tornavis/source/blender/blenkernel/intern/seqeffects.c

3156 lines
75 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s):
* - Blender Foundation, 2003-2009
* - Peter Schlaile <peter [at] schlaile [dot] de> 2005/2006
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "PIL_dynlib.h"
#include "DNA_scene_types.h"
#include "DNA_sequence_types.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "BKE_global.h"
#include "BKE_plugin_types.h"
#include "BKE_sequence.h"
#include "BKE_texture.h"
#include "BKE_utildefines.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
/* **** XXX **** */
static void error() {}
#define INT 96
#define FLO 128
/* **** XXX **** */
/* Glow effect */
enum {
GlowR=0,
GlowG=1,
GlowB=2,
GlowA=3
};
/* **********************************************************************
PLUGINS
********************************************************************** */
static void open_plugin_seq(PluginSeq *pis, const char *seqname)
{
int (*version)();
void* (*alloc_private)();
char *cp;
/* to be sure: (is tested for) */
pis->doit= 0;
pis->pname= 0;
pis->varstr= 0;
pis->cfra= 0;
pis->version= 0;
pis->instance_private_data = 0;
/* clear the error list */
PIL_dynlib_get_error_as_string(NULL);
/* if(pis->handle) PIL_dynlib_close(pis->handle); */
/* pis->handle= 0; */
/* open the needed object */
pis->handle= PIL_dynlib_open(pis->name);
if(test_dlerr(pis->name, pis->name)) return;
if (pis->handle != 0) {
/* find the address of the version function */
version= (int (*)())PIL_dynlib_find_symbol(pis->handle, "plugin_seq_getversion");
if (test_dlerr(pis->name, "plugin_seq_getversion")) return;
if (version != 0) {
pis->version= version();
if (pis->version >= 2 && pis->version <= 6) {
int (*info_func)(PluginInfo *);
PluginInfo *info= (PluginInfo*) MEM_mallocN(sizeof(PluginInfo), "plugin_info");
info_func= (int (*)(PluginInfo *))PIL_dynlib_find_symbol(pis->handle, "plugin_getinfo");
if(info_func == NULL) error("No info func");
else {
info_func(info);
pis->pname= info->name;
pis->vars= info->nvars;
pis->cfra= info->cfra;
pis->varstr= info->varstr;
pis->doit= (void(*)(void))info->seq_doit;
if (info->init)
info->init();
}
MEM_freeN(info);
cp= PIL_dynlib_find_symbol(pis->handle, "seqname");
if(cp) strncpy(cp, seqname, 21);
} else {
printf ("Plugin returned unrecognized version number\n");
return;
}
}
alloc_private = (void* (*)())PIL_dynlib_find_symbol(
pis->handle, "plugin_seq_alloc_private_data");
if (alloc_private) {
pis->instance_private_data = alloc_private();
}
pis->current_private_data = (void**)
PIL_dynlib_find_symbol(
pis->handle, "plugin_private_data");
}
}
static PluginSeq *add_plugin_seq(const char *str, const char *seqname)
{
PluginSeq *pis;
VarStruct *varstr;
int a;
pis= MEM_callocN(sizeof(PluginSeq), "PluginSeq");
strncpy(pis->name, str, FILE_MAXDIR+FILE_MAXFILE);
open_plugin_seq(pis, seqname);
if(pis->doit==0) {
if(pis->handle==0) error("no plugin: %s", str);
else error("in plugin: %s", str);
MEM_freeN(pis);
return 0;
}
/* default values */
varstr= pis->varstr;
for(a=0; a<pis->vars; a++, varstr++) {
if( (varstr->type & FLO)==FLO)
pis->data[a]= varstr->def;
else if( (varstr->type & INT)==INT)
*((int *)(pis->data+a))= (int) varstr->def;
}
return pis;
}
static void free_plugin_seq(PluginSeq *pis)
{
if(pis==0) return;
/* no PIL_dynlib_close: same plugin can be opened multiple times with 1 handle */
if (pis->instance_private_data) {
void (*free_private)(void *);
free_private = (void (*)(void *))PIL_dynlib_find_symbol(
pis->handle, "plugin_seq_free_private_data");
if (free_private) {
free_private(pis->instance_private_data);
}
}
MEM_freeN(pis);
}
static void init_plugin(Sequence * seq, const char * fname)
{
seq->plugin= (PluginSeq *)add_plugin_seq(fname, seq->name+2);
}
/*
* FIXME: should query plugin! Could be generator, that needs zero inputs...
*/
static int num_inputs_plugin()
{
return 1;
}
static void load_plugin(Sequence * seq)
{
if (seq) {
open_plugin_seq(seq->plugin, seq->name+2);
}
}
static void copy_plugin(Sequence * dst, Sequence * src)
{
if(src->plugin) {
dst->plugin= MEM_dupallocN(src->plugin);
open_plugin_seq(dst->plugin, dst->name+2);
}
}
static ImBuf * IMB_cast_away_list(ImBuf * i)
{
if (!i) {
return 0;
}
return (ImBuf*) (((void**) i) + 2);
}
static void do_plugin_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
char *cp;
int float_rendering;
int use_temp_bufs = 0; /* Are needed since blur.c (and maybe some other
old plugins) do very bad stuff
with imbuf-internals */
if(seq->plugin && seq->plugin->doit) {
if(seq->plugin->cfra)
*(seq->plugin->cfra)= cfra;
// XXX *(seq->plugin->cfra)= frame_to_float(scene, cfra);
cp = PIL_dynlib_find_symbol(
seq->plugin->handle, "seqname");
if(cp) strncpy(cp, seq->name+2, 22);
if (seq->plugin->current_private_data) {
*seq->plugin->current_private_data
= seq->plugin->instance_private_data;
}
float_rendering = (out->rect_float != NULL);
if (seq->plugin->version<=3 && float_rendering) {
use_temp_bufs = 1;
if (ibuf1) {
ibuf1 = IMB_dupImBuf(ibuf1);
IMB_rect_from_float(ibuf1);
imb_freerectfloatImBuf(ibuf1);
ibuf1->flags &= ~IB_rectfloat;
}
if (ibuf2) {
ibuf2 = IMB_dupImBuf(ibuf2);
IMB_rect_from_float(ibuf2);
imb_freerectfloatImBuf(ibuf2);
ibuf2->flags &= ~IB_rectfloat;
}
if (ibuf3) {
ibuf3 = IMB_dupImBuf(ibuf3);
IMB_rect_from_float(ibuf3);
imb_freerectfloatImBuf(ibuf3);
ibuf3->flags &= ~IB_rectfloat;
}
if (!out->rect) imb_addrectImBuf(out);
imb_freerectfloatImBuf(out);
out->flags &= ~IB_rectfloat;
}
if (seq->plugin->version<=2) {
if(ibuf1) IMB_convert_rgba_to_abgr(ibuf1);
if(ibuf2) IMB_convert_rgba_to_abgr(ibuf2);
if(ibuf3) IMB_convert_rgba_to_abgr(ibuf3);
}
if (seq->plugin->version<=4) {
((SeqDoit)seq->plugin->doit)(
seq->plugin->data, facf0, facf1, x, y,
IMB_cast_away_list(ibuf1),
IMB_cast_away_list(ibuf2),
IMB_cast_away_list(out),
IMB_cast_away_list(ibuf3));
} else {
((SeqDoit)seq->plugin->doit)(
seq->plugin->data, facf0, facf1, x, y,
ibuf1, ibuf2, out, ibuf3);
}
if (seq->plugin->version<=2) {
if (!use_temp_bufs) {
if(ibuf1) IMB_convert_rgba_to_abgr(ibuf1);
if(ibuf2) IMB_convert_rgba_to_abgr(ibuf2);
if(ibuf3) IMB_convert_rgba_to_abgr(ibuf3);
}
IMB_convert_rgba_to_abgr(out);
}
if (seq->plugin->version<=3 && float_rendering) {
IMB_float_from_rect(out);
}
if (use_temp_bufs) {
if (ibuf1) IMB_freeImBuf(ibuf1);
if (ibuf2) IMB_freeImBuf(ibuf2);
if (ibuf3) IMB_freeImBuf(ibuf3);
}
}
}
static int do_plugin_early_out(struct Sequence *seq,
float facf0, float facf1)
{
return 0;
}
static void free_plugin(struct Sequence * seq)
{
free_plugin_seq(seq->plugin);
seq->plugin = 0;
}
/* **********************************************************************
ALPHA OVER
********************************************************************** */
static void init_alpha_over_or_under(Sequence * seq)
{
Sequence * seq1 = seq->seq1;
Sequence * seq2 = seq->seq2;
seq->seq2= seq1;
seq->seq1= seq2;
}
static void do_alphaover_effect_byte(float facf0, float facf1, int x, int y,
char * rect1, char *rect2, char *out)
{
int fac2, mfac, fac, fac4;
int xo, tempc;
char *rt1, *rt2, *rt;
xo= x;
rt1= (char *)rect1;
rt2= (char *)rect2;
rt= (char *)out;
fac2= (int)(256.0*facf0);
fac4= (int)(256.0*facf1);
while(y--) {
x= xo;
while(x--) {
/* rt = rt1 over rt2 (alpha from rt1) */
fac= fac2;
mfac= 256 - ( (fac2*rt1[3])>>8 );
if(fac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
else if(mfac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt1);
else {
tempc= ( fac*rt1[0] + mfac*rt2[0])>>8;
if(tempc>255) rt[0]= 255; else rt[0]= tempc;
tempc= ( fac*rt1[1] + mfac*rt2[1])>>8;
if(tempc>255) rt[1]= 255; else rt[1]= tempc;
tempc= ( fac*rt1[2] + mfac*rt2[2])>>8;
if(tempc>255) rt[2]= 255; else rt[2]= tempc;
tempc= ( fac*rt1[3] + mfac*rt2[3])>>8;
if(tempc>255) rt[3]= 255; else rt[3]= tempc;
}
rt1+= 4; rt2+= 4; rt+= 4;
}
if(y==0) break;
y--;
x= xo;
while(x--) {
fac= fac4;
mfac= 256 - ( (fac4*rt1[3])>>8 );
if(fac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
else if(mfac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt1);
else {
tempc= ( fac*rt1[0] + mfac*rt2[0])>>8;
if(tempc>255) rt[0]= 255; else rt[0]= tempc;
tempc= ( fac*rt1[1] + mfac*rt2[1])>>8;
if(tempc>255) rt[1]= 255; else rt[1]= tempc;
tempc= ( fac*rt1[2] + mfac*rt2[2])>>8;
if(tempc>255) rt[2]= 255; else rt[2]= tempc;
tempc= ( fac*rt1[3] + mfac*rt2[3])>>8;
if(tempc>255) rt[3]= 255; else rt[3]= tempc;
}
rt1+= 4; rt2+= 4; rt+= 4;
}
}
}
static void do_alphaover_effect_float(float facf0, float facf1, int x, int y,
float * rect1, float *rect2, float *out)
{
float fac2, mfac, fac, fac4;
int xo;
float *rt1, *rt2, *rt;
xo= x;
rt1= rect1;
rt2= rect2;
rt= out;
fac2= facf0;
fac4= facf1;
while(y--) {
