tornavis/source/blender/collada/AnimationExporter.cpp

1573 lines
43 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Chingiz Dyussenov, Arystanbek Dyussenov, Jan Diederich, Tod Liverseed.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "GeometryExporter.h"
#include "AnimationExporter.h"
#include "MaterialExporter.h"
Global G;
template<class Functor>
void forEachObjectInExportSet(Scene *sce, Functor &f, LinkNode *export_set)
{
LinkNode *node;
for (node = export_set; node; node = node->next) {
Object *ob = (Object *)node->link;
f(ob);
}
}
bool AnimationExporter::exportAnimations(Scene *sce)
{
bool has_animations = hasAnimations(sce);
if (has_animations) {
this->scene = sce;
openLibrary();
forEachObjectInExportSet(sce, *this, this->export_settings->export_set);
closeLibrary();
}
return has_animations;
}
// called for each exported object
void AnimationExporter::operator()(Object *ob)
{
FCurve *fcu;
char *transformName;
/* bool isMatAnim = false; */ /* UNUSED */
//Export transform animations
if (ob->adt && ob->adt->action) {
fcu = (FCurve *)ob->adt->action->curves.first;
//transform matrix export for bones are temporarily disabled here.
if (ob->type == OB_ARMATURE) {
bArmature *arm = (bArmature *)ob->data;
for (Bone *bone = (Bone *)arm->bonebase.first; bone; bone = bone->next)
write_bone_animation_matrix(ob, bone);
}
while (fcu) {
//for armature animations as objects
if (ob->type == OB_ARMATURE)
transformName = fcu->rna_path;
else
transformName = extract_transform_name(fcu->rna_path);
if ((STREQ(transformName, "location") || STREQ(transformName, "scale")) ||
(STREQ(transformName, "rotation_euler") && ob->rotmode == ROT_MODE_EUL) ||
(STREQ(transformName, "rotation_quaternion")))
{
dae_animation(ob, fcu, transformName, false);
}
fcu = fcu->next;
}
}
export_object_constraint_animation(ob);
//This needs to be handled by extra profiles, so postponed for now
//export_morph_animation(ob);
//Export Lamp parameter animations
if ( (ob->type == OB_LAMP) && ((Lamp *)ob->data)->adt && ((Lamp *)ob->data)->adt->action) {
fcu = (FCurve *)(((Lamp *)ob->data)->adt->action->curves.first);
while (fcu) {
transformName = extract_transform_name(fcu->rna_path);
if ((STREQ(transformName, "color")) || (STREQ(transformName, "spot_size")) ||
(STREQ(transformName, "spot_blend")) || (STREQ(transformName, "distance")))
{
dae_animation(ob, fcu, transformName, true);
}
fcu = fcu->next;
}
}
//Export Camera parameter animations
if ( (ob->type == OB_CAMERA) && ((Camera *)ob->data)->adt && ((Camera *)ob->data)->adt->action) {
fcu = (FCurve *)(((Camera *)ob->data)->adt->action->curves.first);
while (fcu) {
transformName = extract_transform_name(fcu->rna_path);
if ((STREQ(transformName, "lens")) ||
(STREQ(transformName, "ortho_scale")) ||
(STREQ(transformName, "clip_end")) ||
(STREQ(transformName, "clip_start")))
{
dae_animation(ob, fcu, transformName, true);
}
fcu = fcu->next;
}
}
//Export Material parameter animations.
for (int a = 0; a < ob->totcol; a++) {
Material *ma = give_current_material(ob, a + 1);
if (!ma) continue;
if (ma->adt && ma->adt->action) {
/* isMatAnim = true; */
fcu = (FCurve *)ma->adt->action->curves.first;
while (fcu) {
transformName = extract_transform_name(fcu->rna_path);
if ((STREQ(transformName, "specular_hardness")) || (STREQ(transformName, "specular_color")) ||
(STREQ(transformName, "diffuse_color")) || (STREQ(transformName, "alpha")) ||
(STREQ(transformName, "ior")))
{
dae_animation(ob, fcu, transformName, true, ma);
}
fcu = fcu->next;
}
}
}
}
void AnimationExporter::export_object_constraint_animation(Object *ob)
{
std::vector<float> fra;
//Takes frames of target animations
make_anim_frames_from_targets(ob, fra);
if (fra.size())
dae_baked_object_animation(fra, ob);
}
void AnimationExporter::export_morph_animation(Object *ob)
{
FCurve *fcu;
char *transformName;
Key *key = BKE_key_from_object(ob);
if (!key) return;
if (key->adt && key->adt->action) {
fcu = (FCurve *)key->adt->action->curves.first;
while (fcu) {
transformName = extract_transform_name(fcu->rna_path);
dae_animation(ob, fcu, transformName, true);
fcu = fcu->next;
}
}
}
void AnimationExporter::make_anim_frames_from_targets(Object *ob, std::vector<float> &frames )
{
ListBase *conlist = get_active_constraints(ob);
if (conlist == NULL) return;
bConstraint *con;
for (con = (bConstraint *)conlist->first; con; con = con->next) {
ListBase targets = {NULL, NULL};
bConstraintTypeInfo *cti = BKE_constraint_typeinfo_get(con);
if (!validateConstraints(con)) continue;
if (cti && cti->get_constraint_targets) {
bConstraintTarget *ct;
Object *obtar;
/* get targets
* - constraints should use ct->matrix, not directly accessing values
* - ct->matrix members have not yet been calculated here!
