tornavis/source/blender/blenkernel/intern/customdata.c

5131 lines
137 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2006 Blender Foundation.
* All rights reserved.
* Implementation of CustomData.
*
* BKE_customdata.h contains the function prototypes for this file.
*/
/** \file
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
/* Since we have versioning code here (CustomData_verify_versions()). */
#define DNA_DEPRECATED_ALLOW
#include "DNA_ID.h"
#include "DNA_customdata_types.h"
#include "DNA_hair_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_pointcloud_types.h"
#include "BLI_math.h"
#include "BLI_math_color_blend.h"
#include "BLI_mempool.h"
#include "BLI_path_util.h"
#include "BLI_string.h"
#include "BLI_string_utils.h"
#include "BLI_utildefines.h"
#include "BLT_translation.h"
#include "BKE_customdata.h"
#include "BKE_customdata_file.h"
#include "BKE_main.h"
#include "BKE_mesh_mapping.h"
#include "BKE_mesh_remap.h"
#include "BKE_multires.h"
#include "bmesh.h"
#include "CLG_log.h"
/* only for customdata_data_transfer_interp_normal_normals */
#include "data_transfer_intern.h"
/* number of layers to add when growing a CustomData object */
#define CUSTOMDATA_GROW 5
/* ensure typemap size is ok */
BLI_STATIC_ASSERT(ARRAY_SIZE(((CustomData *)NULL)->typemap) == CD_NUMTYPES, "size mismatch");
static CLG_LogRef LOG = {"bke.customdata"};
/** Update mask_dst with layers defined in mask_src (equivalent to a bitwise OR). */
void CustomData_MeshMasks_update(CustomData_MeshMasks *mask_dst,
const CustomData_MeshMasks *mask_src)
{
mask_dst->vmask |= mask_src->vmask;
mask_dst->emask |= mask_src->emask;
mask_dst->fmask |= mask_src->fmask;
mask_dst->pmask |= mask_src->pmask;
mask_dst->lmask |= mask_src->lmask;
}
/** Return True if all layers set in \a mask_required are also set in \a mask_ref */
bool CustomData_MeshMasks_are_matching(const CustomData_MeshMasks *mask_ref,
const CustomData_MeshMasks *mask_required)
{
return (((mask_required->vmask & mask_ref->vmask) == mask_required->vmask) &&
((mask_required->emask & mask_ref->emask) == mask_required->emask) &&
((mask_required->fmask & mask_ref->fmask) == mask_required->fmask) &&
((mask_required->pmask & mask_ref->pmask) == mask_required->pmask) &&
((mask_required->lmask & mask_ref->lmask) == mask_required->lmask));
}
/********************* Layer type information **********************/
typedef struct LayerTypeInfo {
int size; /* the memory size of one element of this layer's data */
/** name of the struct used, for file writing */
const char *structname;
/** number of structs per element, for file writing */
int structnum;
/**
* default layer name.
* note! when NULL this is a way to ensure there is only ever one item
* see: CustomData_layertype_is_singleton() */
const char *defaultname;
/**
* a function to copy count elements of this layer's data
* (deep copy if appropriate)
* if NULL, memcpy is used
*/
cd_copy copy;
/**
* a function to free any dynamically allocated components of this
* layer's data (note the data pointer itself should not be freed)
* size should be the size of one element of this layer's data (e.g.
* LayerTypeInfo.size)
*/
void (*free)(void *data, int count, int size);
/**
* a function to interpolate between count source elements of this
* layer's data and store the result in dest
* if weights == NULL or sub_weights == NULL, they should default to 1
*
* weights gives the weight for each element in sources
* sub_weights gives the sub-element weights for each element in sources
* (there should be (sub element count)^2 weights per element)
* count gives the number of elements in sources
*
* \note in some cases \a dest pointer is in \a sources
* so all functions have to take this into account and delay
* applying changes while reading from sources.
* See bug [#32395] - Campbell.
*/
cd_interp interp;
/** a function to swap the data in corners of the element */
void (*swap)(void *data, const int *corner_indices);
/**
* a function to set a layer's data to default values. if NULL, the
* default is assumed to be all zeros */
void (*set_default)(void *data, int count);
/** A function used by mesh validating code, must ensures passed item has valid data. */
cd_validate validate;
/** functions necessary for geometry collapse */
bool (*equal)(const void *data1, const void *data2);
void (*multiply)(void *data, float fac);
void (*initminmax)(void *min, void *max);
void (*add)(void *data1, const void *data2);
void (*dominmax)(const void *data1, void *min, void *max);
void (*copyvalue)(const void *source, void *dest, const int mixmode, const float mixfactor);
/** a function to read data from a cdf file */
int (*read)(CDataFile *cdf, void *data, int count);
/** a function to write data to a cdf file */
int (*write)(CDataFile *cdf, const void *data, int count);
/** a function to determine file size */
size_t (*filesize)(CDataFile *cdf, const void *data, int count);
/** a function to determine max allowed number of layers,
* should be NULL or return -1 if no limit */
int (*layers_max)(void);
} LayerTypeInfo;
static void layerCopy_mdeformvert(const void *source, void *dest, int count)
{
int i, size = sizeof(MDeformVert);
memcpy(dest, source, count * size);
for (i = 0; i < count; i++) {
MDeformVert *dvert = POINTER_OFFSET(dest, i * size);
if (dvert->totweight) {
MDeformWeight *dw = MEM_malloc_arrayN(
dvert->totweight, sizeof(*dw), "layerCopy_mdeformvert dw");
memcpy(dw, dvert->dw, dvert->totweight * sizeof(*dw));
dvert->dw = dw;
}
else {
dvert->dw = NULL;
}
}
}
static void layerFree_mdeformvert(void *data, int count, int size)
{
int i;
for (i = 0; i < count; i++) {
MDeformVert *dvert = POINTER_OFFSET(data, i * size);
if (dvert->dw) {
MEM_freeN(dvert->dw);
dvert->dw = NULL;
dvert->totweight = 0;
}
}
}
/* copy just zeros in this case */
static void layerCopy_bmesh_elem_py_ptr(const void *UNUSED(source), void *dest, int count)
{
int i, size = sizeof(void *);
for (i = 0; i < count; i++) {
void **ptr = POINTER_OFFSET(dest, i * size);
*ptr = NULL;
}
}
#ifndef WITH_PYTHON
void bpy_bm_generic_invalidate(struct BPy_BMGeneric *UNUSED(self))
{
/* dummy */
}
#endif
static void layerFree_bmesh_elem_py_ptr(void *data, int count, int size)
{
int i;
for (i = 0; i < count; i++) {
void **ptr = POINTER_OFFSET(data, i * size);
if (*ptr) {
bpy_bm_generic_invalidate(*ptr);
}
}
}
static void layerInterp_mdeformvert(const void **sources,
const float *weights,
const float *UNUSED(sub_weights),
int count,
void *dest)
{
/* a single linked list of MDeformWeight's
* use this to avoid double allocs (which LinkNode would do) */
struct MDeformWeight_Link {
struct MDeformWeight_Link *next;
MDeformWeight dw;
};
MDeformVert *dvert = dest;
struct MDeformWeight_Link *dest_dwlink = NULL;
struct MDeformWeight_Link *node;
int i, j, totweight;
if (count <= 0) {
return;
}
/* build a list of unique def_nrs for dest */
totweight = 0;
for (i = 0; i < count; i++) {
const MDeformVert *source = sources[i];
float interp_weight = weights ? weights[i] : 1.0f;
for (j = 0; j < source->totweight; j++) {
MDeformWeight *dw = &source->dw[j];
float weight = dw->weight * interp_weight;
if (weight == 0.0f) {
continue;
}
for (node = dest_dwlink; node; node = node->next) {
MDeformWeight *tmp_dw = &node->dw;
if (tmp_dw->def_nr == dw->def_nr) {
tmp_dw->weight += weight;
break;
}
}
/* if this def_nr is not in the list, add it */
if (!node) {
struct MDeformWeight_Link *tmp_dwlink = alloca(sizeof(*tmp_dwlink));
tmp_dwlink->dw.def_nr = dw->def_nr;
tmp_dwlink->dw.weight = weight;
/* inline linklist */
tmp_dwlink->next = dest_dwlink;
dest_dwlink = tmp_dwlink;
totweight++;
}
}
}
/* Delay writing to the destination in case dest is in sources. */
/* now we know how many unique deform weights there are, so realloc */
if (dvert->dw && (dvert->totweight == totweight)) {
/* pass (fast-path if we don't need to realloc). */
}
else {
if (dvert->dw) {
MEM_freeN(dvert->dw);
}
if (totweight) {
dvert->dw = MEM_malloc_arrayN(totweight, sizeof(*dvert->dw), __func__);
}
}
if (totweight) {
dvert->totweight = totweight;
for (i = 0, node = dest_dwlink; node; node = node->next, i++) {
if (node->dw.weight > 1.0f) {
node->dw.weight = 1.0f;
}
dvert->dw[i] = node->dw;
}
}
else {
memset(dvert, 0, sizeof(*dvert));
}
}
static void layerInterp_normal(const void **sources,
const float *weights,
const float *UNUSED(sub_weights),
int count,
void *dest)
{
/* Note: This is linear interpolation, which is not optimal for vectors.