x= xo;
while(x--) {
/* rt = rt1 over rt2 (alpha from rt1) */
fac= fac2;
mfac= 1.0 - (fac2*rt1[3]) ;
if(fac <= 0.0) {
memcpy(rt, rt2, 4 * sizeof(float));
} else if(mfac <=0) {
memcpy(rt, rt1, 4 * sizeof(float));
} else {
rt[0] = fac*rt1[0] + mfac*rt2[0];
rt[1] = fac*rt1[1] + mfac*rt2[1];
rt[2] = fac*rt1[2] + mfac*rt2[2];
rt[3] = fac*rt1[3] + mfac*rt2[3];
}
rt1+= 4; rt2+= 4; rt+= 4;
}
if(y==0) break;
y--;
x= xo;
while(x--) {
fac= fac4;
mfac= 1.0 - (fac4*rt1[3]);
if(fac <= 0.0) {
memcpy(rt, rt2, 4 * sizeof(float));
} else if(mfac <= 0.0) {
memcpy(rt, rt1, 4 * sizeof(float));
} else {
rt[0] = fac*rt1[0] + mfac*rt2[0];
rt[1] = fac*rt1[1] + mfac*rt2[1];
rt[2] = fac*rt1[2] + mfac*rt2[2];
rt[3] = fac*rt1[3] + mfac*rt2[3];
}
rt1+= 4; rt2+= 4; rt+= 4;
}
}
}
static void do_alphaover_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
if (out->rect_float) {
do_alphaover_effect_float(
facf0, facf1, x, y,
ibuf1->rect_float, ibuf2->rect_float,
out->rect_float);
} else {
do_alphaover_effect_byte(
facf0, facf1, x, y,
(char*) ibuf1->rect, (char*) ibuf2->rect,
(char*) out->rect);
}
}
/* **********************************************************************
ALPHA UNDER
********************************************************************** */
void do_alphaunder_effect_byte(
float facf0, float facf1, int x, int y, char *rect1,
char *rect2, char *out)
{
int fac2, mfac, fac, fac4;
int xo;
char *rt1, *rt2, *rt;
xo= x;
rt1= rect1;
rt2= rect2;
rt= out;
fac2= (int)(256.0*facf0);
fac4= (int)(256.0*facf1);
while(y--) {
x= xo;
while(x--) {
/* rt = rt1 under rt2 (alpha from rt2) */
/* this complex optimalisation is because the
* 'skybuf' can be crossed in
*/
if(rt2[3]==0 && fac2==256) *( (unsigned int *)rt) = *( (unsigned int *)rt1);
else if(rt2[3]==255) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
else {
mfac= rt2[3];
fac= (fac2*(256-mfac))>>8;
if(fac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
else {
rt[0]= ( fac*rt1[0] + mfac*rt2[0])>>8;
rt[1]= ( fac*rt1[1] + mfac*rt2[1])>>8;
rt[2]= ( fac*rt1[2] + mfac*rt2[2])>>8;
rt[3]= ( fac*rt1[3] + mfac*rt2[3])>>8;
}
}
rt1+= 4; rt2+= 4; rt+= 4;
}
if(y==0) break;
y--;
x= xo;
while(x--) {
if(rt2[3]==0 && fac4==256) *( (unsigned int *)rt) = *( (unsigned int *)rt1);
else if(rt2[3]==255) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
else {
mfac= rt2[3];
fac= (fac4*(256-mfac))>>8;
if(fac==0) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
else {
rt[0]= ( fac*rt1[0] + mfac*rt2[0])>>8;
rt[1]= ( fac*rt1[1] + mfac*rt2[1])>>8;
rt[2]= ( fac*rt1[2] + mfac*rt2[2])>>8;
rt[3]= ( fac*rt1[3] + mfac*rt2[3])>>8;
}
}
rt1+= 4; rt2+= 4; rt+= 4;
}
}
}
static void do_alphaunder_effect_float(float facf0, float facf1, int x, int y,
float *rect1, float *rect2,
float *out)
{
float fac2, mfac, fac, fac4;
int xo;
float *rt1, *rt2, *rt;
xo= x;
rt1= rect1;
rt2= rect2;
rt= out;
fac2= facf0;
fac4= facf1;
while(y--) {
x= xo;
while(x--) {
/* rt = rt1 under rt2 (alpha from rt2) */
/* this complex optimalisation is because the
* 'skybuf' can be crossed in
*/
if( rt2[3]<=0 && fac2>=1.0) {
memcpy(rt, rt1, 4 * sizeof(float));
} else if(rt2[3]>=1.0) {
memcpy(rt, rt2, 4 * sizeof(float));
} else {
mfac = rt2[3];
fac = fac2 * (1.0 - mfac);
if(fac == 0) {
memcpy(rt, rt2, 4 * sizeof(float));
} else {
rt[0]= fac*rt1[0] + mfac*rt2[0];
rt[1]= fac*rt1[1] + mfac*rt2[1];
rt[2]= fac*rt1[2] + mfac*rt2[2];
rt[3]= fac*rt1[3] + mfac*rt2[3];
}
}
rt1+= 4; rt2+= 4; rt+= 4;
}
if(y==0) break;
y--;
x= xo;
while(x--) {
if(rt2[3]<=0 && fac4 >= 1.0) {
memcpy(rt, rt1, 4 * sizeof(float));
} else if(rt2[3]>=1.0) {
memcpy(rt, rt2, 4 * sizeof(float));
} else {
mfac= rt2[3];
fac= fac4*(1.0-mfac);
if(fac == 0) {
memcpy(rt, rt2, 4 * sizeof(float));
} else {
rt[0]= fac * rt1[0] + mfac * rt2[0];
rt[1]= fac * rt1[1] + mfac * rt2[1];
rt[2]= fac * rt1[2] + mfac * rt2[2];
rt[3]= fac * rt1[3] + mfac * rt2[3];
}
}
rt1+= 4; rt2+= 4; rt+= 4;
}
}
}
static void do_alphaunder_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
if (out->rect_float) {
do_alphaunder_effect_float(
facf0, facf1, x, y,
ibuf1->rect_float, ibuf2->rect_float,
out->rect_float);
} else {
do_alphaunder_effect_byte(
facf0, facf1, x, y,
(char*) ibuf1->rect, (char*) ibuf2->rect,
(char*) out->rect);
}
}
/* **********************************************************************
CROSS
********************************************************************** */
void do_cross_effect_byte(float facf0, float facf1, int x, int y,
char *rect1, char *rect2,
char *out)
{
int fac1, fac2, fac3, fac4;
int xo;
char *rt1, *rt2, *rt;
xo= x;
rt1= rect1;
rt2= rect2;
rt= out;
fac2= (int)(256.0*facf0);
fac1= 256-fac2;
fac4= (int)(256.0*facf1);
fac3= 256-fac4;
while(y--) {
x= xo;
while(x--) {
rt[0]= (fac1*rt1[0] + fac2*rt2[0])>>8;
rt[1]= (fac1*rt1[1] + fac2*rt2[1])>>8;
rt[2]= (fac1*rt1[2] + fac2*rt2[2])>>8;
rt[3]= (fac1*rt1[3] + fac2*rt2[3])>>8;
rt1+= 4; rt2+= 4; rt+= 4;
}
if(y==0) break;
y--;
x= xo;
while(x--) {
rt[0]= (fac3*rt1[0] + fac4*rt2[0])>>8;
rt[1]= (fac3*rt1[1] + fac4*rt2[1])>>8;
rt[2]= (fac3*rt1[2] + fac4*rt2[2])>>8;
rt[3]= (fac3*rt1[3] + fac4*rt2[3])>>8;
rt1+= 4; rt2+= 4; rt+= 4;
}
}
}
void do_cross_effect_float(float facf0, float facf1, int x, int y,
float *rect1, float *rect2, float *out)
{
float fac1, fac2, fac3, fac4;
int xo;
float *rt1, *rt2, *rt;
xo= x;
rt1= rect1;
rt2= rect2;
rt= out;
fac2= facf0;
fac1= 1.0 - fac2;
fac4= facf1;
fac3= 1.0 - fac4;
while(y--) {
x= xo;
while(x--) {
rt[0]= fac1*rt1[0] + fac2*rt2[0];
rt[1]= fac1*rt1[1] + fac2*rt2[1];
rt[2]= fac1*rt1[2] + fac2*rt2[2];
rt[3]= fac1*rt1[3] + fac2*rt2[3];
rt1+= 4; rt2+= 4; rt+= 4;
}
if(y==0) break;
y--;
x= xo;
while(x--) {
rt[0]= fac3*rt1[0] + fac4*rt2[0];
rt[1]= fac3*rt1[1] + fac4*rt2[1];
rt[2]= fac3*rt1[2] + fac4*rt2[2];
rt[3]= fac3*rt1[3] + fac4*rt2[3];
rt1+= 4; rt2+= 4; rt+= 4;
}
}
}
/* carefull: also used by speed effect! */
static void do_cross_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
if (out->rect_float) {
do_cross_effect_float(
facf0, facf1, x, y,
ibuf1->rect_float, ibuf2->rect_float,
out->rect_float);
} else {
do_cross_effect_byte(
facf0, facf1, x, y,
(char*) ibuf1->rect, (char*) ibuf2->rect,
(char*) out->rect);
}
}
/* **********************************************************************
GAMMA CROSS
********************************************************************** */
/* copied code from initrender.c */
static unsigned short gamtab[65536];
static unsigned short igamtab1[256];
static int gamma_tabs_init = FALSE;
#define RE_GAMMA_TABLE_SIZE 400
static float gamma_range_table[RE_GAMMA_TABLE_SIZE + 1];
static float gamfactor_table[RE_GAMMA_TABLE_SIZE];
static float inv_gamma_range_table[RE_GAMMA_TABLE_SIZE + 1];
static float inv_gamfactor_table[RE_GAMMA_TABLE_SIZE];
static float color_domain_table[RE_GAMMA_TABLE_SIZE + 1];
static float color_step;
static float inv_color_step;
static float valid_gamma;
static float valid_inv_gamma;
static void makeGammaTables(float gamma)
{
/* we need two tables: one forward, one backward */
int i;
valid_gamma = gamma;
valid_inv_gamma = 1.0 / gamma;
color_step = 1.0 / RE_GAMMA_TABLE_SIZE;
inv_color_step = (float) RE_GAMMA_TABLE_SIZE;
/* We could squeeze out the two range tables to gain some memory. */
for (i = 0; i < RE_GAMMA_TABLE_SIZE; i++) {
color_domain_table[i] = i * color_step;
gamma_range_table[i] = pow(color_domain_table[i],
valid_gamma);
inv_gamma_range_table[i] = pow(color_domain_table[i],
valid_inv_gamma);
}
/* The end of the table should match 1.0 carefully. In order to avoid */
/* rounding errors, we just set this explicitly. The last segment may */
/* have a different lenght than the other segments, but our */
/* interpolation is insensitive to that. */
color_domain_table[RE_GAMMA_TABLE_SIZE] = 1.0;
gamma_range_table[RE_GAMMA_TABLE_SIZE] = 1.0;
inv_gamma_range_table[RE_GAMMA_TABLE_SIZE] = 1.0;
/* To speed up calculations, we make these calc factor tables. They are */
/* multiplication factors used in scaling the interpolation. */
for (i = 0; i < RE_GAMMA_TABLE_SIZE; i++ ) {
gamfactor_table[i] = inv_color_step
* (gamma_range_table[i + 1] - gamma_range_table[i]) ;
inv_gamfactor_table[i] = inv_color_step
* (inv_gamma_range_table[i + 1] - inv_gamma_range_table[i]) ;
}
} /* end of void makeGammaTables(float gamma) */
static float gammaCorrect(float c)
{
int i;
float res = 0.0;
i = floor(c * inv_color_step);
/* Clip to range [0,1]: outside, just do the complete calculation. */
/* We may have some performance problems here. Stretching up the LUT */
/* may help solve that, by exchanging LUT size for the interpolation. */
/* Negative colors are explicitly handled. */
if (i < 0) res = -pow(abs(c), valid_gamma);