*/
cti->get_constraint_targets(con, &targets);
for (ct = (bConstraintTarget *)targets.first; ct; ct = ct->next) {
obtar = ct->tar;
if (obtar)
find_frames(obtar, frames);
}
if (cti->flush_constraint_targets)
cti->flush_constraint_targets(con, &targets, 1);
}
}
}
//euler sources from quternion sources
float *AnimationExporter::get_eul_source_for_quat(Object *ob)
{
FCurve *fcu = (FCurve *)ob->adt->action->curves.first;
const int keys = fcu->totvert;
float *quat = (float *)MEM_callocN(sizeof(float) * fcu->totvert * 4, "quat output source values");
float *eul = (float *)MEM_callocN(sizeof(float) * fcu->totvert * 3, "quat output source values");
float temp_quat[4];
float temp_eul[3];
while (fcu) {
char *transformName = extract_transform_name(fcu->rna_path);
if (STREQ(transformName, "rotation_quaternion") ) {
for (int i = 0; i < fcu->totvert; i++) {
*(quat + (i * 4) + fcu->array_index) = fcu->bezt[i].vec[1][1];
}
}
fcu = fcu->next;
}
for (int i = 0; i < keys; i++) {
for (int j = 0; j < 4; j++)
temp_quat[j] = quat[(i * 4) + j];
quat_to_eul(temp_eul, temp_quat);
for (int k = 0; k < 3; k++)
eul[i * 3 + k] = temp_eul[k];
}
MEM_freeN(quat);
return eul;
}
//Get proper name for bones
std::string AnimationExporter::getObjectBoneName(Object *ob, const FCurve *fcu)
{
//hard-way to derive the bone name from rna_path. Must find more compact method
std::string rna_path = std::string(fcu->rna_path);
char *boneName = strtok((char *)rna_path.c_str(), "\"");
boneName = strtok(NULL, "\"");
if (boneName != NULL)
return /*id_name(ob) + "_" +*/ std::string(boneName);
else
return id_name(ob);
}
std::string AnimationExporter::getAnimationPathId(const FCurve *fcu)
{
std::string rna_path = std::string(fcu->rna_path);
return translate_id(rna_path);
}
//convert f-curves to animation curves and write
void AnimationExporter::dae_animation(Object *ob, FCurve *fcu, char *transformName, bool is_param, Material *ma)
{
const char *axis_name = NULL;
char anim_id[200];
bool has_tangents = false;
bool quatRotation = false;
if (STREQ(transformName, "rotation_quaternion") ) {
fprintf(stderr, "quaternion rotation curves are not supported. rotation curve will not be exported\n");
quatRotation = true;
return;
}
//axis names for colors
else if (STREQ(transformName, "color") ||
STREQ(transformName, "specular_color") ||
STREQ(transformName, "diffuse_color") ||
STREQ(transformName, "alpha"))
{
const char *axis_names[] = {"R", "G", "B"};
if (fcu->array_index < 3)
axis_name = axis_names[fcu->array_index];
}
//axis names for transforms
else if (STREQ(transformName, "location") ||
STREQ(transformName, "scale") ||
STREQ(transformName, "rotation_euler") ||
STREQ(transformName, "rotation_quaternion"))
{
const char *axis_names[] = {"X", "Y", "Z"};
if (fcu->array_index < 3)
axis_name = axis_names[fcu->array_index];
}
else {
/* no axis name. single parameter */
axis_name = "";
}
std::string ob_name = std::string("null");
//Create anim Id
if (ob->type == OB_ARMATURE) {
ob_name = getObjectBoneName(ob, fcu);
BLI_snprintf(
anim_id,
sizeof(anim_id),
"%s_%s.%s",
(char *)translate_id(ob_name).c_str(),
(char *)translate_id(transformName).c_str(),
axis_name);
}
else {
if (ma)
ob_name = id_name(ob) + "_material";
else
ob_name = id_name(ob);
BLI_snprintf(
anim_id,
sizeof(anim_id),
"%s_%s_%s",
(char *)translate_id(ob_name).c_str(),
(char *)getAnimationPathId(fcu).c_str(),
axis_name);
}
openAnimation(anim_id, COLLADABU::Utils::EMPTY_STRING);
// create input source
std::string input_id = create_source_from_fcurve(COLLADASW::InputSemantic::INPUT, fcu, anim_id, axis_name);
// create output source
std::string output_id;
//quat rotations are skipped for now, because of complications with determining axis.
if (quatRotation) {
float *eul = get_eul_source_for_quat(ob);
float *eul_axis = (float *)MEM_callocN(sizeof(float) * fcu->totvert, "quat output source values");
for (int i = 0; i < fcu->totvert; i++) {
eul_axis[i] = eul[i * 3 + fcu->array_index];
}
output_id = create_source_from_array(COLLADASW::InputSemantic::OUTPUT, eul_axis, fcu->totvert, quatRotation, anim_id, axis_name);
MEM_freeN(eul);
MEM_freeN(eul_axis);
}
else if (STREQ(transformName, "lens") && (ob->type == OB_CAMERA)) {
output_id = create_lens_source_from_fcurve((Camera *) ob->data, COLLADASW::InputSemantic::OUTPUT, fcu, anim_id);
}
else {
output_id = create_source_from_fcurve(COLLADASW::InputSemantic::OUTPUT, fcu, anim_id, axis_name);
}
// create interpolations source
std::string interpolation_id = create_interpolation_source(fcu, anim_id, axis_name, &has_tangents);
// handle tangents (if required)
std::string intangent_id;
std::string outtangent_id;
if (has_tangents) {
// create in_tangent source
intangent_id = create_source_from_fcurve(COLLADASW::InputSemantic::IN_TANGENT, fcu, anim_id, axis_name);
// create out_tangent source
outtangent_id = create_source_from_fcurve(COLLADASW::InputSemantic::OUT_TANGENT, fcu, anim_id, axis_name);
}
std::string sampler_id = std::string(anim_id) + SAMPLER_ID_SUFFIX;
COLLADASW::LibraryAnimations::Sampler sampler(sw, sampler_id);
std::string empty;
sampler.addInput(COLLADASW::InputSemantic::INPUT, COLLADABU::URI(empty, input_id));
sampler.addInput(COLLADASW::InputSemantic::OUTPUT, COLLADABU::URI(empty, output_id));
// this input is required
sampler.addInput(COLLADASW::InputSemantic::INTERPOLATION, COLLADABU::URI(empty, interpolation_id));
if (has_tangents) {
sampler.addInput(COLLADASW::InputSemantic::IN_TANGENT, COLLADABU::URI(empty, intangent_id));
sampler.addInput(COLLADASW::InputSemantic::OUT_TANGENT, COLLADABU::URI(empty, outtangent_id));
}
addSampler(sampler);
std::string target;
if (!is_param)
target = translate_id(ob_name) +
"/" + get_transform_sid(fcu->rna_path, -1, axis_name, true);
else {
if (ob->type == OB_LAMP)
target = get_light_id(ob) +
"/" + get_light_param_sid(fcu->rna_path, -1, axis_name, true);
if (ob->type == OB_CAMERA)
target = get_camera_id(ob) +
"/" + get_camera_param_sid(fcu->rna_path, -1, axis_name, true);
if (ma)
target = translate_id(id_name(ma)) + "-effect" +
"/common/" /*profile common is only supported */ + get_transform_sid(fcu->rna_path, -1, axis_name, true);
//if shape key animation, this is the main problem, how to define the channel targets.