* Unfortunately, spherical interpolation of more than two values is hairy,
* so for now it will do... */
float no[3] = {0.0f};
while (count--) {
madd_v3_v3fl(no, (const float *)sources[count], weights[count]);
}
/* Weighted sum of normalized vectors will **not** be normalized, even if weights are. */
normalize_v3_v3((float *)dest, no);
}
static bool layerValidate_normal(void *data, const uint totitems, const bool do_fixes)
{
static const float no_default[3] = {0.0f, 0.0f, 1.0f}; /* Z-up default normal... */
float(*no)[3] = data;
bool has_errors = false;
for (int i = 0; i < totitems; i++, no++) {
if (!is_finite_v3((float *)no)) {
has_errors = true;
if (do_fixes) {
copy_v3_v3((float *)no, no_default);
}
}
else if (!compare_ff(len_squared_v3((float *)no), 1.0f, 1e-6f)) {
has_errors = true;
if (do_fixes) {
normalize_v3((float *)no);
}
}
}
return has_errors;
}
static void layerCopyValue_normal(const void *source,
void *dest,
const int mixmode,
const float mixfactor)
{
const float *no_src = source;
float *no_dst = dest;
float no_tmp[3];
if (ELEM(mixmode,
CDT_MIX_NOMIX,
CDT_MIX_REPLACE_ABOVE_THRESHOLD,
CDT_MIX_REPLACE_BELOW_THRESHOLD)) {
/* Above/below threshold modes are not supported here, fallback to nomix (just in case). */
copy_v3_v3(no_dst, no_src);
}
else { /* Modes that support 'real' mix factor. */
/* Since we normalize in the end, MIX and ADD are the same op here. */
if (ELEM(mixmode, CDT_MIX_MIX, CDT_MIX_ADD)) {
add_v3_v3v3(no_tmp, no_dst, no_src);
normalize_v3(no_tmp);
}
else if (mixmode == CDT_MIX_SUB) {
sub_v3_v3v3(no_tmp, no_dst, no_src);
normalize_v3(no_tmp);
}
else if (mixmode == CDT_MIX_MUL) {
mul_v3_v3v3(no_tmp, no_dst, no_src);
normalize_v3(no_tmp);
}
else {
copy_v3_v3(no_tmp, no_src);
}
interp_v3_v3v3_slerp_safe(no_dst, no_dst, no_tmp, mixfactor);
}
}
static void layerCopy_tface(const void *source, void *dest, int count)
{
const MTFace *source_tf = (const MTFace *)source;
MTFace *dest_tf = (MTFace *)dest;
int i;
for (i = 0; i < count; i++) {
dest_tf[i] = source_tf[i];
}
}
static void layerInterp_tface(
const void **sources, const float *weights, const float *sub_weights, int count, void *dest)
{
MTFace *tf = dest;
int i, j, k;
float uv[4][2] = {{0.0f}};
const float *sub_weight;
if (count <= 0) {
return;
}
sub_weight = sub_weights;
for (i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1;
const MTFace *src = sources[i];
for (j = 0; j < 4; j++) {
if (sub_weights) {
for (k = 0; k < 4; k++, sub_weight++) {
madd_v2_v2fl(uv[j], src->uv[k], (*sub_weight) * weight);
}
}
else {
madd_v2_v2fl(uv[j], src->uv[j], weight);
}
}
}
/* Delay writing to the destination in case dest is in sources. */
*tf = *(MTFace *)(*sources);
memcpy(tf->uv, uv, sizeof(tf->uv));
}
static void layerSwap_tface(void *data, const int *corner_indices)
{
MTFace *tf = data;
float uv[4][2];
int j;
for (j = 0; j < 4; j++) {
const int source_index = corner_indices[j];
copy_v2_v2(uv[j], tf->uv[source_index]);
}
memcpy(tf->uv, uv, sizeof(tf->uv));
}
static void layerDefault_tface(void *data, int count)
{
static MTFace default_tf = {{{0, 0}, {1, 0}, {1, 1}, {0, 1}}};
MTFace *tf = (MTFace *)data;
int i;
for (i = 0; i < count; i++) {
tf[i] = default_tf;
}
}
static int layerMaxNum_tface(void)
{
return MAX_MTFACE;
}
static void layerCopy_propFloat(const void *source, void *dest, int count)
{
memcpy(dest, source, sizeof(MFloatProperty) * count);
}
static bool layerValidate_propFloat(void *data, const uint totitems, const bool do_fixes)
{
MFloatProperty *fp = data;
bool has_errors = false;
for (int i = 0; i < totitems; i++, fp++) {
if (!isfinite(fp->f)) {
if (do_fixes) {
fp->f = 0.0f;
}
has_errors = true;
}
}
return has_errors;
}
static void layerCopy_propInt(const void *source, void *dest, int count)
{
memcpy(dest, source, sizeof(MIntProperty) * count);
}
static void layerCopy_propString(const void *source, void *dest, int count)
{
memcpy(dest, source, sizeof(MStringProperty) * count);
}
static void layerCopy_origspace_face(const void *source, void *dest, int count)
{
const OrigSpaceFace *source_tf = (const OrigSpaceFace *)source;
OrigSpaceFace *dest_tf = (OrigSpaceFace *)dest;
int i;
for (i = 0; i < count; i++) {
dest_tf[i] = source_tf[i];
}
}
static void layerInterp_origspace_face(
const void **sources, const float *weights, const float *sub_weights, int count, void *dest)
{
OrigSpaceFace *osf = dest;
int i, j, k;
float uv[4][2] = {{0.0f}};
const float *sub_weight;
if (count <= 0) {
return;
}
sub_weight = sub_weights;
for (i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1;
const OrigSpaceFace *src = sources[i];
for (j = 0; j < 4; j++) {
if (sub_weights) {
for (k = 0; k < 4; k++, sub_weight++) {
madd_v2_v2fl(uv[j], src->uv[k], (*sub_weight) * weight);
}
}
else {
madd_v2_v2fl(uv[j], src->uv[j], weight);
}
}
}
/* Delay writing to the destination in case dest is in sources. */
memcpy(osf->uv, uv, sizeof(osf->uv));
}
static void layerSwap_origspace_face(void *data, const int *corner_indices)
{
OrigSpaceFace *osf = data;
float uv[4][2];
int j;
for (j = 0; j < 4; j++) {
copy_v2_v2(uv[j], osf->uv[corner_indices[j]]);
}
memcpy(osf->uv, uv, sizeof(osf->uv));
}
static void layerDefault_origspace_face(void *data, int count)
{
static OrigSpaceFace default_osf = {{{0, 0}, {1, 0}, {1, 1}, {0, 1}}};
OrigSpaceFace *osf = (OrigSpaceFace *)data;
int i;
for (i = 0; i < count; i++) {
osf[i] = default_osf;
}
}
static void layerSwap_mdisps(void *data, const int *ci)
{
MDisps *s = data;
float(*d)[3] = NULL;
int corners, cornersize, S;
if (s->disps) {