else if (i >= RE_GAMMA_TABLE_SIZE ) res = pow(c, valid_gamma);
else res = gamma_range_table[i] +
( (c - color_domain_table[i]) * gamfactor_table[i]);
return res;
} /* end of float gammaCorrect(float col) */
/* ------------------------------------------------------------------------- */
static float invGammaCorrect(float col)
{
int i;
float res = 0.0;
i = floor(col*inv_color_step);
/* Negative colors are explicitly handled. */
if (i < 0) res = -pow(abs(col), valid_inv_gamma);
else if (i >= RE_GAMMA_TABLE_SIZE) res = pow(col, valid_inv_gamma);
else res = inv_gamma_range_table[i] +
( (col - color_domain_table[i]) * inv_gamfactor_table[i]);
return res;
} /* end of float invGammaCorrect(float col) */
static void gamtabs(float gamma)
{
float val, igamma= 1.0f/gamma;
int a;
/* gamtab: in short, out short */
for(a=0; a<65536; a++) {
val= a;
val/= 65535.0;
if(gamma==2.0) val= sqrt(val);
else if(gamma!=1.0) val= pow(val, igamma);
gamtab[a]= (65535.99*val);
}
/* inverse gamtab1 : in byte, out short */
for(a=1; a<=256; a++) {
if(gamma==2.0) igamtab1[a-1]= a*a-1;
else if(gamma==1.0) igamtab1[a-1]= 256*a-1;
else {
val= a/256.0;
igamtab1[a-1]= (65535.0*pow(val, gamma)) -1 ;
}
}
}
static void build_gammatabs()
{
if (gamma_tabs_init == FALSE) {
gamtabs(2.0f);
makeGammaTables(2.0f);
gamma_tabs_init = TRUE;
}
}
static void init_gammacross(Sequence * seq)
{
}
static void load_gammacross(Sequence * seq)
{
}
static void free_gammacross(Sequence * seq)
{
}
static void do_gammacross_effect_byte(float facf0, float facf1,
int x, int y,
unsigned char *rect1,
unsigned char *rect2,
unsigned char *out)
{
int fac1, fac2, col;
int xo;
unsigned char *rt1, *rt2, *rt;
xo= x;
rt1= (unsigned char *)rect1;
rt2= (unsigned char *)rect2;
rt= (unsigned char *)out;
fac2= (int)(256.0*facf0);
fac1= 256-fac2;
while(y--) {
x= xo;
while(x--) {
col= (fac1*igamtab1[rt1[0]] + fac2*igamtab1[rt2[0]])>>8;
if(col>65535) rt[0]= 255; else rt[0]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
col=(fac1*igamtab1[rt1[1]] + fac2*igamtab1[rt2[1]])>>8;
if(col>65535) rt[1]= 255; else rt[1]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
col= (fac1*igamtab1[rt1[2]] + fac2*igamtab1[rt2[2]])>>8;
if(col>65535) rt[2]= 255; else rt[2]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
col= (fac1*igamtab1[rt1[3]] + fac2*igamtab1[rt2[3]])>>8;
if(col>65535) rt[3]= 255; else rt[3]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
rt1+= 4; rt2+= 4; rt+= 4;
}
if(y==0) break;
y--;
x= xo;
while(x--) {
col= (fac1*igamtab1[rt1[0]] + fac2*igamtab1[rt2[0]])>>8;
if(col>65535) rt[0]= 255; else rt[0]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
col= (fac1*igamtab1[rt1[1]] + fac2*igamtab1[rt2[1]])>>8;
if(col>65535) rt[1]= 255; else rt[1]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
col= (fac1*igamtab1[rt1[2]] + fac2*igamtab1[rt2[2]])>>8;
if(col>65535) rt[2]= 255; else rt[2]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
col= (fac1*igamtab1[rt1[3]] + fac2*igamtab1[rt2[3]])>>8;
if(col>65535) rt[3]= 255; else rt[3]= ( (char *)(gamtab+col))[MOST_SIG_BYTE];
rt1+= 4; rt2+= 4; rt+= 4;
}
}
}
static void do_gammacross_effect_float(float facf0, float facf1,
int x, int y,
float *rect1, float *rect2,
float *out)
{
float fac1, fac2;
int xo;
float *rt1, *rt2, *rt;
xo= x;
rt1= rect1;
rt2= rect2;
rt= out;
fac2= facf0;
fac1= 1.0 - fac2;
while(y--) {
x= xo * 4;
while(x--) {
*rt= gammaCorrect(
fac1 * invGammaCorrect(*rt1)
+ fac2 * invGammaCorrect(*rt2));
rt1++; rt2++; rt++;
}
if(y==0) break;
y--;
x= xo * 4;
while(x--) {
*rt= gammaCorrect(
fac1*invGammaCorrect(*rt1)
+ fac2*invGammaCorrect(*rt2));
rt1++; rt2++; rt++;
}
}
}
static void do_gammacross_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
build_gammatabs();
if (out->rect_float) {
do_gammacross_effect_float(
facf0, facf1, x, y,
ibuf1->rect_float, ibuf2->rect_float,
out->rect_float);
} else {
do_gammacross_effect_byte(
facf0, facf1, x, y,
(unsigned char*) ibuf1->rect, (unsigned char*) ibuf2->rect,
(unsigned char*) out->rect);
}
}
/* **********************************************************************
ADD
********************************************************************** */
static void do_add_effect_byte(float facf0, float facf1, int x, int y,
unsigned char *rect1, unsigned char *rect2,
unsigned char *out)
{
int col, xo, fac1, fac3;
char *rt1, *rt2, *rt;
xo= x;
rt1= (char *)rect1;
rt2= (char *)rect2;
rt= (char *)out;
fac1= (int)(256.0*facf0);
fac3= (int)(256.0*facf1);
while(y--) {
x= xo;
while(x--) {
col= rt1[0]+ ((fac1*rt2[0])>>8);
if(col>255) rt[0]= 255; else rt[0]= col;
col= rt1[1]+ ((fac1*rt2[1])>>8);
if(col>255) rt[1]= 255; else rt[1]= col;
col= rt1[2]+ ((fac1*rt2[2])>>8);
if(col>255) rt[2]= 255; else rt[2]= col;
col= rt1[3]+ ((fac1*rt2[3])>>8);
if(col>255) rt[3]= 255; else rt[3]= col;
rt1+= 4; rt2+= 4; rt+= 4;
}
if(y==0) break;
y--;
x= xo;
while(x--) {
col= rt1[0]+ ((fac3*rt2[0])>>8);
if(col>255) rt[0]= 255; else rt[0]= col;
col= rt1[1]+ ((fac3*rt2[1])>>8);
if(col>255) rt[1]= 255; else rt[1]= col;
col= rt1[2]+ ((fac3*rt2[2])>>8);
if(col>255) rt[2]= 255; else rt[2]= col;
col= rt1[3]+ ((fac3*rt2[3])>>8);
if(col>255) rt[3]= 255; else rt[3]= col;
rt1+= 4; rt2+= 4; rt+= 4;
}
}
}
static void do_add_effect_float(float facf0, float facf1, int x, int y,
float *rect1, float *rect2,
float *out)
{
int xo;
float fac1, fac3;
float *rt1, *rt2, *rt;
xo= x;
rt1= rect1;
rt2= rect2;
rt= out;
fac1= facf0;
fac3= facf1;
while(y--) {
x= xo * 4;
while(x--) {
*rt = *rt1 + fac1 * (*rt2);
rt1++; rt2++; rt++;
}
if(y==0) break;
y--;
x= xo * 4;
while(x--) {
*rt = *rt1 + fac3 * (*rt2);
rt1++; rt2++; rt++;
}
}
}
static void do_add_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
if (out->rect_float) {
do_add_effect_float(
facf0, facf1, x, y,
ibuf1->rect_float, ibuf2->rect_float,
out->rect_float);
} else {
do_add_effect_byte(
facf0, facf1, x, y,
(unsigned char*) ibuf1->rect, (unsigned char*) ibuf2->rect,
(unsigned char*) out->rect);
}
}
/* **********************************************************************
SUB
********************************************************************** */
static void do_sub_effect_byte(float facf0, float facf1,
int x, int y,
char *rect1, char *rect2, char *out)
{
int col, xo, fac1, fac3;
char *rt1, *rt2, *rt;
xo= x;
rt1= (char *)rect1;
rt2= (char *)rect2;
rt= (char *)out;
fac1= (int)(256.0*facf0);
fac3= (int)(256.0*facf1);
while(y--) {
x= xo;
while(x--) {
col= rt1[0]- ((fac1*rt2[0])>>8);
if(col<0) rt[0]= 0; else rt[0]= col;
col= rt1[1]- ((fac1*rt2[1])>>8);
if(col<0) rt[1]= 0; else rt[1]= col;
col= rt1[2]- ((fac1*rt2[2])>>8);
if(col<0) rt[2]= 0; else rt[2]= col;
col= rt1[3]- ((fac1*rt2[3])>>8);
if(col<0) rt[3]= 0; else rt[3]= col;
rt1+= 4; rt2+= 4; rt+= 4;
}
if(y==0) break;
y--;
x= xo;
while(x--) {
col= rt1[0]- ((fac3*rt2[0])>>8);
if(col<0) rt[0]= 0; else rt[0]= col;
col= rt1[1]- ((fac3*rt2[1])>>8);
if(col<0) rt[1]= 0; else rt[1]= col;
col= rt1[2]- ((fac3*rt2[2])>>8);
if(col<0) rt[2]= 0; else rt[2]= col;
col= rt1[3]- ((fac3*rt2[3])>>8);
if(col<0) rt[3]= 0; else rt[3]= col;
rt1+= 4; rt2+= 4; rt+= 4;
}
}
}
static void do_sub_effect_float(float facf0, float facf1, int x, int y,
float *rect1, float *rect2,
float *out)
{
int xo;
float fac1, fac3;
float *rt1, *rt2, *rt;
xo= x;
rt1= rect1;
rt2= rect2;
rt= out;
fac1= facf0;
fac3= facf1;
while(y--) {
x= xo * 4;
while(x--) {
*rt = *rt1 - fac1 * (*rt2);
rt1++; rt2++; rt++;
}
if(y==0) break;
y--;
x= xo * 4;
while(x--) {
*rt = *rt1 - fac3 * (*rt2);
rt1++; rt2++; rt++;
}
}
}
static void do_sub_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
if (out->rect_float) {
do_sub_effect_float(
facf0, facf1, x, y,
ibuf1->rect_float, ibuf2->rect_float,
out->rect_float);
} else {
do_sub_effect_byte(
facf0, facf1, x, y,
(char*) ibuf1->rect, (char*) ibuf2->rect,
(char*) out->rect);
}
}
/* **********************************************************************
DROP
********************************************************************** */
/* Must be > 0 or add precopy, etc to the function */
#define XOFF 8
#define YOFF 8
static void do_drop_effect_byte(float facf0, float facf1, int x, int y,
unsigned char *rect2i, unsigned char *rect1i,
unsigned char *outi)
{
int height, width, temp, fac, fac1, fac2;
char *rt1, *rt2, *out;
int field= 1;
width= x;
height= y;
fac1= (int)(70.0*facf0);
fac2= (int)(70.0*facf1);
rt2= (char*) (rect2i + YOFF*width);
rt1= (char*) rect1i;
out= (char*) outi;
for (y=0; y<height-YOFF; y++) {
if(field) fac= fac1;
else fac= fac2;
field= !field;
memcpy(out, rt1, sizeof(int)*XOFF);
rt1+= XOFF*4;
out+= XOFF*4;
for (x=XOFF; x<width; x++) {
temp= ((fac*rt2[3])>>8);
*(out++)= MAX2(0, *rt1 - temp); rt1++;
*(out++)= MAX2(0, *rt1 - temp); rt1++;