/*target = get_morph_id(ob) +
"/value" +*/
}
addChannel(COLLADABU::URI(empty, sampler_id), target);
closeAnimation();
}
//write bone animations in transform matrix sources
void AnimationExporter::write_bone_animation_matrix(Object *ob_arm, Bone *bone)
{
if (!ob_arm->adt)
return;
//This will only export animations of bones in deform group.
/* if (!is_bone_deform_group(bone)) return; */
sample_and_write_bone_animation_matrix(ob_arm, bone);
for (Bone *child = (Bone *)bone->childbase.first; child; child = child->next)
write_bone_animation_matrix(ob_arm, child);
}
bool AnimationExporter::is_bone_deform_group(Bone *bone)
{
bool is_def;
//Check if current bone is deform
if ((bone->flag & BONE_NO_DEFORM) == 0) return true;
//Check child bones
else {
for (Bone *child = (Bone *)bone->childbase.first; child; child = child->next) {
//loop through all the children until deform bone is found, and then return
is_def = is_bone_deform_group(child);
if (is_def) return true;
}
}
//no deform bone found in children also
return false;
}
void AnimationExporter::sample_and_write_bone_animation_matrix(Object *ob_arm, Bone *bone)
{
bArmature *arm = (bArmature *)ob_arm->data;
int flag = arm->flag;
std::vector<float> fra;
//char prefix[256];
//Check if there is a fcurve in the armature for the bone in param
//when baking this check is not needed, solve every bone for every frame.
/*FCurve *fcu = (FCurve *)ob_arm->adt->action->curves.first;
while (fcu) {
std::string bone_name = getObjectBoneName(ob_arm, fcu);
int val = BLI_strcasecmp((char *)bone_name.c_str(), bone->name);
if (val == 0) break;
fcu = fcu->next;
}
if (!(fcu)) return;*/
bPoseChannel *pchan = BKE_pose_channel_find_name(ob_arm->pose, bone->name);
if (!pchan)
return;
//every inserted keyframe of bones.
find_frames(ob_arm, fra);
if (flag & ARM_RESTPOS) {
arm->flag &= ~ARM_RESTPOS;
BKE_pose_where_is(scene, ob_arm);
}
if (fra.size()) {
dae_baked_animation(fra, ob_arm, bone);
}
if (flag & ARM_RESTPOS)
arm->flag = flag;
BKE_pose_where_is(scene, ob_arm);
}
void AnimationExporter::dae_baked_animation(std::vector<float> &fra, Object *ob_arm, Bone *bone)
{
std::string ob_name = id_name(ob_arm);
std::string bone_name = bone->name;
char anim_id[200];
if (!fra.size())
return;
BLI_snprintf(anim_id, sizeof(anim_id), "%s_%s_%s", (char *)translate_id(ob_name).c_str(),
(char *)translate_id(bone_name).c_str(), "pose_matrix");
openAnimation(anim_id, COLLADABU::Utils::EMPTY_STRING);
// create input source
std::string input_id = create_source_from_vector(COLLADASW::InputSemantic::INPUT, fra, false, anim_id, "");
// create output source
std::string output_id;
output_id = create_4x4_source(fra, ob_arm, bone, anim_id);
// create interpolations source
std::string interpolation_id = fake_interpolation_source(fra.size(), anim_id, "");
std::string sampler_id = std::string(anim_id) + SAMPLER_ID_SUFFIX;
COLLADASW::LibraryAnimations::Sampler sampler(sw, sampler_id);
std::string empty;
sampler.addInput(COLLADASW::InputSemantic::INPUT, COLLADABU::URI(empty, input_id));
sampler.addInput(COLLADASW::InputSemantic::OUTPUT, COLLADABU::URI(empty, output_id));
// TODO create in/out tangents source
// this input is required
sampler.addInput(COLLADASW::InputSemantic::INTERPOLATION, COLLADABU::URI(empty, interpolation_id));
addSampler(sampler);
std::string target = translate_id(bone_name) + "/transform";
addChannel(COLLADABU::URI(empty, sampler_id), target);
closeAnimation();
}
void AnimationExporter::dae_baked_object_animation(std::vector<float> &fra, Object *ob)
{
std::string ob_name = id_name(ob);
char anim_id[200];
if (!fra.size())
return;
BLI_snprintf(anim_id, sizeof(anim_id), "%s_%s", (char *)translate_id(ob_name).c_str(),
"object_matrix");
openAnimation(anim_id, COLLADABU::Utils::EMPTY_STRING);
// create input source
std::string input_id = create_source_from_vector(COLLADASW::InputSemantic::INPUT, fra, false, anim_id, "");
// create output source
std::string output_id;
output_id = create_4x4_source( fra, ob, NULL, anim_id);
// create interpolations source
std::string interpolation_id = fake_interpolation_source(fra.size(), anim_id, "");
std::string sampler_id = std::string(anim_id) + SAMPLER_ID_SUFFIX;
COLLADASW::LibraryAnimations::Sampler sampler(sw, sampler_id);
std::string empty;
sampler.addInput(COLLADASW::InputSemantic::INPUT, COLLADABU::URI(empty, input_id));
sampler.addInput(COLLADASW::InputSemantic::OUTPUT, COLLADABU::URI(empty, output_id));
// TODO create in/out tangents source
// this input is required
sampler.addInput(COLLADASW::InputSemantic::INTERPOLATION, COLLADABU::URI(empty, interpolation_id));
addSampler(sampler);
std::string target = translate_id(ob_name) + "/transform";
addChannel(COLLADABU::URI(empty, sampler_id), target);
closeAnimation();
}
// dae_bone_animation -> add_bone_animation
// (blend this into dae_bone_animation)
void AnimationExporter::dae_bone_animation(std::vector<float> &fra, float *values, int tm_type, int axis, std::string ob_name, std::string bone_name)
{
const char *axis_names[] = {"X", "Y", "Z"};
const char *axis_name = NULL;
char anim_id[200];
bool is_rot = tm_type == 0;
if (!fra.size())
return;
char rna_path[200];
BLI_snprintf(rna_path, sizeof(rna_path), "pose.bones[\"%s\"].%s", bone_name.c_str(),
tm_type == 0 ? "rotation_quaternion" : (tm_type == 1 ? "scale" : "location"));