int nverts = (ci[1] == 3) ? 4 : 3; /* silly way to know vertex count of face */
corners = multires_mdisp_corners(s);
cornersize = s->totdisp / corners;
if (corners != nverts) {
/* happens when face changed vertex count in edit mode
* if it happened, just forgot displacement */
MEM_freeN(s->disps);
s->totdisp = (s->totdisp / corners) * nverts;
s->disps = MEM_calloc_arrayN(s->totdisp, sizeof(float) * 3, "mdisp swap");
return;
}
d = MEM_calloc_arrayN(s->totdisp, 3 * sizeof(float), "mdisps swap");
for (S = 0; S < corners; S++) {
memcpy(d + cornersize * S, s->disps + cornersize * ci[S], cornersize * 3 * sizeof(float));
}
MEM_freeN(s->disps);
s->disps = d;
}
}
static void layerCopy_mdisps(const void *source, void *dest, int count)
{
int i;
const MDisps *s = source;
MDisps *d = dest;
for (i = 0; i < count; i++) {
if (s[i].disps) {
d[i].disps = MEM_dupallocN(s[i].disps);
d[i].hidden = MEM_dupallocN(s[i].hidden);
}
else {
d[i].disps = NULL;
d[i].hidden = NULL;
}
/* still copy even if not in memory, displacement can be external */
d[i].totdisp = s[i].totdisp;
d[i].level = s[i].level;
}
}
static void layerFree_mdisps(void *data, int count, int UNUSED(size))
{
int i;
MDisps *d = data;
for (i = 0; i < count; i++) {
if (d[i].disps) {
MEM_freeN(d[i].disps);
}
if (d[i].hidden) {
MEM_freeN(d[i].hidden);
}
d[i].disps = NULL;
d[i].hidden = NULL;
d[i].totdisp = 0;
d[i].level = 0;
}
}
static int layerRead_mdisps(CDataFile *cdf, void *data, int count)
{
MDisps *d = data;
int i;
for (i = 0; i < count; i++) {
if (!d[i].disps) {
d[i].disps = MEM_calloc_arrayN(d[i].totdisp, 3 * sizeof(float), "mdisps read");
}
if (!cdf_read_data(cdf, d[i].totdisp * 3 * sizeof(float), d[i].disps)) {
CLOG_ERROR(&LOG, "failed to read multires displacement %d/%d %d", i, count, d[i].totdisp);
return 0;
}
}
return 1;
}
static int layerWrite_mdisps(CDataFile *cdf, const void *data, int count)
{
const MDisps *d = data;
int i;
for (i = 0; i < count; i++) {
if (!cdf_write_data(cdf, d[i].totdisp * 3 * sizeof(float), d[i].disps)) {
CLOG_ERROR(&LOG, "failed to write multires displacement %d/%d %d", i, count, d[i].totdisp);
return 0;
}
}
return 1;
}
static size_t layerFilesize_mdisps(CDataFile *UNUSED(cdf), const void *data, int count)
{
const MDisps *d = data;
size_t size = 0;
int i;
for (i = 0; i < count; i++) {
size += d[i].totdisp * 3 * sizeof(float);
}
return size;
}
static void layerInterp_paint_mask(
const void **sources, const float *weights, const float *sub_weights, int count, void *dest)
{
float mask = 0.0f;
const float *sub_weight = sub_weights;
for (int i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1.0f;
const float *src = sources[i];
if (sub_weights) {
mask += (*src) * (*sub_weight) * weight;
sub_weight++;
}
else {
mask += (*src) * weight;
}
}
*(float *)dest = mask;
}
static void layerCopy_grid_paint_mask(const void *source, void *dest, int count)
{
int i;
const GridPaintMask *s = source;
GridPaintMask *d = dest;
for (i = 0; i < count; i++) {
if (s[i].data) {
d[i].data = MEM_dupallocN(s[i].data);
d[i].level = s[i].level;
}
else {
d[i].data = NULL;
d[i].level = 0;
}
}
}
static void layerFree_grid_paint_mask(void *data, int count, int UNUSED(size))
{
int i;
GridPaintMask *gpm = data;
for (i = 0; i < count; i++) {
if (gpm[i].data) {
MEM_freeN(gpm[i].data);
}
gpm[i].data = NULL;
gpm[i].level = 0;
}
}
/* --------- */
static void layerCopyValue_mloopcol(const void *source,
void *dest,
const int mixmode,
const float mixfactor)
{
const MLoopCol *m1 = source;
MLoopCol *m2 = dest;
unsigned char tmp_col[4];
if (ELEM(mixmode,
CDT_MIX_NOMIX,
CDT_MIX_REPLACE_ABOVE_THRESHOLD,
CDT_MIX_REPLACE_BELOW_THRESHOLD)) {
/* Modes that do a full copy or nothing. */
if (ELEM(mixmode, CDT_MIX_REPLACE_ABOVE_THRESHOLD, CDT_MIX_REPLACE_BELOW_THRESHOLD)) {
/* TODO: Check for a real valid way to get 'factor' value of our dest color? */
const float f = ((float)m2->r + (float)m2->g + (float)m2->b) / 3.0f;
if (mixmode == CDT_MIX_REPLACE_ABOVE_THRESHOLD && f < mixfactor) {
return; /* Do Nothing! */
}
else if (mixmode == CDT_MIX_REPLACE_BELOW_THRESHOLD && f > mixfactor) {
return; /* Do Nothing! */
}
}
m2->r = m1->r;
m2->g = m1->g;
m2->b = m1->b;
}
else { /* Modes that support 'real' mix factor. */
unsigned char src[4] = {m1->r, m1->g, m1->b, m1->a};
unsigned char dst[4] = {m2->r, m2->g, m2->b, m2->a};
if (mixmode == CDT_MIX_MIX) {
blend_color_mix_byte(tmp_col, dst, src);
}
else if (mixmode == CDT_MIX_ADD) {
blend_color_add_byte(tmp_col, dst, src);
}
else if (mixmode == CDT_MIX_SUB) {
blend_color_sub_byte(tmp_col, dst, src);
}
else if (mixmode == CDT_MIX_MUL) {
blend_color_mul_byte(tmp_col, dst, src);
}
else {
memcpy(tmp_col, src, sizeof(tmp_col));
}
blend_color_interpolate_byte(dst, dst, tmp_col, mixfactor);
m2->r = (char)dst[0];
m2->g = (char)dst[1];
m2->b = (char)dst[2];
}
m2->a = m1->a;
}
static bool layerEqual_mloopcol(const void *data1, const void *data2)
{
const MLoopCol *m1 = data1, *m2 = data2;
float r, g, b, a;
r = m1->r - m2->r;
g = m1->g - m2->g;
b = m1->b - m2->b;
a = m1->a - m2->a;
return r * r + g * g + b * b + a * a < 0.001f;
}
static void layerMultiply_mloopcol(void *data, float fac)
{
MLoopCol *m = data;
m->r = (float)m->r * fac;
m->g = (float)m->g * fac;
m->b = (float)m->b * fac;
m->a = (float)m->a * fac;
}
static void layerAdd_mloopcol(void *data1, const void *data2)
{
MLoopCol *m = data1;
const MLoopCol *m2 = data2;
m->r += m2->r;
m->g += m2->g;
m->b += m2->b;
m->a += m2->a;
}
static void layerDoMinMax_mloopcol(const void *data, void *vmin, void *vmax)
{
const MLoopCol *m = data;