*(out++)= MAX2(0, *rt1 - temp); rt1++;
*(out++)= MAX2(0, *rt1 - temp); rt1++;
rt2+=4;
}
rt2+=XOFF*4;
}
memcpy(out, rt1, sizeof(int)*YOFF*width);
}
static void do_drop_effect_float(float facf0, float facf1, int x, int y,
float *rect2i, float *rect1i,
float *outi)
{
int height, width;
float temp, fac, fac1, fac2;
float *rt1, *rt2, *out;
int field= 1;
width= x;
height= y;
fac1= 70.0*facf0;
fac2= 70.0*facf1;
rt2= (rect2i + YOFF*width);
rt1= rect1i;
out= outi;
for (y=0; y<height-YOFF; y++) {
if(field) fac= fac1;
else fac= fac2;
field= !field;
memcpy(out, rt1, 4 * sizeof(float)*XOFF);
rt1+= XOFF*4;
out+= XOFF*4;
for (x=XOFF; x<width; x++) {
temp= fac * rt2[3];
*(out++)= MAX2(0.0, *rt1 - temp); rt1++;
*(out++)= MAX2(0.0, *rt1 - temp); rt1++;
*(out++)= MAX2(0.0, *rt1 - temp); rt1++;
*(out++)= MAX2(0.0, *rt1 - temp); rt1++;
rt2+=4;
}
rt2+=XOFF*4;
}
memcpy(out, rt1, 4 * sizeof(float)*YOFF*width);
}
static void do_drop_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf * ibuf3,
struct ImBuf *out)
{
if (out->rect_float) {
do_drop_effect_float(
facf0, facf1, x, y,
ibuf1->rect_float, ibuf2->rect_float,
out->rect_float);
} else {
do_drop_effect_byte(
facf0, facf1, x, y,
(unsigned char*) ibuf1->rect, (unsigned char*) ibuf2->rect,
(unsigned char*) out->rect);
}
}
/* **********************************************************************
MUL
********************************************************************** */
static void do_mul_effect_byte(float facf0, float facf1, int x, int y,
unsigned char *rect1, unsigned char *rect2,
unsigned char *out)
{
int xo, fac1, fac3;
char *rt1, *rt2, *rt;
xo= x;
rt1= (char *)rect1;
rt2= (char *)rect2;
rt= (char *)out;
fac1= (int)(256.0*facf0);
fac3= (int)(256.0*facf1);
/* formula:
* fac*(a*b) + (1-fac)*a => fac*a*(b-1)+axaux= c*px + py*s ;//+centx
yaux= -s*px + c*py;//+centy
*/
while(y--) {
x= xo;
while(x--) {
rt[0]= rt1[0] + ((fac1*rt1[0]*(rt2[0]-256))>>16);
rt[1]= rt1[1] + ((fac1*rt1[1]*(rt2[1]-256))>>16);
rt[2]= rt1[2] + ((fac1*rt1[2]*(rt2[2]-256))>>16);
rt[3]= rt1[3] + ((fac1*rt1[3]*(rt2[3]-256))>>16);
rt1+= 4; rt2+= 4; rt+= 4;
}
if(y==0) break;
y--;
x= xo;
while(x--) {
rt[0]= rt1[0] + ((fac3*rt1[0]*(rt2[0]-256))>>16);
rt[1]= rt1[1] + ((fac3*rt1[1]*(rt2[1]-256))>>16);
rt[2]= rt1[2] + ((fac3*rt1[2]*(rt2[2]-256))>>16);
rt[3]= rt1[3] + ((fac3*rt1[3]*(rt2[3]-256))>>16);
rt1+= 4; rt2+= 4; rt+= 4;
}
}
}
static void do_mul_effect_float(float facf0, float facf1, int x, int y,
float *rect1, float *rect2,
float *out)
{
int xo;
float fac1, fac3;
float *rt1, *rt2, *rt;
xo= x;
rt1= rect1;
rt2= rect2;
rt= out;
fac1= facf0;
fac3= facf1;
/* formula:
* fac*(a*b) + (1-fac)*a => fac*a*(b-1)+a
*/
while(y--) {
x= xo;
while(x--) {
rt[0]= rt1[0] + fac1*rt1[0]*(rt2[0]-1.0);
rt[1]= rt1[1] + fac1*rt1[1]*(rt2[1]-1.0);
rt[2]= rt1[2] + fac1*rt1[2]*(rt2[2]-1.0);
rt[3]= rt1[3] + fac1*rt1[3]*(rt2[3]-1.0);
rt1+= 4; rt2+= 4; rt+= 4;
}
if(y==0) break;
y--;
x= xo;
while(x--) {
rt[0]= rt1[0] + fac3*rt1[0]*(rt2[0]-1.0);
rt[1]= rt1[1] + fac3*rt1[1]*(rt2[1]-1.0);
rt[2]= rt1[2] + fac3*rt1[2]*(rt2[2]-1.0);
rt[3]= rt1[3] + fac3*rt1[3]*(rt2[3]-1.0);
rt1+= 4; rt2+= 4; rt+= 4;
}
}
}
static void do_mul_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
if (out->rect_float) {
do_mul_effect_float(
facf0, facf1, x, y,
ibuf1->rect_float, ibuf2->rect_float,
out->rect_float);
} else {
do_mul_effect_byte(
facf0, facf1, x, y,
(unsigned char*) ibuf1->rect, (unsigned char*) ibuf2->rect,
(unsigned char*) out->rect);
}
}
/* **********************************************************************
WIPE
********************************************************************** */
typedef struct WipeZone {
float angle;
int flip;
int xo, yo;
int width;
float invwidth;
float pythangle;
} WipeZone;
static void precalc_wipe_zone(WipeZone *wipezone, WipeVars *wipe, int xo, int yo)
{
wipezone->flip = (wipe->angle < 0);
wipezone->angle = pow(fabs(wipe->angle)/45.0f, log(xo)/log(2.0f));
wipezone->xo = xo;
wipezone->yo = yo;
wipezone->width = (int)(wipe->edgeWidth*((xo+yo)/2.0f));
wipezone->pythangle = 1.0f/sqrt(wipe->angle*wipe->angle + 1.0f);
if(wipe->wipetype == DO_SINGLE_WIPE)
wipezone->invwidth = 1.0f/wipezone->width;
else
wipezone->invwidth = 1.0f/(0.5f*wipezone->width);
}
// This function calculates the blur band for the wipe effects
static float in_band(WipeZone *wipezone,float width,float dist,float perc,int side,int dir)
{
float t1,t2,alpha,percwidth;
if(width == 0)
return (float)side;
if(side == 1)
percwidth = width * perc;
else
percwidth = width * (1 - perc);
if(width < dist)
return side;
t1 = dist * wipezone->invwidth; //percentange of width that is
t2 = wipezone->invwidth; //amount of alpha per % point
if(side == 1)
alpha = (t1*t2*100) + (1-perc); // add point's alpha contrib to current position in wipe
else
alpha = (1-perc) - (t1*t2*100);
if(dir == 0)
alpha = 1-alpha;
return alpha;
}
static float check_zone(WipeZone *wipezone, int x, int y,
Sequence *seq, float facf0)
{
float posx, posy,hyp,hyp2,angle,hwidth,b1,b2,b3,pointdist;
/*some future stuff
float hyp3,hyp4,b4,b5
*/
float temp1,temp2,temp3,temp4; //some placeholder variables
int xo = wipezone->xo;
int yo = wipezone->yo;
float halfx = xo*0.5f;
float halfy = yo*0.5f;
float widthf,output=0;
WipeVars *wipe = (WipeVars *)seq->effectdata;
int width;
if(wipezone->flip) x = xo - x;
angle = wipezone->angle;
posy = facf0 * yo;
if(wipe->forward){
posx = facf0 * xo;
posy = facf0 * yo;
} else{
posx = xo - facf0 * xo;
posy = yo - facf0 * yo;
}
switch (wipe->wipetype) {
case DO_SINGLE_WIPE:
width = wipezone->width;
hwidth = width*0.5f;
if(angle == 0.0f) {
b1 = posy;
b2 = y;
hyp = fabs(y - posy);
}
else {
b1 = posy - (-angle)*posx;
b2 = y - (-angle)*x;
hyp = fabs(angle*x+y+(-posy-angle*posx))*wipezone->pythangle;
}
if(angle < 0) {
temp1 = b1;
b1 = b2;
b2 = temp1;
}
if(wipe->forward) {
if(b1 < b2)
output = in_band(wipezone,width,hyp,facf0,1,1);
else
output = in_band(wipezone,width,hyp,facf0,0,1);
}
else {
if(b1 < b2)
output = in_band(wipezone,width,hyp,facf0,0,1);
else
output = in_band(wipezone,width,hyp,facf0,1,1);
}
break;
case DO_DOUBLE_WIPE:
if(!wipe->forward)
facf0 = 1.0f-facf0; // Go the other direction
width = wipezone->width; // calculate the blur width
hwidth = width*0.5f;
if (angle == 0) {
b1 = posy*0.5f;
b3 = yo-posy*0.5f;
b2 = y;
hyp = abs(y - posy*0.5f);
hyp2 = abs(y - (yo-posy*0.5f));
}
else {
b1 = posy*0.5f - (-angle)*posx*0.5f;
b3 = (yo-posy*0.5f) - (-angle)*(xo-posx*0.5f);
b2 = y - (-angle)*x;
hyp = abs(angle*x+y+(-posy*0.5f-angle*posx*0.5f))*wipezone->pythangle;
hyp2 = abs(angle*x+y+(-(yo-posy*0.5f)-angle*(xo-posx*0.5f)))*wipezone->pythangle;
}
temp1 = xo*(1-facf0*0.5f)-xo*facf0*0.5f;
temp2 = yo*(1-facf0*0.5f)-yo*facf0*0.5f;
pointdist = sqrt(temp1*temp1 + temp2*temp2);
if(b2 < b1 && b2 < b3 ){
if(hwidth < pointdist)
output = in_band(wipezone,hwidth,hyp,facf0,0,1);
} else if(b2 > b1 && b2 > b3 ){
if(hwidth < pointdist)
output = in_band(wipezone,hwidth,hyp2,facf0,0,1);
} else {
if( hyp < hwidth && hyp2 > hwidth )
output = in_band(wipezone,hwidth,hyp,facf0,1,1);
else if( hyp > hwidth && hyp2 < hwidth )
output = in_band(wipezone,hwidth,hyp2,facf0,1,1);
else
output = in_band(wipezone,hwidth,hyp2,facf0,1,1) * in_band(wipezone,hwidth,hyp,facf0,1,1);
}
if(!wipe->forward)output = 1-output;
break;
case DO_CLOCK_WIPE:
/*
temp1: angle of effect center in rads
temp2: angle of line through (halfx,halfy) and (x,y) in rads
temp3: angle of low side of blur
temp4: angle of high side of blur
*/
output = 1.0f - facf0;
widthf = wipe->edgeWidth*2.0f*(float)M_PI;
temp1 = 2.0f * (float)M_PI * facf0;
if(wipe->forward){
temp1 = 2.0f*(float)M_PI - temp1;
}
x = x - halfx;
y = y - halfy;
temp2 = asin(abs(y)/sqrt(x*x + y*y));
if(x <= 0 && y >= 0) temp2 = (float)M_PI - temp2;
else if(x<=0 && y <= 0) temp2 += (float)M_PI;
else if(x >= 0 && y <= 0) temp2 = 2.0f*(float)M_PI - temp2;
if(wipe->forward){
temp3 = temp1-(widthf*0.5f)*facf0;
temp4 = temp1+(widthf*0.5f)*(1-facf0);
} else{
temp3 = temp1-(widthf*0.5f)*(1-facf0);
temp4 = temp1+(widthf*0.5f)*facf0;
}
if (temp3 < 0) temp3 = 0;
if (temp4 > 2.0f*(float)M_PI) temp4 = 2.0f*(float)M_PI;
if(temp2 < temp3) output = 0;
else if (temp2 > temp4) output = 1;
else output = (temp2-temp3)/(temp4-temp3);
if(x == 0 && y == 0) output = 1;
if(output != output) output = 1;
if(wipe->forward) output = 1 - output;
break;
/* BOX WIPE IS NOT WORKING YET */
/* case DO_CROSS_WIPE: */
/* BOX WIPE IS NOT WORKING YET */
/*
case DO_BOX_WIPE:
if(invert)facf0 = 1-facf0;
width = (int)(wipe->edgeWidth*((xo+yo)/2.0));
hwidth = (float)width/2.0;
if (angle == 0)angle = 0.000001;
b1 = posy/2 - (-angle)*posx/2;
b3 = (yo-posy/2) - (-angle)*(xo-posx/2);