if (axis > -1)
axis_name = axis_names[axis];
std::string transform_sid = get_transform_sid(NULL, tm_type, axis_name, false);
BLI_snprintf(anim_id, sizeof(anim_id), "%s_%s_%s", (char *)translate_id(ob_name).c_str(),
(char *)translate_id(bone_name).c_str(), (char *)transform_sid.c_str());
openAnimation(anim_id, COLLADABU::Utils::EMPTY_STRING);
// create input source
std::string input_id = create_source_from_vector(COLLADASW::InputSemantic::INPUT, fra, is_rot, anim_id, axis_name);
// create output source
std::string output_id;
if (axis == -1)
output_id = create_xyz_source(values, fra.size(), anim_id);
else
output_id = create_source_from_array(COLLADASW::InputSemantic::OUTPUT, values, fra.size(), is_rot, anim_id, axis_name);
// create interpolations source
std::string interpolation_id = fake_interpolation_source(fra.size(), anim_id, axis_name);
std::string sampler_id = std::string(anim_id) + SAMPLER_ID_SUFFIX;
COLLADASW::LibraryAnimations::Sampler sampler(sw, sampler_id);
std::string empty;
sampler.addInput(COLLADASW::InputSemantic::INPUT, COLLADABU::URI(empty, input_id));
sampler.addInput(COLLADASW::InputSemantic::OUTPUT, COLLADABU::URI(empty, output_id));
// TODO create in/out tangents source
// this input is required
sampler.addInput(COLLADASW::InputSemantic::INTERPOLATION, COLLADABU::URI(empty, interpolation_id));
addSampler(sampler);
std::string target = translate_id(ob_name + "_" + bone_name) + "/" + transform_sid;
addChannel(COLLADABU::URI(empty, sampler_id), target);
closeAnimation();
}
float AnimationExporter::convert_time(float frame)
{
return FRA2TIME(frame);
}
float AnimationExporter::convert_angle(float angle)
{
return COLLADABU::Math::Utils::radToDegF(angle);
}
std::string AnimationExporter::get_semantic_suffix(COLLADASW::InputSemantic::Semantics semantic)
{
switch (semantic) {
case COLLADASW::InputSemantic::INPUT:
return INPUT_SOURCE_ID_SUFFIX;
case COLLADASW::InputSemantic::OUTPUT:
return OUTPUT_SOURCE_ID_SUFFIX;
case COLLADASW::InputSemantic::INTERPOLATION:
return INTERPOLATION_SOURCE_ID_SUFFIX;
case COLLADASW::InputSemantic::IN_TANGENT:
return INTANGENT_SOURCE_ID_SUFFIX;
case COLLADASW::InputSemantic::OUT_TANGENT:
return OUTTANGENT_SOURCE_ID_SUFFIX;
default:
break;
}
return "";
}
void AnimationExporter::add_source_parameters(COLLADASW::SourceBase::ParameterNameList& param,
COLLADASW::InputSemantic::Semantics semantic, bool is_rot, const char *axis, bool transform)
{
switch (semantic) {
case COLLADASW::InputSemantic::INPUT:
param.push_back("TIME");
break;
case COLLADASW::InputSemantic::OUTPUT:
if (is_rot) {
param.push_back("ANGLE");
}
else {
if (axis) {
param.push_back(axis);
}
else
if (transform) {
param.push_back("TRANSFORM");
}
else { //assumes if axis isn't specified all axises are added
param.push_back("X");
param.push_back("Y");
param.push_back("Z");
}
}
break;
case COLLADASW::InputSemantic::IN_TANGENT:
case COLLADASW::InputSemantic::OUT_TANGENT:
param.push_back("X");
param.push_back("Y");
break;
default:
break;
}
}
void AnimationExporter::get_source_values(BezTriple *bezt, COLLADASW::InputSemantic::Semantics semantic, bool is_angle, float *values, int *length)
{
switch (semantic) {
case COLLADASW::InputSemantic::INPUT:
*length = 1;
values[0] = convert_time(bezt->vec[1][0]);
break;
case COLLADASW::InputSemantic::OUTPUT:
*length = 1;
if (is_angle) {
values[0] = RAD2DEGF(bezt->vec[1][1]);
}
else {
values[0] = bezt->vec[1][1];
}
break;
case COLLADASW::InputSemantic::IN_TANGENT:
*length = 2;
values[0] = convert_time(bezt->vec[0][0]);
if (bezt->ipo != BEZT_IPO_BEZ) {
// We're in a mixed interpolation scenario, set zero as it's irrelevant but value might contain unused data
values[0] = 0;
values[1] = 0;
}
else if (is_angle) {
values[1] = RAD2DEGF(bezt->vec[0][1]);
}
else {
values[1] = bezt->vec[0][1];
}
break;
case COLLADASW::InputSemantic::OUT_TANGENT:
*length = 2;
values[0] = convert_time(bezt->vec[2][0]);
if (bezt->ipo != BEZT_IPO_BEZ) {
// We're in a mixed interpolation scenario, set zero as it's irrelevant but value might contain unused data
values[0] = 0;
values[1] = 0;
}
else if (is_angle) {
values[1] = RAD2DEGF(bezt->vec[2][1]);
}
else {
values[1] = bezt->vec[2][1];
}
break;
default:
*length = 0;
break;
}
}
std::string AnimationExporter::create_source_from_fcurve(COLLADASW::InputSemantic::Semantics semantic, FCurve *fcu, const std::string& anim_id, const char *axis_name)
{
std::string source_id = anim_id + get_semantic_suffix(semantic);
//bool is_angle = STREQ(fcu->rna_path, "rotation");
bool is_angle = false;
if (strstr(fcu->rna_path, "rotation") || strstr(fcu->rna_path,"spot_size")) is_angle = true;
COLLADASW::FloatSourceF source(mSW);
source.setId(source_id);
source.setArrayId(source_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(fcu->totvert);
switch (semantic) {
case COLLADASW::InputSemantic::INPUT:
case COLLADASW::InputSemantic::OUTPUT:
source.setAccessorStride(1);
break;
case COLLADASW::InputSemantic::IN_TANGENT:
case COLLADASW::InputSemantic::OUT_TANGENT:
source.setAccessorStride(2);
break;
default:
break;
}
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
add_source_parameters(param, semantic, is_angle, axis_name, false);
source.prepareToAppendValues();
for (unsigned int i = 0; i < fcu->totvert; i++) {
float values[3]; // be careful!
