex_edge(const SubdivForeachContext *foreach_context,
void *tls_v,
const int ptex_face_index,
const float u,
const float v,
const int UNUSED(coarse_edge_index),
const int coarse_poly_index,
const int coarse_corner,
const int subdiv_vertex_index)
{
SubdivMeshContext *ctx = foreach_context->user_data;
SubdivMeshTLS *tls = tls_v;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[coarse_poly_index];
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MVert *subdiv_mvert = subdiv_mesh->mvert;
MVert *subdiv_vert = &subdiv_mvert[subdiv_vertex_index];
subdiv_mesh_ensure_vertex_interpolation(ctx, tls, coarse_poly, coarse_corner);
evaluate_vertex_and_apply_displacement_interpolate(
ctx, ptex_face_index, u, v, &tls->vertex_interpolation, subdiv_vert);
}
static bool subdiv_mesh_is_center_vertex(const MPoly *coarse_poly, const float u, const float v)
{
if (coarse_poly->totloop == 4) {
if (u == 0.5f && v == 0.5f) {
return true;
}
}
else {
if (u == 1.0f && v == 1.0f) {
return true;
}
}
return false;
}
static void subdiv_mesh_tag_center_vertex(const MPoly *coarse_poly,
const int subdiv_vertex_index,
const float u,
const float v,
Mesh *subdiv_mesh)
{
if (subdiv_mesh_is_center_vertex(coarse_poly, u, v)) {
BLI_BITMAP_ENABLE(subdiv_mesh->runtime.subsurf_face_dot_tags, subdiv_vertex_index);
}
}
static void subdiv_mesh_vertex_inner(const SubdivForeachContext *foreach_context,
void *tls_v,
const int ptex_face_index,
const float u,
const float v,
const int coarse_poly_index,
const int coarse_corner,
const int subdiv_vertex_index)
{
SubdivMeshContext *ctx = foreach_context->user_data;
SubdivMeshTLS *tls = tls_v;
Subdiv *subdiv = ctx->subdiv;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[coarse_poly_index];
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MVert *subdiv_mvert = subdiv_mesh->mvert;
MVert *subdiv_vert = &subdiv_mvert[subdiv_vertex_index];
subdiv_mesh_ensure_vertex_interpolation(ctx, tls, coarse_poly, coarse_corner);
subdiv_vertex_data_interpolate(ctx, subdiv_vert, &tls->vertex_interpolation, u, v);
BKE_subdiv_eval_final_point(subdiv, ptex_face_index, u, v, subdiv_vert->co);
subdiv_mesh_tag_center_vertex(coarse_poly, subdiv_vertex_index, u, v, subdiv_mesh);
subdiv_vertex_orco_evaluate(ctx, ptex_face_index, u, v, subdiv_vertex_index);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Edge subdivision process
* \{ */
static void subdiv_copy_edge_data(SubdivMeshContext *ctx,
MEdge *subdiv_edge,
const MEdge *coarse_edge)
{
const int subdiv_edge_index = subdiv_edge - ctx->subdiv_mesh->medge;
if (coarse_edge == NULL) {
subdiv_edge->crease = 0;
subdiv_edge->bweight = 0;
subdiv_edge->flag = 0;
if (!ctx->settings->use_optimal_display) {
subdiv_edge->flag |= ME_EDGERENDER;
}
if (ctx->edge_origindex != NULL) {
ctx->edge_origindex[subdiv_edge_index] = ORIGINDEX_NONE;
}
return;
}
const int coarse_edge_index = coarse_edge - ctx->coarse_mesh->medge;
CustomData_copy_data(
&ctx->coarse_mesh->edata, &ctx->subdiv_mesh->edata, coarse_edge_index, subdiv_edge_index, 1);
subdiv_edge->flag |= ME_EDGERENDER;
}
static void subdiv_mesh_edge(const SubdivForeachContext *foreach_context,
void *UNUSED(tls),
const int coarse_edge_index,
const int subdiv_edge_index,
const bool UNUSED(is_loose),