b2 = y - (-angle)*x;
hyp = abs(angle*x+y+(-posy/2-angle*posx/2))*wipezone->pythangle;
hyp2 = abs(angle*x+y+(-(yo-posy/2)-angle*(xo-posx/2)))*wipezone->pythangle;
temp1 = xo*(1-facf0/2)-xo*facf0/2;
temp2 = yo*(1-facf0/2)-yo*facf0/2;
pointdist = sqrt(temp1*temp1 + temp2*temp2);
if(b2 < b1 && b2 < b3 ){
if(hwidth < pointdist)
output = in_band(wipezone,hwidth,hyp,facf0,0,1);
} else if(b2 > b1 && b2 > b3 ){
if(hwidth < pointdist)
output = in_band(wipezone,hwidth,hyp2,facf0,0,1);
} else {
if( hyp < hwidth && hyp2 > hwidth )
output = in_band(wipezone,hwidth,hyp,facf0,1,1);
else if( hyp > hwidth && hyp2 < hwidth )
output = in_band(wipezone,hwidth,hyp2,facf0,1,1);
else
output = in_band(wipezone,hwidth,hyp2,facf0,1,1) * in_band(wipezone,hwidth,hyp,facf0,1,1);
}
if(invert)facf0 = 1-facf0;
angle = -1/angle;
b1 = posy/2 - (-angle)*posx/2;
b3 = (yo-posy/2) - (-angle)*(xo-posx/2);
b2 = y - (-angle)*x;
hyp = abs(angle*x+y+(-posy/2-angle*posx/2))*wipezone->pythangle;
hyp2 = abs(angle*x+y+(-(yo-posy/2)-angle*(xo-posx/2)))*wipezone->pythangle;
if(b2 < b1 && b2 < b3 ){
if(hwidth < pointdist)
output *= in_band(wipezone,hwidth,hyp,facf0,0,1);
} else if(b2 > b1 && b2 > b3 ){
if(hwidth < pointdist)
output *= in_band(wipezone,hwidth,hyp2,facf0,0,1);
} else {
if( hyp < hwidth && hyp2 > hwidth )
output *= in_band(wipezone,hwidth,hyp,facf0,1,1);
else if( hyp > hwidth && hyp2 < hwidth )
output *= in_band(wipezone,hwidth,hyp2,facf0,1,1);
else
output *= in_band(wipezone,hwidth,hyp2,facf0,1,1) * in_band(wipezone,hwidth,hyp,facf0,1,1);
}
break;
*/
case DO_IRIS_WIPE:
if(xo > yo) yo = xo;
else xo = yo;
if(!wipe->forward) facf0 = 1-facf0;
width = wipezone->width;
hwidth = width*0.5f;
temp1 = (halfx-(halfx)*facf0);
pointdist = sqrt(temp1*temp1 + temp1*temp1);
temp2 = sqrt((halfx-x)*(halfx-x) + (halfy-y)*(halfy-y));
if(temp2 > pointdist) output = in_band(wipezone,hwidth,fabs(temp2-pointdist),facf0,0,1);
else output = in_band(wipezone,hwidth,fabs(temp2-pointdist),facf0,1,1);
if(!wipe->forward) output = 1-output;
break;
}
if (output < 0) output = 0;
else if(output > 1) output = 1;
return output;
}
static void init_wipe_effect(Sequence *seq)
{
if(seq->effectdata)MEM_freeN(seq->effectdata);
seq->effectdata = MEM_callocN(sizeof(struct WipeVars), "wipevars");
}
static int num_inputs_wipe()
{
return 1;
}
static void free_wipe_effect(Sequence *seq)
{
if(seq->effectdata)MEM_freeN(seq->effectdata);
seq->effectdata = 0;
}
static void copy_wipe_effect(Sequence *dst, Sequence *src)
{
dst->effectdata = MEM_dupallocN(src->effectdata);
}
static void do_wipe_effect_byte(Sequence *seq, float facf0, float facf1,
int x, int y,
unsigned char *rect1,
unsigned char *rect2, unsigned char *out)
{
WipeZone wipezone;
WipeVars *wipe = (WipeVars *)seq->effectdata;
int xo, yo;
char *rt1, *rt2, *rt;
precalc_wipe_zone(&wipezone, wipe, x, y);
rt1 = (char *)rect1;
rt2 = (char *)rect2;
rt = (char *)out;
xo = x;
yo = y;
for(y=0;y<yo;y++) {
for(x=0;x<xo;x++) {
float check = check_zone(&wipezone,x,y,seq,facf0);
if (check) {
if (rt1) {
rt[0] = (int)(rt1[0]*check)+ (int)(rt2[0]*(1-check));
rt[1] = (int)(rt1[1]*check)+ (int)(rt2[1]*(1-check));
rt[2] = (int)(rt1[2]*check)+ (int)(rt2[2]*(1-check));
rt[3] = (int)(rt1[3]*check)+ (int)(rt2[3]*(1-check));
} else {
rt[0] = 0;
rt[1] = 0;
rt[2] = 0;
rt[3] = 255;
}
} else {
if (rt2) {
rt[0] = rt2[0];
rt[1] = rt2[1];
rt[2] = rt2[2];
rt[3] = rt2[3];
} else {
rt[0] = 0;
rt[1] = 0;
rt[2] = 0;
rt[3] = 255;
}
}
rt+=4;
if(rt1 !=NULL){
rt1+=4;
}
if(rt2 !=NULL){
rt2+=4;
}
}
}
}
static void do_wipe_effect_float(Sequence *seq, float facf0, float facf1,
int x, int y,
float *rect1,
float *rect2, float *out)
{
WipeZone wipezone;
WipeVars *wipe = (WipeVars *)seq->effectdata;
int xo, yo;
float *rt1, *rt2, *rt;
precalc_wipe_zone(&wipezone, wipe, x, y);
rt1 = rect1;
rt2 = rect2;
rt = out;
xo = x;
yo = y;
for(y=0;y<yo;y++) {
for(x=0;x<xo;x++) {
float check = check_zone(&wipezone,x,y,seq,facf0);
if (check) {
if (rt1) {
rt[0] = rt1[0]*check+ rt2[0]*(1-check);
rt[1] = rt1[1]*check+ rt2[1]*(1-check);
rt[2] = rt1[2]*check+ rt2[2]*(1-check);
rt[3] = rt1[3]*check+ rt2[3]*(1-check);
} else {
rt[0] = 0;
rt[1] = 0;
rt[2] = 0;
rt[3] = 1.0;
}
} else {
if (rt2) {
rt[0] = rt2[0];
rt[1] = rt2[1];
rt[2] = rt2[2];
rt[3] = rt2[3];
} else {
rt[0] = 0;
rt[1] = 0;
rt[2] = 0;
rt[3] = 1.0;
}
}
rt+=4;
if(rt1 !=NULL){
rt1+=4;
}
if(rt2 !=NULL){
rt2+=4;
}
}
}
}
static void do_wipe_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
if (out->rect_float) {
do_wipe_effect_float(seq,
facf0, facf1, x, y,
ibuf1->rect_float, ibuf2->rect_float,
out->rect_float);
} else {
do_wipe_effect_byte(seq,
facf0, facf1, x, y,
(unsigned char*) ibuf1->rect, (unsigned char*) ibuf2->rect,
(unsigned char*) out->rect);
}
}
/* **********************************************************************
TRANSFORM
********************************************************************** */
static void init_transform_effect(Sequence *seq)
{
TransformVars *scale;
if(seq->effectdata)MEM_freeN(seq->effectdata);
seq->effectdata = MEM_callocN(sizeof(struct TransformVars), "transformvars");
scale = (TransformVars *)seq->effectdata;
scale->ScalexIni = 1;
scale->ScaleyIni = 1;
scale->ScalexFin = 1;
scale->ScaleyFin = 1;
scale->xIni=0;
scale->xFin=0;
scale->yIni=0;
scale->yFin=0;
scale->rotIni=0;
scale->rotFin=0;
scale->interpolation=1;
scale->percent=1;
}
static int num_inputs_transform()
{
return 1;
}
static void free_transform_effect(Sequence *seq)
{
if(seq->effectdata)MEM_freeN(seq->effectdata);
seq->effectdata = 0;
}
static void copy_transform_effect(Sequence *dst, Sequence *src)
{
dst->effectdata = MEM_dupallocN(src->effectdata);
}
static void do_transform(Sequence * seq,float facf0, int x, int y,
struct ImBuf *ibuf1,struct ImBuf *out)
{
int xo, yo, xi, yi;
float xs,ys,factxScale,factyScale,tx,ty,rad,s,c,xaux,yaux,factRot,px,py;
TransformVars *scale;
// XXX struct RenderData *rd = NULL; // 2.5 global: &G.scene->r;
scale = (TransformVars *)seq->effectdata;
xo = x;
yo = y;
//factor scale
factxScale = scale->ScalexIni + (scale->ScalexFin - scale->ScalexIni) * facf0;
factyScale = scale->ScaleyIni + (scale->ScaleyFin - scale->ScaleyIni) * facf0;
//Factor translate
if(!scale->percent){
float rd_s = 0.0f; // XXX 2.5 global: (rd->size / 100.0f);
tx = scale->xIni * rd_s+(xo / 2.0f) + (scale->xFin * rd_s -(xo / 2.0f) - scale->xIni * rd_s +(xo / 2.0f)) * facf0;
ty = scale->yIni * rd_s+(yo / 2.0f) + (scale->yFin * rd_s -(yo / 2.0f) - scale->yIni * rd_s +(yo / 2.0f)) * facf0;
}else{
tx = xo*(scale->xIni/100.0f)+(xo / 2.0f) + (xo*(scale->xFin/100.0f)-(xo / 2.0f) - xo*(scale->xIni/100.0f)+(xo / 2.0f)) * facf0;
ty = yo*(scale->yIni/100.0f)+(yo / 2.0f) + (yo*(scale->yFin/100.0f)-(yo / 2.0f) - yo*(scale->yIni/100.0f)+(yo / 2.0f)) * facf0;
}
//factor Rotate
factRot = scale->rotIni + (scale->rotFin - scale->rotIni) * facf0;
rad = (M_PI * factRot) / 180.0f;
s= sin(rad);
c= cos(rad);
for (yi = 0; yi < yo; yi++) {
for (xi = 0; xi < xo; xi++) {
//tranlate point
px = xi-tx;
py = yi-ty;
//rotate point with center ref
xaux = c*px + py*s ;
yaux = -s*px + c*py;
//scale point with center ref
xs = xaux / factxScale;
ys = yaux / factyScale;
//undo reference center point
xs += (xo / 2.0f);
ys += (yo / 2.0f);
//interpolate
switch(scale->interpolation) {
case 0:
neareast_interpolation(ibuf1,out, xs,ys,xi,yi);
break;
case 1:
bilinear_interpolation(ibuf1,out, xs,ys,xi,yi);
break;
case 2:
bicubic_interpolation(ibuf1,out, xs,ys,xi,yi);
break;
}
}
}
}
static void do_transform_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
do_transform(seq, facf0, x, y, ibuf1, out);
}
/* **********************************************************************
GLOW
********************************************************************** */
static void RVBlurBitmap2_byte ( unsigned char* map, int width,int height,
float blur,
int quality)
/* MUUUCCH better than the previous blur. */
/* We do the blurring in two passes which is a whole lot faster. */
/* I changed the math arount to implement an actual Gaussian */
/* distribution. */
/* */
/* Watch out though, it tends to misbehaven with large blur values on */
/* a small bitmap. Avoid avoid avoid. */
/*=============================== */
{
unsigned char* temp=NULL,*swap;
float *filter=NULL;
int x,y,i,fx,fy;
int index, ix, halfWidth;
float fval, k, curColor[3], curColor2[3], weight=0;
/* If we're not really blurring, bail out */
if (blur<=0)
return;
/* Allocate memory for the tempmap and the blur filter matrix */
temp= MEM_mallocN( (width*height*4), "blurbitmaptemp");
if (!temp)
return;
/* Allocate memory for the filter elements */
halfWidth = ((quality+1)*blur);