int length = 0;
get_source_values(&fcu->bezt[i], semantic, is_angle, values, &length);
for (int j = 0; j < length; j++)
source.appendValues(values[j]);
}
source.finish();
return source_id;
}
/*
* Similar to create_source_from_fcurve, but adds conversion of lens
* animation data from focal length to FOV.
*/
std::string AnimationExporter::create_lens_source_from_fcurve(Camera *cam, COLLADASW::InputSemantic::Semantics semantic, FCurve *fcu, const std::string& anim_id)
{
std::string source_id = anim_id + get_semantic_suffix(semantic);
COLLADASW::FloatSourceF source(mSW);
source.setId(source_id);
source.setArrayId(source_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(fcu->totvert);
source.setAccessorStride(1);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
add_source_parameters(param, semantic, false, "", false);
source.prepareToAppendValues();
for (unsigned int i = 0; i < fcu->totvert; i++) {
float values[3]; // be careful!
int length = 0;
get_source_values(&fcu->bezt[i], semantic, false, values, &length);
for (int j = 0; j < length; j++)
{
float val = RAD2DEGF(focallength_to_fov(values[j], cam->sensor_x));
source.appendValues(val);
}
}
source.finish();
return source_id;
}
//Currently called only to get OUTPUT source values ( if rotation and hence the axis is also specified )
std::string AnimationExporter::create_source_from_array(COLLADASW::InputSemantic::Semantics semantic, float *v, int tot, bool is_rot, const std::string& anim_id, const char *axis_name)
{
std::string source_id = anim_id + get_semantic_suffix(semantic);
COLLADASW::FloatSourceF source(mSW);
source.setId(source_id);
source.setArrayId(source_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(tot);
source.setAccessorStride(1);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
add_source_parameters(param, semantic, is_rot, axis_name, false);
source.prepareToAppendValues();
for (int i = 0; i < tot; i++) {
float val = v[i];
////if (semantic == COLLADASW::InputSemantic::INPUT)
// val = convert_time(val);
//else
if (is_rot)
val = RAD2DEGF(val);
source.appendValues(val);
}
source.finish();
return source_id;
}
// only used for sources with INPUT semantic
std::string AnimationExporter::create_source_from_vector(COLLADASW::InputSemantic::Semantics semantic, std::vector<float> &fra, bool is_rot, const std::string& anim_id, const char *axis_name)
{
std::string source_id = anim_id + get_semantic_suffix(semantic);
COLLADASW::FloatSourceF source(mSW);
source.setId(source_id);
source.setArrayId(source_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(fra.size());
source.setAccessorStride(1);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
add_source_parameters(param, semantic, is_rot, axis_name, false);
source.prepareToAppendValues();
std::vector<float>::iterator it;
for (it = fra.begin(); it != fra.end(); it++) {
float val = *it;
//if (semantic == COLLADASW::InputSemantic::INPUT)
val = convert_time(val);
/*else if (is_rot)
val = convert_angle(val);*/
source.appendValues(val);
}
source.finish();
return source_id;
}
std::string AnimationExporter::create_4x4_source(std::vector<float> &frames, Object *ob, Bone *bone, const std::string &anim_id)
{
COLLADASW::InputSemantic::Semantics semantic = COLLADASW::InputSemantic::OUTPUT;
std::string source_id = anim_id + get_semantic_suffix(semantic);
COLLADASW::Float4x4Source source(mSW);
source.setId(source_id);
source.setArrayId(source_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(frames.size());
source.setAccessorStride(16);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
add_source_parameters(param, semantic, false, NULL, true);
source.prepareToAppendValues();
bPoseChannel *parchan = NULL;
bPoseChannel *pchan = NULL;
if (ob->type == OB_ARMATURE && bone) {
bPose *pose = ob->pose;
pchan = BKE_pose_channel_find_name(pose, bone->name);
if (!pchan)
return "";
parchan = pchan->parent;
enable_fcurves(ob->adt->action, bone->name);
}
std::vector<float>::iterator it;
int j = 0;
for (it = frames.begin(); it != frames.end(); it++) {
float mat[4][4], ipar[4][4];
float ctime = BKE_scene_frame_get_from_ctime(scene, *it);
CFRA = BKE_scene_frame_get_from_ctime(scene, *it);
//BKE_scene_update_for_newframe(G.main->eval_ctx, G.main,scene,scene->lay);