const int subdiv_v1,
const int subdiv_v2)
{
SubdivMeshContext *ctx = foreach_context->user_data;
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MEdge *subdiv_medge = subdiv_mesh->medge;
MEdge *subdiv_edge = &subdiv_medge[subdiv_edge_index];
const MEdge *coarse_edge = NULL;
if (coarse_edge_index != ORIGINDEX_NONE) {
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MEdge *coarse_medge = coarse_mesh->medge;
coarse_edge = &coarse_medge[coarse_edge_index];
}
subdiv_copy_edge_data(ctx, subdiv_edge, coarse_edge);
subdiv_edge->v1 = subdiv_v1;
subdiv_edge->v2 = subdiv_v2;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Loops creation/interpolation
* \{ */
static void subdiv_interpolate_loop_data(const SubdivMeshContext *ctx,
MLoop *subdiv_loop,
const LoopsForInterpolation *loop_interpolation,
const float u,
const float v)
{
const int subdiv_loop_index = subdiv_loop - ctx->subdiv_mesh->mloop;
const float weights[4] = {(1.0f - u) * (1.0f - v), u * (1.0f - v), u * v, (1.0f - u) * v};
CustomData_interp(loop_interpolation->loop_data,
&ctx->subdiv_mesh->ldata,
loop_interpolation->loop_indices,
weights,
NULL,
4,
subdiv_loop_index);
/* TODO(sergey): Set ORIGINDEX. */
}
static void subdiv_eval_uv_layer(SubdivMeshContext *ctx,
MLoop *subdiv_loop,
const int ptex_face_index,
const float u,
const float v)
{
if (ctx->num_uv_layers == 0) {
return;
}
Subdiv *subdiv = ctx->subdiv;
const int mloop_index = subdiv_loop - ctx->subdiv_mesh->mloop;
for (int layer_index = 0; layer_index < ctx->num_uv_layers; layer_index++) {
MLoopUV *subdiv_loopuv = &ctx->uv_layers[layer_index][mloop_index];
BKE_subdiv_eval_face_varying(subdiv, layer_index, ptex_face_index, u, v, subdiv_loopuv->uv);
}
}
static void subdiv_mesh_ensure_loop_interpolation(SubdivMeshContext *ctx,
SubdivMeshTLS *tls,
const MPoly *coarse_poly,
const int coarse_corner)
{
/* Check whether we've moved to another corner or polygon. */
if (tls->loop_interpolation_initialized) {
if (tls->loop_interpolation_coarse_poly != coarse_poly ||
tls->loop_interpolation_coarse_corner != coarse_corner) {
loop_interpolation_end(&tls->loop_interpolation);
tls->loop_interpolation_initialized = false;
}
}
/* Initialize the interpolation. */
if (!tls->loop_interpolation_initialized) {
loop_interpolation_init(ctx, &tls->loop_interpolation, coarse_poly);
}
/* Update it for a new corner if needed. */
if (!tls->loop_interpolation_initialized ||
tls->loop_interpolation_coarse_corner != coarse_corner) {
loop_interpolation_from_corner(ctx, &tls->loop_interpolation, coarse_poly, coarse_corner);
}
/* Store settings used for the current state of interpolator. */
tls->loop_interpolation_initialized = true;
tls->loop_interpolation_coarse_poly = coarse_poly;
tls->loop_interpolation_coarse_corner = coarse_corner;
}
static void subdiv_mesh_loop(const SubdivForeachContext *foreach_context,
void *tls_v,
const int ptex_face_index,
const float u,
const float v,
const int UNUSED(coarse_loop_index),
const int coarse_poly_index,
const int coarse_corner,
const int subdiv_loop_index,
const int subdiv_vertex_index,
const int subdiv_edge_index)
{
SubdivMeshContext *ctx = foreach_context->user_data;
SubdivMeshTLS *tls = tls_v;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[coarse_poly_index];