filter = (float *)MEM_mallocN(sizeof(float)*halfWidth*2, "blurbitmapfilter");
if (!filter){
MEM_freeN (temp);
return;
}
/* Apparently we're calculating a bell curve */
/* based on the standard deviation (or radius) */
/* This code is based on an example */
/* posted to comp.graphics.algorithms by */
/* Blancmange (bmange@airdmhor.gen.nz) */
k = -1.0/(2.0*3.14159*blur*blur);
fval=0;
for (ix = 0;ix< halfWidth;ix++){
weight = (float)exp(k*(ix*ix));
filter[halfWidth - ix] = weight;
filter[halfWidth + ix] = weight;
}
filter[0] = weight;
/* Normalize the array */
fval=0;
for (ix = 0;ix< halfWidth*2;ix++)
fval+=filter[ix];
for (ix = 0;ix< halfWidth*2;ix++)
filter[ix]/=fval;
/* Blur the rows */
for (y=0;y<height;y++){
/* Do the left & right strips */
for (x=0;x<halfWidth;x++){
index=(x+y*width)*4;
fx=0;
curColor[0]=curColor[1]=curColor[2]=0;
curColor2[0]=curColor2[1]=curColor2[2]=0;
for (i=x-halfWidth;i<x+halfWidth;i++){
if ((i>=0)&&(i<width)){
curColor[0]+=map[(i+y*width)*4+GlowR]*filter[fx];
curColor[1]+=map[(i+y*width)*4+GlowG]*filter[fx];
curColor[2]+=map[(i+y*width)*4+GlowB]*filter[fx];
curColor2[0]+=map[(width-1-i+y*width)*4+GlowR] *
filter[fx];
curColor2[1]+=map[(width-1-i+y*width)*4+GlowG] *
filter[fx];
curColor2[2]+=map[(width-1-i+y*width)*4+GlowB] *
filter[fx];
}
fx++;
}
temp[index+GlowR]=curColor[0];
temp[index+GlowG]=curColor[1];
temp[index+GlowB]=curColor[2];
temp[((width-1-x+y*width)*4)+GlowR]=curColor2[0];
temp[((width-1-x+y*width)*4)+GlowG]=curColor2[1];
temp[((width-1-x+y*width)*4)+GlowB]=curColor2[2];
}
/* Do the main body */
for (x=halfWidth;x<width-halfWidth;x++){
index=(x+y*width)*4;
fx=0;
curColor[0]=curColor[1]=curColor[2]=0;
for (i=x-halfWidth;i<x+halfWidth;i++){
curColor[0]+=map[(i+y*width)*4+GlowR]*filter[fx];
curColor[1]+=map[(i+y*width)*4+GlowG]*filter[fx];
curColor[2]+=map[(i+y*width)*4+GlowB]*filter[fx];
fx++;
}
temp[index+GlowR]=curColor[0];
temp[index+GlowG]=curColor[1];
temp[index+GlowB]=curColor[2];
}
}
/* Swap buffers */
swap=temp;temp=map;map=swap;
/* Blur the columns */
for (x=0;x<width;x++){
/* Do the top & bottom strips */
for (y=0;y<halfWidth;y++){
index=(x+y*width)*4;
fy=0;
curColor[0]=curColor[1]=curColor[2]=0;
curColor2[0]=curColor2[1]=curColor2[2]=0;
for (i=y-halfWidth;i<y+halfWidth;i++){
if ((i>=0)&&(i<height)){
/* Bottom */
curColor[0]+=map[(x+i*width)*4+GlowR]*filter[fy];
curColor[1]+=map[(x+i*width)*4+GlowG]*filter[fy];
curColor[2]+=map[(x+i*width)*4+GlowB]*filter[fy];
/* Top */
curColor2[0]+=map[(x+(height-1-i)*width) *
4+GlowR]*filter[fy];
curColor2[1]+=map[(x+(height-1-i)*width) *
4+GlowG]*filter[fy];
curColor2[2]+=map[(x+(height-1-i)*width) *
4+GlowB]*filter[fy];
}
fy++;
}
temp[index+GlowR]=curColor[0];
temp[index+GlowG]=curColor[1];
temp[index+GlowB]=curColor[2];
temp[((x+(height-1-y)*width)*4)+GlowR]=curColor2[0];
temp[((x+(height-1-y)*width)*4)+GlowG]=curColor2[1];
temp[((x+(height-1-y)*width)*4)+GlowB]=curColor2[2];
}
/* Do the main body */
for (y=halfWidth;y<height-halfWidth;y++){
index=(x+y*width)*4;
fy=0;
curColor[0]=curColor[1]=curColor[2]=0;
for (i=y-halfWidth;i<y+halfWidth;i++){
curColor[0]+=map[(x+i*width)*4+GlowR]*filter[fy];
curColor[1]+=map[(x+i*width)*4+GlowG]*filter[fy];
curColor[2]+=map[(x+i*width)*4+GlowB]*filter[fy];
fy++;
}
temp[index+GlowR]=curColor[0];
temp[index+GlowG]=curColor[1];
temp[index+GlowB]=curColor[2];
}
}
/* Swap buffers */
swap=temp;temp=map;map=swap;
/* Tidy up */
MEM_freeN (filter);
MEM_freeN (temp);
}
static void RVBlurBitmap2_float ( float* map, int width,int height,
float blur,
int quality)
/* MUUUCCH better than the previous blur. */
/* We do the blurring in two passes which is a whole lot faster. */
/* I changed the math arount to implement an actual Gaussian */
/* distribution. */
/* */
/* Watch out though, it tends to misbehaven with large blur values on */
/* a small bitmap. Avoid avoid avoid. */
/*=============================== */
{
float* temp=NULL,*swap;
float *filter=NULL;
int x,y,i,fx,fy;
int index, ix, halfWidth;
float fval, k, curColor[3], curColor2[3], weight=0;
/* If we're not really blurring, bail out */
if (blur<=0)
return;
/* Allocate memory for the tempmap and the blur filter matrix */
temp= MEM_mallocN( (width*height*4*sizeof(float)), "blurbitmaptemp");
if (!temp)
return;
/* Allocate memory for the filter elements */
halfWidth = ((quality+1)*blur);
filter = (float *)MEM_mallocN(sizeof(float)*halfWidth*2, "blurbitmapfilter");
if (!filter){
MEM_freeN (temp);
return;
}
/* Apparently we're calculating a bell curve */
/* based on the standard deviation (or radius) */
/* This code is based on an example */
/* posted to comp.graphics.algorithms by */
/* Blancmange (bmange@airdmhor.gen.nz) */
k = -1.0/(2.0*3.14159*blur*blur);
fval=0;
for (ix = 0;ix< halfWidth;ix++){
weight = (float)exp(k*(ix*ix));
filter[halfWidth - ix] = weight;
filter[halfWidth + ix] = weight;
}
filter[0] = weight;
/* Normalize the array */
fval=0;
for (ix = 0;ix< halfWidth*2;ix++)
fval+=filter[ix];
for (ix = 0;ix< halfWidth*2;ix++)
filter[ix]/=fval;
/* Blur the rows */
for (y=0;y<height;y++){
/* Do the left & right strips */
for (x=0;x<halfWidth;x++){
index=(x+y*width)*4;
fx=0;
curColor[0]=curColor[1]=curColor[2]=0.0f;
curColor2[0]=curColor2[1]=curColor2[2]=0.0f;
for (i=x-halfWidth;i<x+halfWidth;i++){
if ((i>=0)&&(i<width)){
curColor[0]+=map[(i+y*width)*4+GlowR]*filter[fx];
curColor[1]+=map[(i+y*width)*4+GlowG]*filter[fx];
curColor[2]+=map[(i+y*width)*4+GlowB]*filter[fx];
curColor2[0]+=map[(width-1-i+y*width)*4+GlowR] *
filter[fx];
curColor2[1]+=map[(width-1-i+y*width)*4+GlowG] *
filter[fx];
curColor2[2]+=map[(width-1-i+y*width)*4+GlowB] *
filter[fx];
}
fx++;
}
temp[index+GlowR]=curColor[0];
temp[index+GlowG]=curColor[1];
temp[index+GlowB]=curColor[2];
temp[((width-1-x+y*width)*4)+GlowR]=curColor2[0];
temp[((width-1-x+y*width)*4)+GlowG]=curColor2[1];
temp[((width-1-x+y*width)*4)+GlowB]=curColor2[2];
}
/* Do the main body */
for (x=halfWidth;x<width-halfWidth;x++){
index=(x+y*width)*4;
fx=0;
curColor[0]=curColor[1]=curColor[2]=0;
for (i=x-halfWidth;i<x+halfWidth;i++){
curColor[0]+=map[(i+y*width)*4+GlowR]*filter[fx];
curColor[1]+=map[(i+y*width)*4+GlowG]*filter[fx];
curColor[2]+=map[(i+y*width)*4+GlowB]*filter[fx];
fx++;
}
temp[index+GlowR]=curColor[0];
temp[index+GlowG]=curColor[1];
temp[index+GlowB]=curColor[2];
}
}
/* Swap buffers */
swap=temp;temp=map;map=swap;
/* Blur the columns */
for (x=0;x<width;x++){
/* Do the top & bottom strips */
for (y=0;y<halfWidth;y++){
index=(x+y*width)*4;
fy=0;
curColor[0]=curColor[1]=curColor[2]=0;
curColor2[0]=curColor2[1]=curColor2[2]=0;
for (i=y-halfWidth;i<y+halfWidth;i++){
if ((i>=0)&&(i<height)){
/* Bottom */
curColor[0]+=map[(x+i*width)*4+GlowR]*filter[fy];
curColor[1]+=map[(x+i*width)*4+GlowG]*filter[fy];
curColor[2]+=map[(x+i*width)*4+GlowB]*filter[fy];
/* Top */
curColor2[0]+=map[(x+(height-1-i)*width) *
4+GlowR]*filter[fy];
curColor2[1]+=map[(x+(height-1-i)*width) *
4+GlowG]*filter[fy];
curColor2[2]+=map[(x+(height-1-i)*width) *
4+GlowB]*filter[fy];
}
fy++;
}
temp[index+GlowR]=curColor[0];
temp[index+GlowG]=curColor[1];
temp[index+GlowB]=curColor[2];
temp[((x+(height-1-y)*width)*4)+GlowR]=curColor2[0];
temp[((x+(height-1-y)*width)*4)+GlowG]=curColor2[1];
temp[((x+(height-1-y)*width)*4)+GlowB]=curColor2[2];
}
/* Do the main body */
for (y=halfWidth;y<height-halfWidth;y++){
index=(x+y*width)*4;
fy=0;
curColor[0]=curColor[1]=curColor[2]=0;
for (i=y-halfWidth;i<y+halfWidth;i++){
curColor[0]+=map[(x+i*width)*4+GlowR]*filter[fy];
curColor[1]+=map[(x+i*width)*4+GlowG]*filter[fy];
curColor[2]+=map[(x+i*width)*4+GlowB]*filter[fy];
fy++;
}
temp[index+GlowR]=curColor[0];
temp[index+GlowG]=curColor[1];
temp[index+GlowB]=curColor[2];
}
}
/* Swap buffers */
swap=temp;temp=map;map=swap;
/* Tidy up */
MEM_freeN (filter);
MEM_freeN (temp);
}
/* Adds two bitmaps and puts the results into a third map. */
/* C must have been previously allocated but it may be A or B. */
/* We clamp values to 255 to prevent weirdness */
/*=============================== */
static void RVAddBitmaps_byte (unsigned char* a, unsigned char* b, unsigned char* c, int width, int height)
{
int x,y,index;
for (y=0;y<height;y++){
for (x=0;x<width;x++){
index=(x+y*width)*4;
c[index+GlowR]=MIN2(255,a[index+GlowR]+b[index+GlowR]);
c[index+GlowG]=MIN2(255,a[index+GlowG]+b[index+GlowG]);
c[index+GlowB]=MIN2(255,a[index+GlowB]+b[index+GlowB]);
c[index+GlowA]=MIN2(255,a[index+GlowA]+b[index+GlowA]);
}
}
}
static void RVAddBitmaps_float (float* a, float* b, float* c,
int width, int height)
{
int x,y,index;
for (y=0;y<height;y++){
for (x=0;x<width;x++){
index=(x+y*width)*4;
c[index+GlowR]=MIN2(1.0,a[index+GlowR]+b[index+GlowR]);