BKE_animsys_evaluate_animdata(scene, &ob->id, ob->adt, ctime, ADT_RECALC_ALL);
if (bone) {
if (pchan->flag & POSE_CHAIN) {
enable_fcurves(ob->adt->action, NULL);
BKE_animsys_evaluate_animdata(scene, &ob->id, ob->adt, ctime, ADT_RECALC_ALL);
BKE_pose_where_is(scene, ob);
}
else {
BKE_pose_where_is_bone(scene, ob, pchan, ctime, 1);
}
// compute bone local mat
if (bone->parent) {
invert_m4_m4(ipar, parchan->pose_mat);
mul_m4_m4m4(mat, ipar, pchan->pose_mat);
}
else
copy_m4_m4(mat, pchan->pose_mat);
// OPEN_SIM_COMPATIBILITY
// AFAIK animation to second life is via BVH, but no
// reason to not have the collada-animation be correct
if (export_settings->open_sim) {
float temp[4][4];
copy_m4_m4(temp, bone->arm_mat);
temp[3][0] = temp[3][1] = temp[3][2] = 0.0f;
invert_m4(temp);
mul_m4_m4m4(mat, mat, temp);
if (bone->parent) {
copy_m4_m4(temp, bone->parent->arm_mat);
temp[3][0] = temp[3][1] = temp[3][2] = 0.0f;
mul_m4_m4m4(mat, temp, mat);
}
}
}
else {
calc_ob_mat_at_time(ob, ctime, mat);
}
UnitConverter converter;
double outmat[4][4];
converter.mat4_to_dae_double(outmat, mat);
source.appendValues(outmat);
j++;
BIK_release_tree(scene, ob, ctime);
}
if (ob->adt) {
enable_fcurves(ob->adt->action, NULL);
}
source.finish();
return source_id;
}
// only used for sources with OUTPUT semantic ( locations and scale)
std::string AnimationExporter::create_xyz_source(float *v, int tot, const std::string& anim_id)
{
COLLADASW::InputSemantic::Semantics semantic = COLLADASW::InputSemantic::OUTPUT;
std::string source_id = anim_id + get_semantic_suffix(semantic);
COLLADASW::FloatSourceF source(mSW);
source.setId(source_id);
source.setArrayId(source_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(tot);
source.setAccessorStride(3);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
add_source_parameters(param, semantic, false, NULL, false);
source.prepareToAppendValues();
for (int i = 0; i < tot; i++) {
source.appendValues(*v, *(v + 1), *(v + 2));
v += 3;
}
source.finish();
return source_id;
}
std::string AnimationExporter::create_interpolation_source(FCurve *fcu, const std::string& anim_id, const char *axis_name, bool *has_tangents)
{
std::string source_id = anim_id + get_semantic_suffix(COLLADASW::InputSemantic::INTERPOLATION);
COLLADASW::NameSource source(mSW);
source.setId(source_id);
source.setArrayId(source_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(fcu->totvert);
source.setAccessorStride(1);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
param.push_back("INTERPOLATION");
source.prepareToAppendValues();
*has_tangents = false;
for (unsigned int i = 0; i < fcu->totvert; i++) {
if (fcu->bezt[i].ipo == BEZT_IPO_BEZ) {
source.appendValues(BEZIER_NAME);
*has_tangents = true;
}
else if (fcu->bezt[i].ipo == BEZT_IPO_CONST) {
source.appendValues(STEP_NAME);
}
else { // BEZT_IPO_LIN
source.appendValues(LINEAR_NAME);
}
}
// unsupported? -- HERMITE, CARDINAL, BSPLINE, NURBS
source.finish();
return source_id;
}
std::string AnimationExporter::fake_interpolation_source(int tot, const std::string& anim_id, const char *axis_name)
{
std::string source_id = anim_id + get_semantic_suffix(COLLADASW::InputSemantic::INTERPOLATION);
COLLADASW::NameSource source(mSW);
source.setId(source_id);
source.setArrayId(source_id + ARRAY_ID_SUFFIX);
source.setAccessorCount(tot);
source.setAccessorStride(1);
COLLADASW::SourceBase::ParameterNameList &param = source.getParameterNameList();
param.push_back("INTERPOLATION");
source.prepareToAppendValues();
for (int i = 0; i < tot; i++) {
source.appendValues(LINEAR_NAME);
}
source.finish();
return source_id;
}
std::string AnimationExporter::get_light_param_sid(char *rna_path, int tm_type, const char *axis_name, bool append_axis)
{
std::string tm_name;
// when given rna_path, determine tm_type from it
if (rna_path) {
char *name = extract_transform_name(rna_path);
if (STREQ(name, "color"))
tm_type = 1;
else if (STREQ(name, "spot_size"))
tm_type = 2;
else if (STREQ(name, "spot_blend"))
tm_type = 3;
else if (STREQ(name, "distance"))
tm_type = 4;
else
tm_type = -1;
}
switch (tm_type) {
case 1:
tm_name = "color";
break;
case 2:
tm_name = "fall_off_angle";
break;
case 3:
tm_name = "fall_off_exponent";
break;
case 4:
tm_name = "blender/blender_dist";
break;
default:
tm_name = "";
break;
}
if (tm_name.size()) {
if (axis_name[0])