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MLoop *subdiv_mloop = subdiv_mesh->mloop;
MLoop *subdiv_loop = &subdiv_mloop[subdiv_loop_index];
subdiv_mesh_ensure_loop_interpolation(ctx, tls, coarse_poly, coarse_corner);
subdiv_interpolate_loop_data(ctx, subdiv_loop, &tls->loop_interpolation, u, v);
subdiv_eval_uv_layer(ctx, subdiv_loop, ptex_face_index, u, v);
subdiv_loop->v = subdiv_vertex_index;
subdiv_loop->e = subdiv_edge_index;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Polygons subdivision process
* \{ */
static void subdiv_copy_poly_data(const SubdivMeshContext *ctx,
MPoly *subdiv_poly,
const MPoly *coarse_poly)
{
const int coarse_poly_index = coarse_poly - ctx->coarse_mesh->mpoly;
const int subdiv_poly_index = subdiv_poly - ctx->subdiv_mesh->mpoly;
CustomData_copy_data(
&ctx->coarse_mesh->pdata, &ctx->subdiv_mesh->pdata, coarse_poly_index, subdiv_poly_index, 1);
}
static void subdiv_mesh_poly(const SubdivForeachContext *foreach_context,
void *UNUSED(tls),
const int coarse_poly_index,
const int subdiv_poly_index,
const int start_loop_index,
const int num_loops)
{
BLI_assert(coarse_poly_index != ORIGINDEX_NONE);
SubdivMeshContext *ctx = foreach_context->user_data;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[coarse_poly_index];
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MPoly *subdiv_mpoly = subdiv_mesh->mpoly;
MPoly *subdiv_poly = &subdiv_mpoly[subdiv_poly_index];
subdiv_copy_poly_data(ctx, subdiv_poly, coarse_poly);
subdiv_poly->loopstart = start_loop_index;
subdiv_poly->totloop = num_loops;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Loose elements subdivision process
* \{ */
static void subdiv_mesh_vertex_loose(const SubdivForeachContext *foreach_context,
void *UNUSED(tls),
const int coarse_vertex_index,
const int subdiv_vertex_index)
{
SubdivMeshContext *ctx = foreach_context->user_data;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MVert *coarse_mvert = coarse_mesh->mvert;
const MVert *coarse_vertex = &coarse_mvert[coarse_vertex_index];
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MVert *subdiv_mvert = subdiv_mesh->mvert;
MVert *subdiv_vertex = &subdiv_mvert[subdiv_vertex_index];
subdiv_vertex_data_copy(ctx, coarse_vertex, subdiv_vertex);
}
/* Get neighbor edges of the given one.
* - neighbors[0] is an edge adjacent to edge->v1.
* - neighbors[1] is an edge adjacent to edge->v2. */
static void find_edge_neighbors(const Mesh *coarse_mesh,
const MEdge *edge,
const MEdge *neighbors[2])
{
const MEdge *coarse_medge = coarse_mesh->medge;
neighbors[0] = NULL;
neighbors[1] = NULL;
int neighbor_counters[2] = {0, 0};
for (int edge_index = 0; edge_index < coarse_mesh->totedge; edge_index++) {
const MEdge *current_edge = &coarse_medge[edge_index];
if (current_edge == edge) {
continue;
}
if (ELEM(edge->v1, current_edge->v1, current_edge->v2)) {
neighbors[0] = current_edge;
++neighbor_counters[0];
}
if (ELEM(edge->v2, current_edge->v1, current_edge->v2)) {
neighbors[1] = current_edge;
++neighbor_counters[1];
}
}
/* Vertices which has more than one neighbor are considered infinitely
* sharp. This is also how topology factory treats vertices of a surface
* which are adjacent to a loose edge. */
if (neighbor_counters[0] > 1) {