MLoopCol *min = vmin, *max = vmax;
if (m->r < min->r) {
min->r = m->r;
}
if (m->g < min->g) {
min->g = m->g;
}
if (m->b < min->b) {
min->b = m->b;
}
if (m->a < min->a) {
min->a = m->a;
}
if (m->r > max->r) {
max->r = m->r;
}
if (m->g > max->g) {
max->g = m->g;
}
if (m->b > max->b) {
max->b = m->b;
}
if (m->a > max->a) {
max->a = m->a;
}
}
static void layerInitMinMax_mloopcol(void *vmin, void *vmax)
{
MLoopCol *min = vmin, *max = vmax;
min->r = 255;
min->g = 255;
min->b = 255;
min->a = 255;
max->r = 0;
max->g = 0;
max->b = 0;
max->a = 0;
}
static void layerDefault_mloopcol(void *data, int count)
{
MLoopCol default_mloopcol = {255, 255, 255, 255};
MLoopCol *mlcol = (MLoopCol *)data;
int i;
for (i = 0; i < count; i++) {
mlcol[i] = default_mloopcol;
}
}
static void layerInterp_mloopcol(
const void **sources, const float *weights, const float *sub_weights, int count, void *dest)
{
MLoopCol *mc = dest;
struct {
float a;
float r;
float g;
float b;
} col = {0};
const float *sub_weight = sub_weights;
for (int i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1;
const MLoopCol *src = sources[i];
if (sub_weights) {
col.r += src->r * (*sub_weight) * weight;
col.g += src->g * (*sub_weight) * weight;
col.b += src->b * (*sub_weight) * weight;
col.a += src->a * (*sub_weight) * weight;
sub_weight++;
}
else {
col.r += src->r * weight;
col.g += src->g * weight;
col.b += src->b * weight;
col.a += src->a * weight;
}
}
/* Subdivide smooth or fractal can cause problems without clamping
* although weights should also not cause this situation */
/* Also delay writing to the destination in case dest is in sources. */
mc->r = round_fl_to_uchar_clamp(col.r);
mc->g = round_fl_to_uchar_clamp(col.g);
mc->b = round_fl_to_uchar_clamp(col.b);
mc->a = round_fl_to_uchar_clamp(col.a);
}
static int layerMaxNum_mloopcol(void)
{
return MAX_MCOL;
}
static void layerCopyValue_mloopuv(const void *source,
void *dest,
const int mixmode,
const float mixfactor)
{
const MLoopUV *luv1 = source;
MLoopUV *luv2 = dest;
/* We only support a limited subset of advanced mixing here -
* namely the mixfactor interpolation. */
if (mixmode == CDT_MIX_NOMIX) {
copy_v2_v2(luv2->uv, luv1->uv);
}
else {
interp_v2_v2v2(luv2->uv, luv2->uv, luv1->uv, mixfactor);
}
}
static bool layerEqual_mloopuv(const void *data1, const void *data2)
{
const MLoopUV *luv1 = data1, *luv2 = data2;
return len_squared_v2v2(luv1->uv, luv2->uv) < 0.00001f;
}
static void layerMultiply_mloopuv(void *data, float fac)
{
MLoopUV *luv = data;
mul_v2_fl(luv->uv, fac);
}
static void layerInitMinMax_mloopuv(void *vmin, void *vmax)
{
MLoopUV *min = vmin, *max = vmax;
INIT_MINMAX2(min->uv, max->uv);
}
static void layerDoMinMax_mloopuv(const void *data, void *vmin, void *vmax)
{
const MLoopUV *luv = data;
MLoopUV *min = vmin, *max = vmax;
minmax_v2v2_v2(min->uv, max->uv, luv->uv);
}
static void layerAdd_mloopuv(void *data1, const void *data2)
{
MLoopUV *l1 = data1;
const MLoopUV *l2 = data2;
add_v2_v2(l1->uv, l2->uv);
}
static void layerInterp_mloopuv(
const void **sources, const float *weights, const float *sub_weights, int count, void *dest)
{
float uv[2];
int flag = 0;
int i;
zero_v2(uv);
if (sub_weights) {
const float *sub_weight = sub_weights;
for (i = 0; i < count; i++) {
float weight = (weights ? weights[i] : 1.0f) * (*sub_weight);
const MLoopUV *src = sources[i];
madd_v2_v2fl(uv, src->uv, weight);
if (weight > 0.0f) {
flag |= src->flag;
}
sub_weight++;
}
}
else {
for (i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1;
const MLoopUV *src = sources[i];
madd_v2_v2fl(uv, src->uv, weight);
if (weight > 0.0f) {
flag |= src->flag;
}
}
}
/* Delay writing to the destination in case dest is in sources. */
copy_v2_v2(((MLoopUV *)dest)->uv, uv);
((MLoopUV *)dest)->flag = flag;
}
static bool layerValidate_mloopuv(void *data, const uint totitems, const bool do_fixes)
{
MLoopUV *uv = data;
bool has_errors = false;
for (int i = 0; i < totitems; i++, uv++) {
if (!is_finite_v2(uv->uv)) {
if (do_fixes) {
zero_v2(uv->uv);
}
has_errors = true;
}
}
return has_errors;
}
/* origspace is almost exact copy of mloopuv's, keep in sync */
static void layerCopyValue_mloop_origspace(const void *source,
void *dest,
const int UNUSED(mixmode),
const float UNUSED(mixfactor))
{
const OrigSpaceLoop *luv1 = source;
OrigSpaceLoop *luv2 = dest;
copy_v2_v2(luv2->uv, luv1->uv);
}
static bool layerEqual_mloop_origspace(const void *data1, const void *data2)
{
const OrigSpaceLoop *luv1 = data1, *luv2 = data2;
return len_squared_v2v2(luv1->uv, luv2->uv) < 0.00001f;
}
static void layerMultiply_mloop_origspace(void *data, float fac)
{
OrigSpaceLoop *luv = data;
mul_v2_fl(luv->uv, fac);
}
static void layerInitMinMax_mloop_origspace(void *vmin, void *vmax)
{
OrigSpaceLoop *min = vmin, *max = vmax;
INIT_MINMAX2(min->uv, max->uv);
}
static void layerDoMinMax_mloop_origspace(const void *data, void *vmin, void *vmax)
{
const OrigSpaceLoop *luv = data;
OrigSpaceLoop *min = vmin, *max = vmax;
minmax_v2v2_v2(min->uv, max->uv, luv->uv);
}
static void layerAdd_mloop_origspace(void *data1, const void *data2)
{
OrigSpaceLoop *l1 = data1;
const OrigSpaceLoop *l2 = data2;
add_v2_v2(l1->uv, l2->uv);
}
static void layerInterp_mloop_origspace(
const void **sources, const float *weights, const float *sub_weights, int count, void *dest)
{
float uv[2];
int i;
zero_v2(uv);
if (sub_weights) {
const float *sub_weight = sub_weights;
for (i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1.0f;
const OrigSpaceLoop *src = sources[i];
madd_v2_v2fl(uv, src->uv, (*sub_weight) * weight);