return tm_name + "." + std::string(axis_name);
else
return tm_name;
}
return std::string("");
}
std::string AnimationExporter::get_camera_param_sid(char *rna_path, int tm_type, const char *axis_name, bool append_axis)
{
std::string tm_name;
// when given rna_path, determine tm_type from it
if (rna_path) {
char *name = extract_transform_name(rna_path);
if (STREQ(name, "lens"))
tm_type = 0;
else if (STREQ(name, "ortho_scale"))
tm_type = 1;
else if (STREQ(name, "clip_end"))
tm_type = 2;
else if (STREQ(name, "clip_start"))
tm_type = 3;
else
tm_type = -1;
}
switch (tm_type) {
case 0:
tm_name = "xfov";
break;
case 1:
tm_name = "xmag";
break;
case 2:
tm_name = "zfar";
break;
case 3:
tm_name = "znear";
break;
default:
tm_name = "";
break;
}
if (tm_name.size()) {
if (axis_name[0])
return tm_name + "." + std::string(axis_name);
else
return tm_name;
}
return std::string("");
}
// Assign sid of the animated parameter or transform
// for rotation, axis name is always appended and the value of append_axis is ignored
std::string AnimationExporter::get_transform_sid(char *rna_path, int tm_type, const char *axis_name, bool append_axis)
{
std::string tm_name;
bool is_angle = false;
// when given rna_path, determine tm_type from it
if (rna_path) {
char *name = extract_transform_name(rna_path);
if (STREQ(name, "rotation_euler"))
tm_type = 0;
else if (STREQ(name, "rotation_quaternion"))
tm_type = 1;
else if (STREQ(name, "scale"))
tm_type = 2;
else if (STREQ(name, "location"))
tm_type = 3;
else if (STREQ(name, "specular_hardness"))
tm_type = 4;
else if (STREQ(name, "specular_color"))
tm_type = 5;
else if (STREQ(name, "diffuse_color"))
tm_type = 6;
else if (STREQ(name, "alpha"))
tm_type = 7;
else if (STREQ(name, "ior"))
tm_type = 8;
else
tm_type = -1;
}
switch (tm_type) {
case 0:
case 1:
tm_name = "rotation";
is_angle = true;
break;
case 2:
tm_name = "scale";
break;
case 3:
tm_name = "location";
break;
case 4:
tm_name = "shininess";
break;
case 5:
tm_name = "specular";
break;
case 6:
tm_name = "diffuse";
break;
case 7:
tm_name = "transparency";
break;
case 8:
tm_name = "index_of_refraction";
break;
default:
tm_name = "";
break;
}
if (tm_name.size()) {
if (is_angle)
return tm_name + std::string(axis_name) + ".ANGLE";
else
if (axis_name[0])
return tm_name + "." + std::string(axis_name);
else
return tm_name;
}
return std::string("");
}
char *AnimationExporter::extract_transform_name(char *rna_path)
{
char *dot = strrchr(rna_path, '.');
return dot ? (dot + 1) : rna_path;
}
//find keyframes of all the objects animations
void AnimationExporter::find_frames(Object *ob, std::vector<float> &fra)
{
if (ob->adt && ob->adt->action) {
FCurve *fcu = (FCurve *)ob->adt->action->curves.first;
for (; fcu; fcu = fcu->next) {
for (unsigned int i = 0; i < fcu->totvert; i++) {
float f = fcu->bezt[i].vec[1][0];
if (std::find(fra.begin(), fra.end(), f) == fra.end())
fra.push_back(f);
}
}
// keep the keys in ascending order
std::sort(fra.begin(), fra.end());
}
}
// enable fcurves driving a specific bone, disable all the rest
// if bone_name = NULL enable all fcurves
void AnimationExporter::enable_fcurves(bAction *act, char *bone_name)
{
FCurve *fcu;
char prefix[200];
if (bone_name)
BLI_snprintf(prefix, sizeof(prefix), "pose.bones[\"%s\"]", bone_name);
for (fcu = (FCurve *)act->curves.first; fcu; fcu = fcu->next) {
if (bone_name) {
if (STREQLEN(fcu->rna_path, prefix, strlen(prefix)))
fcu->flag &= ~FCURVE_DISABLED;
else
fcu->flag |= FCURVE_DISABLED;
}
else {
fcu->flag &= ~FCURVE_DISABLED;
}
}
}
bool AnimationExporter::hasAnimations(Scene *sce)
{
LinkNode *node;
for (node=this->export_settings->export_set; node; node=node->next) {
Object *ob = (Object *)node->link;
FCurve *fcu = 0;
//Check for object transform animations
if (ob->adt && ob->adt->action)
fcu = (FCurve *)ob->adt->action->curves.first;
//Check for Lamp parameter animations
else if ( (ob->type == OB_LAMP) && ((Lamp *)ob->data)->adt && ((Lamp *)ob->data)->adt->action)
fcu = (FCurve *)(((Lamp *)ob->data)->adt->action->curves.first);
//Check for Camera parameter animations
else if ( (ob->type == OB_CAMERA) && ((Camera *)ob->data)->adt && ((Camera *)ob->data)->adt->action)
fcu = (FCurve *)(((Camera *)ob->data)->adt->action->curves.first);
//Check Material Effect parameter animations.