neighbors[0] = NULL;
}
if (neighbor_counters[1] > 1) {
neighbors[1] = NULL;
}
}
static void points_for_loose_edges_interpolation_get(const Mesh *coarse_mesh,
const MEdge *coarse_edge,
const MEdge *neighbors[2],
float points_r[4][3])
{
const MVert *coarse_mvert = coarse_mesh->mvert;
/* Middle points corresponds to the edge. */
copy_v3_v3(points_r[1], coarse_mvert[coarse_edge->v1].co);
copy_v3_v3(points_r[2], coarse_mvert[coarse_edge->v2].co);
/* Start point, duplicate from edge start if no neighbor. */
if (neighbors[0] != NULL) {
if (neighbors[0]->v1 == coarse_edge->v1) {
copy_v3_v3(points_r[0], coarse_mvert[neighbors[0]->v2].co);
}
else {
copy_v3_v3(points_r[0], coarse_mvert[neighbors[0]->v1].co);
}
}
else {
sub_v3_v3v3(points_r[0], points_r[1], points_r[2]);
add_v3_v3(points_r[0], points_r[1]);
}
/* End point, duplicate from edge end if no neighbor. */
if (neighbors[1] != NULL) {
if (neighbors[1]->v1 == coarse_edge->v2) {
copy_v3_v3(points_r[3], coarse_mvert[neighbors[1]->v2].co);
}
else {
copy_v3_v3(points_r[3], coarse_mvert[neighbors[1]->v1].co);
}
}
else {
sub_v3_v3v3(points_r[3], points_r[2], points_r[1]);
add_v3_v3(points_r[3], points_r[2]);
}
}
void BKE_subdiv_mesh_interpolate_position_on_edge(const Mesh *coarse_mesh,
const MEdge *coarse_edge,
const bool is_simple,
const float u,
float pos_r[3])
{
if (is_simple) {
const MVert *coarse_mvert = coarse_mesh->mvert;
const MVert *vert_1 = &coarse_mvert[coarse_edge->v1];
const MVert *vert_2 = &coarse_mvert[coarse_edge->v2];
interp_v3_v3v3(pos_r, vert_1->co, vert_2->co, u);
}
else {
/* Find neighbors of the coarse edge. */
const MEdge *neighbors[2];
find_edge_neighbors(coarse_mesh, coarse_edge, neighbors);
float points[4][3];
points_for_loose_edges_interpolation_get(coarse_mesh, coarse_edge, neighbors, points);
float weights[4];
key_curve_position_weights(u, weights, KEY_BSPLINE);
interp_v3_v3v3v3v3(pos_r, points[0], points[1], points[2], points[3], weights);
}
}
static void subdiv_mesh_vertex_of_loose_edge_interpolate(SubdivMeshContext *ctx,
const MEdge *coarse_edge,
const float u,
const int subdiv_vertex_index)
{
const Mesh *coarse_mesh = ctx->coarse_mesh;
Mesh *subdiv_mesh = ctx->subdiv_mesh;
/* This is never used for end-points (which are copied from the original). */
BLI_assert(u > 0.0f);
BLI_assert(u < 1.0f);
const float interpolation_weights[2] = {1.0f - u, u};
const int coarse_vertex_indices[2] = {coarse_edge->v1, coarse_edge->v2};
CustomData_interp(&coarse_mesh->vdata,
&subdiv_mesh->vdata,
coarse_vertex_indices,
interpolation_weights,
NULL,
2,
subdiv_vertex_index);
if (ctx->vert_origindex != NULL) {
ctx->vert_origindex[subdiv_vertex_index] = ORIGINDEX_NONE;
}
}
static void subdiv_mesh_vertex_of_loose_edge(const struct SubdivForeachContext *foreach_context,
void *UNUSED(tls),
const int coarse_edge_index,
const float u,
const int subdiv_vertex_index)
{
SubdivMeshContext *ctx = foreach_context->user_data;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MEdge *coarse_edge = &coarse_mesh->medge[coarse_edge_index];
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MVert *subdiv_mvert = subdiv_mesh->mvert;
const bool is_simple = ctx->subdiv->settings.is_simple;
/* Interpolate custom data when not an end point.