sub_weight++;
}
}
else {
for (i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1.0f;
const OrigSpaceLoop *src = sources[i];
madd_v2_v2fl(uv, src->uv, weight);
}
}
/* Delay writing to the destination in case dest is in sources. */
copy_v2_v2(((OrigSpaceLoop *)dest)->uv, uv);
}
/* --- end copy */
static void layerInterp_mcol(
const void **sources, const float *weights, const float *sub_weights, int count, void *dest)
{
MCol *mc = dest;
int i, j, k;
struct {
float a;
float r;
float g;
float b;
} col[4] = {{0.0f}};
const float *sub_weight;
if (count <= 0) {
return;
}
sub_weight = sub_weights;
for (i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1;
for (j = 0; j < 4; j++) {
if (sub_weights) {
const MCol *src = sources[i];
for (k = 0; k < 4; k++, sub_weight++, src++) {
const float w = (*sub_weight) * weight;
col[j].a += src->a * w;
col[j].r += src->r * w;
col[j].g += src->g * w;
col[j].b += src->b * w;
}
}
else {
const MCol *src = sources[i];
col[j].a += src[j].a * weight;
col[j].r += src[j].r * weight;
col[j].g += src[j].g * weight;
col[j].b += src[j].b * weight;
}
}
}
/* Delay writing to the destination in case dest is in sources. */
for (j = 0; j < 4; j++) {
/* Subdivide smooth or fractal can cause problems without clamping
* although weights should also not cause this situation */
mc[j].a = round_fl_to_uchar_clamp(col[j].a);
mc[j].r = round_fl_to_uchar_clamp(col[j].r);
mc[j].g = round_fl_to_uchar_clamp(col[j].g);
mc[j].b = round_fl_to_uchar_clamp(col[j].b);
}
}
static void layerSwap_mcol(void *data, const int *corner_indices)
{
MCol *mcol = data;
MCol col[4];
int j;
for (j = 0; j < 4; j++) {
col[j] = mcol[corner_indices[j]];
}
memcpy(mcol, col, sizeof(col));
}
static void layerDefault_mcol(void *data, int count)
{
static MCol default_mcol = {255, 255, 255, 255};
MCol *mcol = (MCol *)data;
int i;
for (i = 0; i < 4 * count; i++) {
mcol[i] = default_mcol;
}
}
static void layerDefault_origindex(void *data, int count)
{
copy_vn_i((int *)data, count, ORIGINDEX_NONE);
}
static void layerInterp_bweight(const void **sources,
const float *weights,
const float *UNUSED(sub_weights),
int count,
void *dest)
{
float f;
float **in = (float **)sources;
int i;
if (count <= 0) {
return;
}
f = 0.0f;
if (weights) {
for (i = 0; i < count; i++) {
f += *in[i] * weights[i];
}
}
else {
for (i = 0; i < count; i++) {
f += *in[i];
}
}
/* Delay writing to the destination in case dest is in sources. */
*((float *)dest) = f;
}
static void layerInterp_shapekey(const void **sources,
const float *weights,
const float *UNUSED(sub_weights),
int count,
void *dest)
{
float co[3];
float **in = (float **)sources;
int i;
if (count <= 0) {
return;
}
zero_v3(co);
if (weights) {
for (i = 0; i < count; i++) {
madd_v3_v3fl(co, in[i], weights[i]);
}
}
else {
for (i = 0; i < count; i++) {
add_v3_v3(co, in[i]);
}
}
/* Delay writing to the destination in case dest is in sources. */
copy_v3_v3((float *)dest, co);
}
static void layerDefault_mvert_skin(void *data, int count)
{
MVertSkin *vs = data;
int i;
for (i = 0; i < count; i++) {
copy_v3_fl(vs[i].radius, 0.25f);
vs[i].flag = 0;
}
}
static void layerCopy_mvert_skin(const void *source, void *dest, int count)
{
memcpy(dest, source, sizeof(MVertSkin) * count);
}
static void layerInterp_mvert_skin(const void **sources,
const float *weights,
const float *UNUSED(sub_weights),
int count,
void *dest)
{
MVertSkin *vs_dst = dest;
float radius[3], w;
int i;
zero_v3(radius);
for (i = 0; i < count; i++) {
const MVertSkin *vs_src = sources[i];
w = weights ? weights[i] : 1.0f;
madd_v3_v3fl(radius, vs_src->radius, w);
}
/* Delay writing to the destination in case dest is in sources. */
vs_dst = dest;
copy_v3_v3(vs_dst->radius, radius);
vs_dst->flag &= ~MVERT_SKIN_ROOT;
}
static void layerSwap_flnor(void *data, const int *corner_indices)
{
short(*flnors)[4][3] = data;
short nors[4][3];
int i = 4;
while (i--) {
copy_v3_v3_short(nors[i], (*flnors)[corner_indices[i]]);
}
memcpy(flnors, nors, sizeof(nors));
}
static void layerDefault_fmap(void *data, int count)
{
int *fmap_num = (int *)data;
for (int i = 0; i < count; i++) {
fmap_num[i] = -1;
}
}
static void layerCopyValue_propcol(const void *source,
void *dest,
const int mixmode,
const float mixfactor)
{
const MPropCol *m1 = source;
MPropCol *m2 = dest;
float tmp_col[4];
if (ELEM(mixmode,
CDT_MIX_NOMIX,
CDT_MIX_REPLACE_ABOVE_THRESHOLD,
CDT_MIX_REPLACE_BELOW_THRESHOLD)) {
/* Modes that do a full copy or nothing. */
if (ELEM(mixmode, CDT_MIX_REPLACE_ABOVE_THRESHOLD, CDT_MIX_REPLACE_BELOW_THRESHOLD)) {
/* TODO: Check for a real valid way to get 'factor' value of our dest color? */
const float f = (m2->color[0] + m2->color[1] + m2->color[2]) / 3.0f;
if (mixmode == CDT_MIX_REPLACE_ABOVE_THRESHOLD && f < mixfactor) {
return; /* Do Nothing! */
}
else if (mixmode == CDT_MIX_REPLACE_BELOW_THRESHOLD && f > mixfactor) {
return; /* Do Nothing! */
}
}
copy_v3_v3(m2->color, m1->color);
}
else { /* Modes that support 'real' mix factor. */
if (mixmode == CDT_MIX_MIX) {
blend_color_mix_float(tmp_col, m2->color, m1->color);
}
else if (mixmode == CDT_MIX_ADD) {
blend_color_add_float(tmp_col, m2->color, m1->color);
}
else if (mixmode == CDT_MIX_SUB) {
blend_color_sub_float(tmp_col, m2->color, m1->color);
}
else if (mixmode == CDT_MIX_MUL) {
blend_color_mul_float(tmp_col, m2->color, m1->color);
}
else {
memcpy(tmp_col, m1->color, sizeof(tmp_col));
}
blend_color_interpolate_float(m2->color, m2->color, tmp_col, mixfactor);
copy_v3_v3(m2->color, m1->color);
}
m2->color[3] = m1->color[3];
}