for (int a = 0; a < ob->totcol; a++) {
Material *ma = give_current_material(ob, a + 1);
if (!ma) continue;
if (ma->adt && ma->adt->action) {
fcu = (FCurve *)ma->adt->action->curves.first;
}
}
//check shape key animation
if (!fcu) {
Key *key = BKE_key_from_object(ob);
if (key && key->adt && key->adt->action)
fcu = (FCurve *)key->adt->action->curves.first;
}
if (fcu)
return true;
}
return false;
}
//------------------------------- Not used in the new system.--------------------------------------------------------
void AnimationExporter::find_rotation_frames(Object *ob, std::vector<float> &fra, const char *prefix, int rotmode)
{
if (rotmode > 0)
find_frames(ob, fra, prefix, "rotation_euler");
else if (rotmode == ROT_MODE_QUAT)
find_frames(ob, fra, prefix, "rotation_quaternion");
/*else if (rotmode == ROT_MODE_AXISANGLE)
;*/
}
void AnimationExporter::find_frames(Object *ob, std::vector<float> &fra, const char *prefix, const char *tm_name)
{
if (ob->adt && ob->adt->action) {
FCurve *fcu = (FCurve *)ob->adt->action->curves.first;
for (; fcu; fcu = fcu->next) {
if (prefix && !STREQLEN(prefix, fcu->rna_path, strlen(prefix)))
continue;
char *name = extract_transform_name(fcu->rna_path);
if (STREQ(name, tm_name)) {
for (unsigned int i = 0; i < fcu->totvert; i++) {
float f = fcu->bezt[i].vec[1][0];
if (std::find(fra.begin(), fra.end(), f) == fra.end())
fra.push_back(f);
}
}
}
// keep the keys in ascending order
std::sort(fra.begin(), fra.end());
}
}
void AnimationExporter::write_bone_animation(Object *ob_arm, Bone *bone)
{
if (!ob_arm->adt)
return;
//write bone animations for 3 transform types
//i=0 --> rotations
//i=1 --> scale
//i=2 --> location
for (int i = 0; i < 3; i++)
sample_and_write_bone_animation(ob_arm, bone, i);
for (Bone *child = (Bone *)bone->childbase.first; child; child = child->next)
write_bone_animation(ob_arm, child);
}
void AnimationExporter::sample_and_write_bone_animation(Object *ob_arm, Bone *bone, int transform_type)
{
bArmature *arm = (bArmature *)ob_arm->data;
int flag = arm->flag;
std::vector<float> fra;
char prefix[256];
BLI_snprintf(prefix, sizeof(prefix), "pose.bones[\"%s\"]", bone->name);
bPoseChannel *pchan = BKE_pose_channel_find_name(ob_arm->pose, bone->name);
if (!pchan)
return;
//Fill frame array with key frame values framed at \param:transform_type
switch (transform_type) {
case 0:
find_rotation_frames(ob_arm, fra, prefix, pchan->rotmode);
break;
case 1:
find_frames(ob_arm, fra, prefix, "scale");
break;
case 2:
find_frames(ob_arm, fra, prefix, "location");
break;
default:
return;
}
// exit rest position
if (flag & ARM_RESTPOS) {
arm->flag &= ~ARM_RESTPOS;
BKE_pose_where_is(scene, ob_arm);
}
//v array will hold all values which will be exported.
if (fra.size()) {
float *values = (float *)MEM_callocN(sizeof(float) * 3 * fra.size(), "temp. anim frames");
sample_animation(values, fra, transform_type, bone, ob_arm, pchan);
if (transform_type == 0) {
// write x, y, z curves separately if it is rotation
float *axisValues = (float *)MEM_callocN(sizeof(float) * fra.size(), "temp. anim frames");
for (int i = 0; i < 3; i++) {
for (unsigned int j = 0; j < fra.size(); j++)
axisValues[j] = values[j * 3 + i];
dae_bone_animation(fra, axisValues, transform_type, i, id_name(ob_arm), bone->name);
}
MEM_freeN(axisValues);
}
else {
// write xyz at once if it is location or scale
dae_bone_animation(fra, values, transform_type, -1, id_name(ob_arm), bone->name);
}
MEM_freeN(values);
}
// restore restpos
if (flag & ARM_RESTPOS)
arm->flag = flag;
BKE_pose_where_is(scene, ob_arm);
}
void AnimationExporter::sample_animation(float *v, std::vector<float> &frames, int type, Bone *bone, Object *ob_arm, bPoseChannel *pchan)
{
bPoseChannel *parchan = NULL;
bPose *pose = ob_arm->pose;
pchan = BKE_pose_channel_find_name(pose, bone->name);
if (!pchan)
return;
parchan = pchan->parent;
enable_fcurves(ob_arm->adt->action, bone->name);
std::vector<float>::iterator it;
for (it = frames.begin(); it != frames.end(); it++) {
float mat[4][4], ipar[4][4];
float ctime = BKE_scene_frame_get_from_ctime(scene, *it);
BKE_animsys_evaluate_animdata(scene, &ob_arm->id, ob_arm->adt, ctime, ADT_RECALC_ANIM);
BKE_pose_where_is_bone(scene, ob_arm, pchan, ctime, 1);
// compute bone local mat
if (bone->parent) {
invert_m4_m4(ipar, parchan->pose_mat);
mul_m4_m4m4(mat, ipar, pchan->pose_mat);
}
else
copy_m4_m4(mat, pchan->pose_mat);
switch (type) {
case 0:
mat4_to_eul(v, mat);
break;
case 1:
mat4_to_size(v, mat);
break;
case 2:
copy_v3_v3(v, mat[3]);
break;
}
v += 3;
}
enable_fcurves(ob_arm->adt->action, NULL);
}
bool AnimationExporter::validateConstraints(bConstraint *con)
{
bool valid = true;
bConstraintTypeInfo *cti = BKE_constraint_typeinfo_get(con);
/* these we can skip completely (invalid constraints...) */
if (cti == NULL) valid = false;
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) valid = false;
/* these constraints can't be evaluated anyway */
if (cti->evaluate_constraint == NULL) valid = false;
/* influence == 0 should be ignored */
if (con->enforce == 0.0f) valid = false;
return valid;
}
void AnimationExporter::calc_ob_mat_at_time(Object *ob, float ctime , float mat[][4])
{
ListBase *conlist = get_active_constraints(ob);
bConstraint *con;
for (con = (bConstraint *)conlist->first; con; con = con->next) {
ListBase targets = {NULL, NULL};
bConstraintTypeInfo *cti = BKE_constraint_typeinfo_get(con);
if (cti && cti->get_constraint_targets) {
bConstraintTarget *ct;
Object *obtar;
cti->get_constraint_targets(con, &targets);
for (ct = (bConstraintTarget *)targets.first; ct; ct = ct->next) {
obtar = ct->tar;
if (obtar) {
BKE_animsys_evaluate_animdata(scene, &obtar->id, obtar->adt, ctime, ADT_RECALC_ANIM);
BKE_object_where_is_calc_time(scene, obtar, ctime);
}
}
if (cti->flush_constraint_targets)
cti->flush_constraint_targets(con, &targets, 1);
}
}
BKE_object_where_is_calc_time(scene, ob, ctime);
copy_m4_m4(mat, ob->obmat);
}