c[index+GlowG]=MIN2(1.0,a[index+GlowG]+b[index+GlowG]);
c[index+GlowB]=MIN2(1.0,a[index+GlowB]+b[index+GlowB]);
c[index+GlowA]=MIN2(1.0,a[index+GlowA]+b[index+GlowA]);
}
}
}
/* For each pixel whose total luminance exceeds the threshold, */
/* Multiply it's value by BOOST and add it to the output map */
static void RVIsolateHighlights_byte (unsigned char* in, unsigned char* out,
int width, int height, int threshold,
float boost, float clamp)
{
int x,y,index;
int intensity;
for(y=0;y< height;y++) {
for (x=0;x< width;x++) {
index= (x+y*width)*4;
/* Isolate the intensity */
intensity=(in[index+GlowR]+in[index+GlowG]+in[index+GlowB]-threshold);
if (intensity>0){
out[index+GlowR]=MIN2(255*clamp, (in[index+GlowR]*boost*intensity)/255);
out[index+GlowG]=MIN2(255*clamp, (in[index+GlowG]*boost*intensity)/255);
out[index+GlowB]=MIN2(255*clamp, (in[index+GlowB]*boost*intensity)/255);
out[index+GlowA]=MIN2(255*clamp, (in[index+GlowA]*boost*intensity)/255);
} else{
out[index+GlowR]=0;
out[index+GlowG]=0;
out[index+GlowB]=0;
out[index+GlowA]=0;
}
}
}
}
static void RVIsolateHighlights_float (float* in, float* out,
int width, int height, float threshold,
float boost, float clamp)
{
int x,y,index;
float intensity;
for(y=0;y< height;y++) {
for (x=0;x< width;x++) {
index= (x+y*width)*4;
/* Isolate the intensity */
intensity=(in[index+GlowR]+in[index+GlowG]+in[index+GlowB]-threshold);
if (intensity>0){
out[index+GlowR]=MIN2(clamp, (in[index+GlowR]*boost*intensity));
out[index+GlowG]=MIN2(clamp, (in[index+GlowG]*boost*intensity));
out[index+GlowB]=MIN2(clamp, (in[index+GlowB]*boost*intensity));
out[index+GlowA]=MIN2(clamp, (in[index+GlowA]*boost*intensity));
} else{
out[index+GlowR]=0;
out[index+GlowG]=0;
out[index+GlowB]=0;
out[index+GlowA]=0;
}
}
}
}
static void init_glow_effect(Sequence *seq)
{
GlowVars *glow;
if(seq->effectdata)MEM_freeN(seq->effectdata);
seq->effectdata = MEM_callocN(sizeof(struct GlowVars), "glowvars");
glow = (GlowVars *)seq->effectdata;
glow->fMini = 0.25;
glow->fClamp = 1.0;
glow->fBoost = 0.5;
glow->dDist = 3.0;
glow->dQuality = 3;
glow->bNoComp = 0;
}
static int num_inputs_glow()
{
return 1;
}
static void free_glow_effect(Sequence *seq)
{
if(seq->effectdata)MEM_freeN(seq->effectdata);
seq->effectdata = 0;
}
static void copy_glow_effect(Sequence *dst, Sequence *src)
{
dst->effectdata = MEM_dupallocN(src->effectdata);
}
//void do_glow_effect(Cast *cast, float facf0, float facf1, int xo, int yo, ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *outbuf, ImBuf *use)
static void do_glow_effect_byte(Sequence *seq, float facf0, float facf1,
int x, int y, char *rect1,
char *rect2, char *out)
{
unsigned char *outbuf=(unsigned char *)out;
unsigned char *inbuf=(unsigned char *)rect1;
GlowVars *glow = (GlowVars *)seq->effectdata;
int size= 100; // renderdata XXX
RVIsolateHighlights_byte(inbuf, outbuf , x, y, glow->fMini*765, glow->fBoost * facf0, glow->fClamp);
RVBlurBitmap2_byte (outbuf, x, y, glow->dDist * (size / 100.0f),glow->dQuality);
if (!glow->bNoComp)
RVAddBitmaps_byte (inbuf , outbuf, outbuf, x, y);
}
static void do_glow_effect_float(Sequence *seq, float facf0, float facf1,
int x, int y,
float *rect1, float *rect2, float *out)
{
float *outbuf = out;
float *inbuf = rect1;
GlowVars *glow = (GlowVars *)seq->effectdata;
int size= 100; // renderdata XXX
RVIsolateHighlights_float(inbuf, outbuf , x, y, glow->fMini*3.0f, glow->fBoost * facf0, glow->fClamp);
RVBlurBitmap2_float (outbuf, x, y, glow->dDist * (size / 100.0f),glow->dQuality);
if (!glow->bNoComp)
RVAddBitmaps_float (inbuf , outbuf, outbuf, x, y);
}
static void do_glow_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
if (out->rect_float) {
do_glow_effect_float(seq,
facf0, facf1, x, y,
ibuf1->rect_float, ibuf2->rect_float,
out->rect_float);
} else {
do_glow_effect_byte(seq,
facf0, facf1, x, y,
(char*) ibuf1->rect, (char*) ibuf2->rect,
(char*) out->rect);
}
}
/* **********************************************************************
SOLID COLOR
********************************************************************** */
static void init_solid_color(Sequence *seq)
{
SolidColorVars *cv;
if(seq->effectdata)MEM_freeN(seq->effectdata);
seq->effectdata = MEM_callocN(sizeof(struct SolidColorVars), "solidcolor");
cv = (SolidColorVars *)seq->effectdata;
cv->col[0] = cv->col[1] = cv->col[2] = 0.5;
}
static int num_inputs_color()
{
return 0;
}
static void free_solid_color(Sequence *seq)
{
if(seq->effectdata)MEM_freeN(seq->effectdata);
seq->effectdata = 0;
}
static void copy_solid_color(Sequence *dst, Sequence *src)
{
dst->effectdata = MEM_dupallocN(src->effectdata);
}
static int early_out_color(struct Sequence *seq,
float facf0, float facf1)
{
return -1;
}
static void do_solid_color(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
SolidColorVars *cv = (SolidColorVars *)seq->effectdata;
unsigned char *rect;
float *rect_float;
if (out->rect) {
unsigned char col0[3];
unsigned char col1[3];
col0[0] = facf0 * cv->col[0] * 255;
col0[1] = facf0 * cv->col[1] * 255;
col0[2] = facf0 * cv->col[2] * 255;
col1[0] = facf1 * cv->col[0] * 255;
col1[1] = facf1 * cv->col[1] * 255;
col1[2] = facf1 * cv->col[2] * 255;
rect = (unsigned char *)out->rect;
for(y=0; y<out->y; y++) {
for(x=0; x<out->x; x++, rect+=4) {
rect[0]= col0[0];
rect[1]= col0[1];
rect[2]= col0[2];
rect[3]= 255;
}
y++;
if (y<out->y) {
for(x=0; x<out->x; x++, rect+=4) {
rect[0]= col1[0];
rect[1]= col1[1];
rect[2]= col1[2];
rect[3]= 255;
}
}
}
} else if (out->rect_float) {
float col0[3];
float col1[3];
col0[0] = facf0 * cv->col[0];
col0[1] = facf0 * cv->col[1];
col0[2] = facf0 * cv->col[2];
col1[0] = facf1 * cv->col[0];
col1[1] = facf1 * cv->col[1];
col1[2] = facf1 * cv->col[2];
rect_float = out->rect_float;
for(y=0; y<out->y; y++) {
for(x=0; x<out->x; x++, rect_float+=4) {
rect_float[0]= col0[0];
rect_float[1]= col0[1];
rect_float[2]= col0[2];
rect_float[3]= 1.0;
}
y++;
if (y<out->y) {
for(x=0; x<out->x; x++, rect_float+=4) {
rect_float[0]= col1[0];
rect_float[1]= col1[1];
rect_float[2]= col1[2];
rect_float[3]= 1.0;
}
}
}
}
}
/* **********************************************************************
SPEED
********************************************************************** */
static void init_speed_effect(Sequence *seq)
{
SpeedControlVars * v;
if(seq->effectdata) MEM_freeN(seq->effectdata);
seq->effectdata = MEM_callocN(sizeof(struct SpeedControlVars),
"speedcontrolvars");
v = (SpeedControlVars *)seq->effectdata;
v->globalSpeed = 1.0;
v->frameMap = 0;
v->flags = SEQ_SPEED_COMPRESS_IPO_Y;
v->length = 0;
}
static void load_speed_effect(Sequence * seq)
{
SpeedControlVars * v = (SpeedControlVars *)seq->effectdata;
v->frameMap = 0;
v->length = 0;
}
static int num_inputs_speed()
{
return 1;
}
static void free_speed_effect(Sequence *seq)
{
SpeedControlVars * v = (SpeedControlVars *)seq->effectdata;
if(v->frameMap) MEM_freeN(v->frameMap);
if(seq->effectdata) MEM_freeN(seq->effectdata);
seq->effectdata = 0;
}
static void copy_speed_effect(Sequence *dst, Sequence *src)
{
SpeedControlVars * v;
dst->effectdata = MEM_dupallocN(src->effectdata);
v = (SpeedControlVars *)dst->effectdata;
v->frameMap = 0;
v->length = 0;
}
static int early_out_speed(struct Sequence *seq,
float facf0, float facf1)
{
return 1;
}
static void store_icu_yrange_speed(struct Sequence * seq,
short adrcode, float * ymin, float * ymax)
{
SpeedControlVars * v = (SpeedControlVars *)seq->effectdata;
/* if not already done, load / initialize data */
get_sequence_effect(seq);
if ((v->flags & SEQ_SPEED_INTEGRATE) != 0) {
*ymin = -100.0;
*ymax = 100.0;
} else {
if (v->flags & SEQ_SPEED_COMPRESS_IPO_Y) {
*ymin = 0.0;
*ymax = 1.0;
} else {
*ymin = 0.0;
*ymax = seq->len;
}
}
}
void sequence_effect_speed_rebuild_map(Sequence * seq, int force)
{
float facf0 = seq->facf0;
//float ctime, div;
int cfra;
float fallback_fac;
SpeedControlVars * v = (SpeedControlVars *)seq->effectdata;
/* if not already done, load / initialize data */
get_sequence_effect(seq);
if (!(force || seq->len != v->length || !v->frameMap)) {
return;
}
if (!v->frameMap || v->length != seq->len) {
if (v->frameMap) MEM_freeN(v->frameMap);
v->length = seq->len;
v->frameMap = MEM_callocN(sizeof(float) * v->length,
"speedcontrol frameMap");
}
fallback_fac = 1.0;
/* if there is no IPO, try to make retiming easy by stretching the
strip */
// XXX old animation system - seq
if (/*!seq->ipo &&*/ seq->seq1 && seq->seq1->enddisp != seq->seq1->start
&& seq->seq1->len != 0) {
fallback_fac = (float) seq->seq1->len /
(float) (seq->seq1->enddisp - seq->seq1->start);
/* FIXME: this strip stretching gets screwed by stripdata
handling one layer up.