static bool layerEqual_propcol(const void *data1, const void *data2)
{
const MPropCol *m1 = data1, *m2 = data2;
float tot = 0;
for (int i = 0; i < 4; i++) {
float c = (m1->color[i] - m2->color[i]);
tot += c * c;
}
return tot < 0.001f;
}
static void layerMultiply_propcol(void *data, float fac)
{
MPropCol *m = data;
mul_v4_fl(m->color, fac);
}
static void layerAdd_propcol(void *data1, const void *data2)
{
MPropCol *m = data1;
const MPropCol *m2 = data2;
add_v4_v4(m->color, m2->color);
}
static void layerDoMinMax_propcol(const void *data, void *vmin, void *vmax)
{
const MPropCol *m = data;
MPropCol *min = vmin, *max = vmax;
minmax_v4v4_v4(min->color, max->color, m->color);
}
static void layerInitMinMax_propcol(void *vmin, void *vmax)
{
MPropCol *min = vmin, *max = vmax;
copy_v4_fl(min->color, FLT_MAX);
copy_v4_fl(max->color, FLT_MIN);
}
static void layerDefault_propcol(void *data, int count)
{
/* Default to white, full alpha. */
MPropCol default_propcol = {{1.0f, 1.0f, 1.0f, 1.0f}};
MPropCol *pcol = (MPropCol *)data;
int i;
for (i = 0; i < count; i++) {
copy_v4_v4(pcol[i].color, default_propcol.color);
}
}
static void layerInterp_propcol(
const void **sources, const float *weights, const float *sub_weights, int count, void *dest)
{
MPropCol *mc = dest;
float col[4] = {0.0f, 0.0f, 0.0f, 0.0f};
const float *sub_weight = sub_weights;
for (int i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1.0f;
const MPropCol *src = sources[i];
if (sub_weights) {
madd_v4_v4fl(col, src->color, (*sub_weight) * weight);
sub_weight++;
}
else {
madd_v4_v4fl(col, src->color, weight);
}
}
copy_v4_v4(mc->color, col);
}
static int layerMaxNum_propcol(void)
{
return MAX_MCOL;
}
static void layerInterp_propfloat3(
const void **sources, const float *weights, const float *sub_weights, int count, void *dest)
{
vec3f result = {0.0f, 0.0f, 0.0f};
for (int i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1.0f;
const vec3f *src = sources[i];
if (sub_weights) {
madd_v3_v3fl(&result.x, &src->x, sub_weights[i] * weight);
}
else {
madd_v3_v3fl(&result.x, &src->x, weight);
}
}
copy_v3_v3((float *)dest, &result.x);
}
static void layerMultiply_propfloat3(void *data, float fac)
{
vec3f *vec = data;
vec->x *= fac;
vec->y *= fac;
vec->z *= fac;
}
static void layerAdd_propfloat3(void *data1, const void *data2)
{
vec3f *vec1 = data1;
const vec3f *vec2 = data2;
vec1->x += vec2->x;
vec1->y += vec2->y;
vec1->z += vec2->z;
}
static bool layerValidate_propfloat3(void *data, const uint totitems, const bool do_fixes)
{
float *values = data;
bool has_errors = false;
for (int i = 0; i < totitems * 3; i++) {
if (!isfinite(values[i])) {
if (do_fixes) {
values[i] = 0.0f;
}
has_errors = true;
}
}
return has_errors;
}
static void layerInterp_propfloat2(
const void **sources, const float *weights, const float *sub_weights, int count, void *dest)
{
vec2f result = {0.0f, 0.0f};
for (int i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1.0f;
const vec2f *src = sources[i];
if (sub_weights) {
madd_v2_v2fl(&result.x, &src->x, sub_weights[i] * weight);
}
else {
madd_v2_v2fl(&result.x, &src->x, weight);
}
}
copy_v2_v2((float *)dest, &result.x);
}
static void layerMultiply_propfloat2(void *data, float fac)
{
vec2f *vec = data;
vec->x *= fac;
vec->y *= fac;
}
static void layerAdd_propfloat2(void *data1, const void *data2)
{
vec2f *vec1 = data1;
const vec2f *vec2 = data2;
vec1->x += vec2->x;
vec1->y += vec2->y;
}
static bool layerValidate_propfloat2(void *data, const uint totitems, const bool do_fixes)
{
float *values = data;
bool has_errors = false;
for (int i = 0; i < totitems * 2; i++) {
if (!isfinite(values[i])) {
if (do_fixes) {
values[i] = 0.0f;
}
has_errors = true;
}
}
return has_errors;
}
static const LayerTypeInfo LAYERTYPEINFO[CD_NUMTYPES] = {
/* 0: CD_MVERT */
{sizeof(MVert), "MVert", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 1: CD_MSTICKY */ /* DEPRECATED */
{sizeof(float) * 2, "", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 2: CD_MDEFORMVERT */
{sizeof(MDeformVert),
"MDeformVert",
1,
NULL,
layerCopy_mdeformvert,
layerFree_mdeformvert,
layerInterp_mdeformvert,
NULL,
NULL},
/* 3: CD_MEDGE */
{sizeof(MEdge), "MEdge", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 4: CD_MFACE */
{sizeof(MFace), "MFace", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 5: CD_MTFACE */
{sizeof(MTFace),
"MTFace",
1,
N_("UVMap"),
layerCopy_tface,
NULL,
layerInterp_tface,
layerSwap_tface,
layerDefault_tface,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
layerMaxNum_tface},
/* 6: CD_MCOL */
/* 4 MCol structs per face */
{sizeof(MCol) * 4,
"MCol",
4,
N_("Col"),
NULL,
NULL,
layerInterp_mcol,
layerSwap_mcol,
layerDefault_mcol,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
layerMaxNum_mloopcol},
/* 7: CD_ORIGINDEX */
{sizeof(int), "", 0, NULL, NULL, NULL, NULL, NULL, layerDefault_origindex},
/* 8: CD_NORMAL */
/* 3 floats per normal vector */
{sizeof(float) * 3,
"vec3f",
1,
NULL,
NULL,
NULL,
layerInterp_normal,
NULL,
NULL,
layerValidate_normal,
NULL,
NULL,
NULL,
NULL,
NULL,
layerCopyValue_normal},
/* 9: CD_FACEMAP */
{sizeof(int), "", 0, NULL, NULL, NULL, NULL, NULL, layerDefault_fmap, NULL},
/* 10: CD_PROP_FLOAT */
{sizeof(MFloatProperty),
"MFloatProperty",
1,
N_("Float"),
layerCopy_propFloat,
NULL,
NULL,
NULL,
NULL,
layerValidate_propFloat},
/* 11: CD_PROP_INT32 */
{sizeof(MIntProperty), "MIntProperty", 1, N_("Int"), layerCopy_propInt, NULL, NULL, NULL},
/* 12: CD_PROP_STRING */
{sizeof(MStringProperty),
"MStringProperty",
1,
N_("String"),
layerCopy_propString,
NULL,