* This data has already been copied from the original vertex by #subdiv_mesh_vertex_loose. */
if (!ELEM(u, 0.0, 1.0)) {
subdiv_mesh_vertex_of_loose_edge_interpolate(ctx, coarse_edge, u, subdiv_vertex_index);
}
/* Interpolate coordinate. */
MVert *subdiv_vertex = &subdiv_mvert[subdiv_vertex_index];
BKE_subdiv_mesh_interpolate_position_on_edge(
coarse_mesh, coarse_edge, is_simple, u, subdiv_vertex->co);
/* Reset flags and such. */
subdiv_vertex->flag = 0;
/* TODO(sergey): This matches old behavior, but we can as well interpolate
* it. Maybe even using vertex varying attributes. */
subdiv_vertex->bweight = 0.0f;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Initialization
* \{ */
static void setup_foreach_callbacks(const SubdivMeshContext *subdiv_context,
SubdivForeachContext *foreach_context)
{
memset(foreach_context, 0, sizeof(*foreach_context));
/* General information. */
foreach_context->topology_info = subdiv_mesh_topology_info;
/* Every boundary geometry. Used for displacement averaging. */
if (subdiv_context->have_displacement) {
foreach_context->vertex_every_corner = subdiv_mesh_vertex_displacement_every_corner;
foreach_context->vertex_every_edge = subdiv_mesh_vertex_displacement_every_edge;
}
foreach_context->vertex_corner = subdiv_mesh_vertex_corner;
foreach_context->vertex_edge = subdiv_mesh_vertex_edge;
foreach_context->vertex_inner = subdiv_mesh_vertex_inner;
foreach_context->edge = subdiv_mesh_edge;
foreach_context->loop = subdiv_mesh_loop;
foreach_context->poly = subdiv_mesh_poly;
foreach_context->vertex_loose = subdiv_mesh_vertex_loose;
foreach_context->vertex_of_loose_edge = subdiv_mesh_vertex_of_loose_edge;
foreach_context->user_data_tls_free = subdiv_mesh_tls_free;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Public entry point
* \{ */
Mesh *BKE_subdiv_to_mesh(Subdiv *subdiv,
const SubdivToMeshSettings *settings,
const Mesh *coarse_mesh)
{
BKE_subdiv_stats_begin(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_MESH);
/* Make sure evaluator is up to date with possible new topology, and that
* it is refined for the new positions of coarse vertices. */
if (!BKE_subdiv_eval_begin_from_mesh(
subdiv, coarse_mesh, NULL, SUBDIV_EVALUATOR_TYPE_CPU, NULL)) {
/* This could happen in two situations:
* - OpenSubdiv is disabled.
* - Something totally bad happened, and OpenSubdiv rejected our
* topology.
* In either way, we can't safely continue. */
if (coarse_mesh->totpoly) {
BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_MESH);
return NULL;
}
}
/* Initialize subdivision mesh creation context. */
SubdivMeshContext subdiv_context = {0};
subdiv_context.settings = settings;
subdiv_context.coarse_mesh = coarse_mesh;
subdiv_context.subdiv = subdiv;
subdiv_context.have_displacement = (subdiv->displacement_evaluator != NULL);
/* Multi-threaded traversal/evaluation. */
BKE_subdiv_stats_begin(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_MESH_GEOMETRY);
SubdivForeachContext foreach_context;
setup_foreach_callbacks(&subdiv_context, &foreach_context);
SubdivMeshTLS tls = {0};
foreach_context.user_data = &subdiv_context;
foreach_context.user_data_tls_size = sizeof(SubdivMeshTLS);
foreach_context.user_data_tls = &tls;
BKE_subdiv_foreach_subdiv_geometry(subdiv, &foreach_context, settings, coarse_mesh);
BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_MESH_GEOMETRY);
Mesh *result = subdiv_context.subdiv_mesh;
// BKE_mesh_validate(result, true, true);
BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_MESH);
/* Using normals from the limit surface gives different results than Blender's vertex normal
* calculation. Since vertex normals are supposed to be a consistent cache, don't bother
* calculating them here. The work may have been pointless anyway if the mesh is deformed or
* changed afterwards. */
BLI_assert(BKE_mesh_vertex_normals_are_dirty(result) || BKE_mesh_poly_normals_are_dirty(result));
/* Free used memory. */
subdiv_mesh_context_free(&subdiv_context);
return result;
}
/** \} */