So it currently works by enlarging, never by shrinking!
(IPOs still work, if used correctly)
*/
if (fallback_fac > 1.0) {
fallback_fac = 1.0;
}
}
if ((v->flags & SEQ_SPEED_INTEGRATE) != 0) {
float cursor = 0;
v->frameMap[0] = 0;
v->lastValidFrame = 0;
for (cfra = 1; cfra < v->length; cfra++) {
#if 0 // XXX old animation system
if(seq->ipo) {
if((seq->flag & SEQ_IPO_FRAME_LOCKED) != 0) {
ctime = frame_to_float(scene, seq->startdisp + cfra);
div = 1.0;
} else {
ctime= frame_to_float(scene, cfra);
div= v->length / 100.0f;
if(div==0.0) return;
}
calc_ipo(seq->ipo, ctime/div);
execute_ipo((ID *)seq, seq->ipo);
} else
#endif // XXX old animation system
{
seq->facf0 = fallback_fac;
}
seq->facf0 *= v->globalSpeed;
cursor += seq->facf0;
if (cursor >= v->length) {
v->frameMap[cfra] = v->length - 1;
} else {
v->frameMap[cfra] = cursor;
v->lastValidFrame = cfra;
}
}
} else {
v->lastValidFrame = 0;
for (cfra = 0; cfra < v->length; cfra++) {
#if 0 // XXX old animation system
if(seq->ipo) {
if((seq->flag & SEQ_IPO_FRAME_LOCKED) != 0) {
ctime = frame_to_float(scene, seq->startdisp + cfra);
div = 1.0;
} else {
ctime= frame_to_float(scene, cfra);
div= v->length / 100.0f;
if(div==0.0) return;
}
calc_ipo(seq->ipo, ctime/div);
execute_ipo((ID *)seq, seq->ipo);
}
#endif // XXX old animation system
if (v->flags & SEQ_SPEED_COMPRESS_IPO_Y) {
seq->facf0 *= v->length;
}
if (/*!seq->ipo*/ 1) { // XXX old animation system - seq
seq->facf0 = (float) cfra * fallback_fac;
}
seq->facf0 *= v->globalSpeed;
if (seq->facf0 >= v->length) {
seq->facf0 = v->length - 1;
} else {
v->lastValidFrame = cfra;
}
v->frameMap[cfra] = seq->facf0;
}
}
seq->facf0 = facf0;
}
/*
simply reuse do_cross_effect for blending...
static void do_speed_effect(Sequence * seq,int cfra,
float facf0, float facf1, int x, int y,
struct ImBuf *ibuf1, struct ImBuf *ibuf2,
struct ImBuf *ibuf3, struct ImBuf *out)
{
}
*/
/* **********************************************************************
sequence effect factory
********************************************************************** */
static void init_noop(struct Sequence *seq)
{
}
static void load_noop(struct Sequence *seq)
{
}
static void init_plugin_noop(struct Sequence *seq, const char * fname)
{
}
static void free_noop(struct Sequence *seq)
{
}
static int num_inputs_default()
{
return 2;
}
static int early_out_noop(struct Sequence *seq,
float facf0, float facf1)
{
return 0;
}
static int early_out_fade(struct Sequence *seq,
float facf0, float facf1)
{
if (facf0 == 0.0 && facf1 == 0.0) {
return 1;
} else if (facf0 == 1.0 && facf1 == 1.0) {
return 2;
}
return 0;
}
static int early_out_mul_input2(struct Sequence *seq,
float facf0, float facf1)
{
if (facf0 == 0.0 && facf1 == 0.0) {
return 1;
}
return 0;
}
static void store_icu_yrange_noop(struct Sequence * seq,
short adrcode, float * ymin, float * ymax)
{
/* defaults are fine */
}
static void get_default_fac_noop(struct Sequence *seq, int cfra,
float * facf0, float * facf1)
{
*facf0 = *facf1 = 1.0;
}
static void get_default_fac_fade(struct Sequence *seq, int cfra,
float * facf0, float * facf1)
{
*facf0 = (float)(cfra - seq->startdisp);
*facf1 = (float)(*facf0 + 0.5);
*facf0 /= seq->len;
*facf1 /= seq->len;
}
static void do_overdrop_effect(struct Sequence * seq, int cfra,
float fac, float facf,
int x, int y, struct ImBuf * ibuf1,
struct ImBuf * ibuf2,
struct ImBuf * ibuf3,
struct ImBuf * out)
{
do_drop_effect(seq, cfra, fac, facf, x, y,
ibuf1, ibuf2, ibuf3, out);
do_alphaover_effect(seq, cfra, fac, facf, x, y,
ibuf1, ibuf2, ibuf3, out);
}
static struct SeqEffectHandle get_sequence_effect_impl(int seq_type)
{
struct SeqEffectHandle rval;
int sequence_type = seq_type;
rval.init = init_noop;
rval.init_plugin = init_plugin_noop;
rval.num_inputs = num_inputs_default;
rval.load = load_noop;
rval.free = free_noop;
rval.early_out = early_out_noop;
rval.get_default_fac = get_default_fac_noop;
rval.store_icu_yrange = store_icu_yrange_noop;
rval.execute = NULL;
rval.copy = NULL;
switch (sequence_type) {
case SEQ_CROSS:
rval.execute = do_cross_effect;
rval.early_out = early_out_fade;
rval.get_default_fac = get_default_fac_fade;
break;
case SEQ_GAMCROSS:
rval.init = init_gammacross;
rval.load = load_gammacross;
rval.free = free_gammacross;
rval.early_out = early_out_fade;
rval.get_default_fac = get_default_fac_fade;
rval.execute = do_gammacross_effect;
break;
case SEQ_ADD:
rval.execute = do_add_effect;
rval.early_out = early_out_mul_input2;
break;
case SEQ_SUB:
rval.execute = do_sub_effect;
rval.early_out = early_out_mul_input2;
break;
case SEQ_MUL:
rval.execute = do_mul_effect;
rval.early_out = early_out_mul_input2;
break;
case SEQ_ALPHAOVER:
rval.init = init_alpha_over_or_under;
rval.execute = do_alphaover_effect;
break;
case SEQ_OVERDROP:
rval.execute = do_overdrop_effect;
break;
case SEQ_ALPHAUNDER:
rval.init = init_alpha_over_or_under;
rval.execute = do_alphaunder_effect;
break;
case SEQ_WIPE:
rval.init = init_wipe_effect;
rval.num_inputs = num_inputs_wipe;
rval.free = free_wipe_effect;
rval.copy = copy_wipe_effect;
rval.early_out = early_out_fade;
rval.get_default_fac = get_default_fac_fade;
rval.execute = do_wipe_effect;
break;
case SEQ_GLOW:
rval.init = init_glow_effect;
rval.num_inputs = num_inputs_glow;
rval.free = free_glow_effect;
rval.copy = copy_glow_effect;
rval.execute = do_glow_effect;
break;
case SEQ_TRANSFORM:
rval.init = init_transform_effect;
rval.num_inputs = num_inputs_transform;
rval.free = free_transform_effect;
rval.copy = copy_transform_effect;
rval.execute = do_transform_effect;
break;
case SEQ_SPEED:
rval.init = init_speed_effect;
rval.num_inputs = num_inputs_speed;
rval.load = load_speed_effect;
rval.free = free_speed_effect;
rval.copy = copy_speed_effect;
rval.execute = do_cross_effect;
rval.early_out = early_out_speed;
rval.store_icu_yrange = store_icu_yrange_speed;
break;
case SEQ_COLOR:
rval.init = init_solid_color;
rval.num_inputs = num_inputs_color;
rval.early_out = early_out_color;
rval.free = free_solid_color;
rval.copy = copy_solid_color;
rval.execute = do_solid_color;
break;
case SEQ_PLUGIN:
rval.init_plugin = init_plugin;
rval.num_inputs = num_inputs_plugin;
rval.load = load_plugin;
rval.free = free_plugin;
rval.copy = copy_plugin;
rval.execute = do_plugin_effect;
rval.early_out = do_plugin_early_out;
rval.get_default_fac = get_default_fac_fade;
break;
}
return rval;
}
struct SeqEffectHandle get_sequence_effect(Sequence * seq)
{
struct SeqEffectHandle rval;
memset(&rval, 0, sizeof(struct SeqEffectHandle));
if (seq->type & SEQ_EFFECT) {
rval = get_sequence_effect_impl(seq->type);
if ((seq->flag & SEQ_EFFECT_NOT_LOADED) != 0) {
rval.load(seq);
seq->flag &= ~SEQ_EFFECT_NOT_LOADED;
}
}
return rval;
}
struct SeqEffectHandle get_sequence_blend(Sequence * seq)
{
struct SeqEffectHandle rval;
memset(&rval, 0, sizeof(struct SeqEffectHandle));
if (seq->blend_mode != 0) {
rval = get_sequence_effect_impl(seq->blend_mode);
if ((seq->flag & SEQ_EFFECT_NOT_LOADED) != 0) {
rval.load(seq);
seq->flag &= ~SEQ_EFFECT_NOT_LOADED;
}
}
return rval;
}
int get_sequence_effect_num_inputs(int seq_type)
{
struct SeqEffectHandle rval = get_sequence_effect_impl(seq_type);
int cnt = rval.num_inputs();
if (rval.execute) {
return cnt;
}
return 0;
}