NULL,
NULL},
/* 13: CD_ORIGSPACE */
{sizeof(OrigSpaceFace),
"OrigSpaceFace",
1,
N_("UVMap"),
layerCopy_origspace_face,
NULL,
layerInterp_origspace_face,
layerSwap_origspace_face,
layerDefault_origspace_face},
/* 14: CD_ORCO */
{sizeof(float) * 3, "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 15: CD_MTEXPOLY */ /* DEPRECATED */
/* note, when we expose the UV Map / TexFace split to the user,
* change this back to face Texture. */
{sizeof(int), "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 16: CD_MLOOPUV */
{sizeof(MLoopUV),
"MLoopUV",
1,
N_("UVMap"),
NULL,
NULL,
layerInterp_mloopuv,
NULL,
NULL,
layerValidate_mloopuv,
layerEqual_mloopuv,
layerMultiply_mloopuv,
layerInitMinMax_mloopuv,
layerAdd_mloopuv,
layerDoMinMax_mloopuv,
layerCopyValue_mloopuv,
NULL,
NULL,
NULL,
layerMaxNum_tface},
/* 17: CD_MLOOPCOL */
{sizeof(MLoopCol),
"MLoopCol",
1,
N_("Col"),
NULL,
NULL,
layerInterp_mloopcol,
NULL,
layerDefault_mloopcol,
NULL,
layerEqual_mloopcol,
layerMultiply_mloopcol,
layerInitMinMax_mloopcol,
layerAdd_mloopcol,
layerDoMinMax_mloopcol,
layerCopyValue_mloopcol,
NULL,
NULL,
NULL,
layerMaxNum_mloopcol},
/* 18: CD_TANGENT */
{sizeof(float) * 4 * 4, "", 0, N_("Tangent"), NULL, NULL, NULL, NULL, NULL},
/* 19: CD_MDISPS */
{sizeof(MDisps),
"MDisps",
1,
NULL,
layerCopy_mdisps,
layerFree_mdisps,
NULL,
layerSwap_mdisps,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
layerRead_mdisps,
layerWrite_mdisps,
layerFilesize_mdisps},
/* 20: CD_PREVIEW_MCOL */
{sizeof(MCol) * 4,
"MCol",
4,
N_("PreviewCol"),
NULL,
NULL,
layerInterp_mcol,
layerSwap_mcol,
layerDefault_mcol},
/* 21: CD_ID_MCOL */ /* DEPRECATED */
{sizeof(MCol) * 4, "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 22: CD_TEXTURE_MCOL */
{sizeof(MCol) * 4,
"MCol",
4,
N_("TexturedCol"),
NULL,
NULL,
layerInterp_mcol,
layerSwap_mcol,
layerDefault_mcol},
/* 23: CD_CLOTH_ORCO */
{sizeof(float) * 3, "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 24: CD_RECAST */
{sizeof(MRecast), "MRecast", 1, N_("Recast"), NULL, NULL, NULL, NULL},
/* BMESH ONLY */
/* 25: CD_MPOLY */
{sizeof(MPoly), "MPoly", 1, N_("NGon Face"), NULL, NULL, NULL, NULL, NULL},
/* 26: CD_MLOOP */
{sizeof(MLoop), "MLoop", 1, N_("NGon Face-Vertex"), NULL, NULL, NULL, NULL, NULL},
/* 27: CD_SHAPE_KEYINDEX */
{sizeof(int), "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 28: CD_SHAPEKEY */
{sizeof(float) * 3, "", 0, N_("ShapeKey"), NULL, NULL, layerInterp_shapekey},
/* 29: CD_BWEIGHT */
{sizeof(float), "", 0, N_("BevelWeight"), NULL, NULL, layerInterp_bweight},
/* 30: CD_CREASE */
{sizeof(float), "", 0, N_("SubSurfCrease"), NULL, NULL, layerInterp_bweight},
/* 31: CD_ORIGSPACE_MLOOP */
{sizeof(OrigSpaceLoop),
"OrigSpaceLoop",
1,
N_("OS Loop"),
NULL,
NULL,
layerInterp_mloop_origspace,
NULL,
NULL,
NULL,
layerEqual_mloop_origspace,
layerMultiply_mloop_origspace,
layerInitMinMax_mloop_origspace,
layerAdd_mloop_origspace,
layerDoMinMax_mloop_origspace,
layerCopyValue_mloop_origspace},
/* 32: CD_PREVIEW_MLOOPCOL */
{sizeof(MLoopCol),
"MLoopCol",
1,
N_("PreviewLoopCol"),
NULL,
NULL,
layerInterp_mloopcol,
NULL,
layerDefault_mloopcol,
NULL,
layerEqual_mloopcol,
layerMultiply_mloopcol,
layerInitMinMax_mloopcol,
layerAdd_mloopcol,
layerDoMinMax_mloopcol,
layerCopyValue_mloopcol},
/* 33: CD_BM_ELEM_PYPTR */
{sizeof(void *),
"",
1,
NULL,
layerCopy_bmesh_elem_py_ptr,
layerFree_bmesh_elem_py_ptr,
NULL,
NULL,
NULL},
/* END BMESH ONLY */
/* 34: CD_PAINT_MASK */
{sizeof(float), "", 0, NULL, NULL, NULL, layerInterp_paint_mask, NULL, NULL},
/* 35: CD_GRID_PAINT_MASK */
{sizeof(GridPaintMask),
"GridPaintMask",
1,
NULL,
layerCopy_grid_paint_mask,
layerFree_grid_paint_mask,
NULL,
NULL,
NULL},
/* 36: CD_MVERT_SKIN */
{sizeof(MVertSkin),
"MVertSkin",
1,
NULL,
layerCopy_mvert_skin,
NULL,
layerInterp_mvert_skin,
NULL,
layerDefault_mvert_skin},
/* 37: CD_FREESTYLE_EDGE */
{sizeof(FreestyleEdge), "FreestyleEdge", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 38: CD_FREESTYLE_FACE */
{sizeof(FreestyleFace), "FreestyleFace", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 39: CD_MLOOPTANGENT */
{sizeof(float[4]), "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 40: CD_TESSLOOPNORMAL */
{sizeof(short[4][3]), "", 0, NULL, NULL, NULL, NULL, layerSwap_flnor, NULL},
/* 41: CD_CUSTOMLOOPNORMAL */
{sizeof(short[2]), "vec2s", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 42: CD_SCULPT_FACE_SETS */
{sizeof(int), "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 43: CD_LOCATION */
{sizeof(float[3]), "vec3f", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 44: CD_RADIUS */
{sizeof(float), "MFloatProperty", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 45: CD_HAIRCURVE */
{sizeof(HairCurve), "HairCurve", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 46: CD_HAIRMAPPING */
{sizeof(HairMapping), "HairMapping", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 47: CD_PROP_COLOR */
{sizeof(MPropCol),
"MPropCol",
1,
N_("Color"),
NULL,
NULL,
layerInterp_propcol,
NULL,
layerDefault_propcol,
NULL,
layerEqual_propcol,
layerMultiply_propcol,
layerInitMinMax_propcol,
layerAdd_propcol,
layerDoMinMax_propcol,
layerCopyValue_propcol,
NULL,
NULL,
NULL,
layerMaxNum_propcol},
/* 48: CD_PROP_FLOAT3 */
{sizeof(float[3]),
"vec3f",
1,
N_("Float3"),
NULL,
NULL,
layerInterp_propfloat3,
NULL,
NULL,
layerValidate_propfloat3,
NULL,
layerMultiply_propfloat3,
NULL,
layerAdd_propfloat3},
/* 49: CD_PROP_FLOAT2 */
{sizeof(float[2]),
"vec2f",
1,
N_("Float2"),
NULL,
NULL,
layerInterp_propfloat2,
NULL,
NULL,
layerValidate_propfloat2,
NULL,
layerMultiply_propfloat2,
NULL,
layerAdd_propfloat2},
};
static const char *LAYERTYPENAMES[CD_NUMTYPES] = {
/* 0-4 */ "CDMVert",
"CDMSticky",
"CDMDeformVert",
"CDMEdge",
"CDMFace",
/* 5-9 */ "CDMTFace",
"CDMCol",
"CDOrigIndex",
"CDNormal",
"CDFaceMap",
/* 10-14 */ "CDMFloatProperty",
"CDMIntProperty",
"CDMStringProperty",
"CDOrigSpace",
"CDOrco",
/* 15-19 */ "CDMTexPoly",
"CDMLoopUV",
"CDMloopCol",
"CDTangent",
"CDMDisps",
/* 20-24 */ "CDPreviewMCol",
"CDIDMCol",
"CDTextureMCol",
"CDClothOrco",
"CDMRecast",
/* BMESH ONLY */
/* 25-29 */ "CDMPoly",
"CDMLoop",
"CDShapeKeyIndex",
"CDShapeKey",
"CDBevelWeight",
/* 30-34 */ "CDSubSurfCrease",
"CDOrigSpaceLoop",
"CDPreviewLoopCol",
"CDBMElemPyPtr",
"CDPaintMask",
/* 35-36 */ "CDGridPaintMask",
"CDMVertSkin",
/* 37-38 */ "CDFreestyleEdge",
"CDFreestyleFace",
/* 39-42 */ "CDMLoopTangent",
"CDTessLoopNormal",
"CDCustomLoopNormal",
"CDSculptFaceGroups",
/* 43-46 */ "CDHairPoint",
"CDHairCurve",
"CDHairMapping",
"CDPoint",
"CDPropCol",
"CDPropFloat3",
"CDPropFloat2",
};
const CustomData_MeshMasks CD_MASK_BAREMESH = {
.vmask = CD_MASK_MVERT | CD_MASK_BWEIGHT,
.emask = CD_MASK_MEDGE | CD_MASK_BWEIGHT,
.fmask = 0,
.lmask = CD_MASK_MLOOP,
.pmask = CD_MASK_MPOLY | CD_MASK_FACEMAP,
};
const CustomData_MeshMasks CD_MASK_BAREMESH_ORIGINDEX = {
.vmask = CD_MASK_MVERT | CD_MASK_BWEIGHT | CD_MASK_ORIGINDEX,
.emask = CD_MASK_MEDGE | CD_MASK_BWEIGHT | CD_MASK_ORIGINDEX,
.fmask = 0,
.lmask = CD_MASK_MLOOP,
.pmask = CD_MASK_MPOLY | CD_MASK_FACEMAP | CD_MASK_ORIGINDEX,
};
const CustomData_MeshMasks CD_MASK_MESH = {
.vmask = (CD_MASK_MVERT | CD_MASK_MDEFORMVERT | CD_MASK_MVERT_SKIN | CD_MASK_PAINT_MASK |
CD_MASK_GENERIC_DATA | CD_MASK_PROP_COLOR),
.emask = (CD_MASK_MEDGE | CD_MASK_FREESTYLE_EDGE | CD_MASK_GENERIC_DATA),
.fmask = 0,
.lmask = (CD_MASK_MLOOP | CD_MASK_MDISPS | CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL |
CD_MASK_CUSTOMLOOPNORMAL | CD_MASK_GRID_PAINT_MASK | CD_MASK_GENERIC_DATA),
.pmask = (CD_MASK_MPOLY | CD_MASK_RECAST | CD_MASK_FACEMAP | CD_MASK_FREESTYLE_FACE |
CD_MASK_GENERIC_DATA | CD_MASK_SCULPT_FACE_SETS),
};
const CustomData_MeshMasks CD_MASK_EDITMESH = {
.vmask = (CD_MASK_MDEFORMVERT | CD_MASK_PAINT_MASK | CD_MASK_MVERT_SKIN | CD_MASK_SHAPEKEY |
CD_MASK_SHAPE_KEYINDEX | CD_MASK_GENERIC_DATA | CD_MASK_PROP_COLOR),
.emask = (CD_MASK_GENERIC_DATA),
.fmask = 0,
.lmask = (CD_MASK_MDISPS | CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL | CD_MASK_CUSTOMLOOPNORMAL |
CD_MASK_GRID_PAINT_MASK | CD_MASK_GENERIC_DATA),
.pmask = (CD_MASK_RECAST | CD_MASK_FACEMAP | CD_MASK_GENERIC_DATA | CD_MASK_SCULPT_FACE_SETS),
};
const CustomData_MeshMasks CD_MASK_DERIVEDMESH = {
.vmask = (CD_MASK_ORIGINDEX | CD_MASK_MDEFORMVERT | CD_MASK_SHAPEKEY | CD_MASK_MVERT_SKIN |
CD_MASK_ORCO | CD_MASK_CLOTH_ORCO | CD_MASK_GENERIC_DATA | CD_MASK_PROP_COLOR),
.emask = (CD_MASK_ORIGINDEX | CD_MASK_FREESTYLE_EDGE | CD_MASK_GENERIC_DATA),
.fmask = (CD_MASK_ORIGINDEX | CD_MASK_ORIGSPACE | CD_MASK_PREVIEW_MCOL | CD_MASK_TANGENT),
.lmask = (CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL | CD_MASK_CUSTOMLOOPNORMAL |
CD_MASK_PREVIEW_MLOOPCOL | CD_MASK_ORIGSPACE_MLOOP |
CD_MASK_GENERIC_DATA), /* XXX MISSING CD_MASK_MLOOPTANGENT ? */
.pmask = (CD_MASK_ORIGINDEX | CD_MASK_RECAST | CD_MASK_FREESTYLE_FACE | CD_MASK_FACEMAP |
CD_MASK_GENERIC_DATA | CD_MASK_SCULPT_FACE_SETS),
};
const CustomData_MeshMasks CD_MASK_BMESH = {
.vmask = (CD_MASK_MDEFORMVERT | CD_MASK_BWEIGHT | CD_MASK_MVERT_SKIN | CD_MASK_SHAPEKEY |
CD_MASK_SHAPE_KEYINDEX | CD_MASK_PAINT_MASK | CD_MASK_GENERIC_DATA |
CD_MASK_PROP_COLOR),
.emask = (CD_MASK_BWEIGHT | CD_MASK_CREASE | CD_MASK_FREESTYLE_EDGE | CD_MASK_GENERIC_DATA),
.fmask = 0,
.lmask = (CD_MASK_MDISPS | CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL | CD_MASK_CUSTOMLOOPNORMAL |
CD_MASK_GRID_PAINT_MASK | CD_MASK_GENERIC_DATA),
.pmask = (CD_MASK_RECAST | CD_MASK_FREESTYLE_FACE | CD_MASK_FACEMAP | CD_MASK_GENERIC_DATA |
CD_MASK_SCULPT_FACE_SETS),
};
/**
* cover values copied by #BKE_mesh_loops_to_tessdata
*/
const CustomData_MeshMasks CD_MASK_FACECORNERS = {
.vmask = 0,
.emask = 0,
.fmask = (CD_MASK_MTFACE | CD_MASK_MCOL | CD_MASK_PREVIEW_MCOL | CD_MASK_ORIGSPACE |
CD_MASK_TESSLOOPNORMAL | CD_MASK_TANGENT),
.lmask = (CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL | CD_MASK_PREVIEW_MLOOPCOL |
CD_MASK_ORIGSPACE_MLOOP | CD_MASK_NORMAL | CD_MASK_MLOOPTANGENT),
.pmask = 0,
};
const CustomData_MeshMasks CD_MASK_EVERYTHING = {
.vmask = (CD_MASK_MVERT | CD_MASK_BM_ELEM_PYPTR | CD_MASK_ORIGINDEX | CD_MASK_NORMAL |
CD_MASK_MDEFORMVERT | CD_MASK_BWEIGHT | CD_MASK_MVERT_SKIN | CD_MASK_ORCO |
CD_MASK_CLOTH_ORCO | CD_MASK_SHAPEKEY | CD_MASK_SHAPE_KEYINDEX | CD_MASK_PAINT_MASK |
CD_MASK_GENERIC_DATA | CD_MASK_PROP_COLOR),
.emask = (CD_MASK_MEDGE | CD_MASK_BM_ELEM_PYPTR | CD_MASK_ORIGINDEX | CD_MASK_BWEIGHT |
CD_MASK_CREASE | CD_MASK_FREESTYLE_EDGE | CD_MASK_GENERIC_DATA),
.fmask = (CD_MASK_MFACE | CD_MASK_ORIGINDEX | CD_MASK_NORMAL | CD_MASK_MTFACE | CD_MASK_MCOL |
CD_MASK_ORIGSPACE | CD_MASK_TANGENT | CD_MASK_TESSLOOPNORMAL | CD_MASK_PREVIEW_MCOL |
CD_MASK_GENERIC_DATA),
.lmask = (CD_MASK_MLOOP | CD_MASK_BM_ELEM_PYPTR | CD_MASK_MDISPS | CD_MASK_NORMAL |
CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL | CD_MASK_CUSTOMLOOPNORMAL |
CD_MASK_MLOOPTANGENT | CD_MASK_PREVIEW_MLOOPCOL | CD_MASK_ORIGSPACE_MLOOP |
CD_MASK_GRID_PAINT_MASK | CD_MASK_GENERIC_DATA),
.pmask = (CD_MASK_MPOLY | CD_MASK_BM_ELEM_PYPTR | CD_MASK_ORIGINDEX | CD_MASK_NORMAL |
CD_MASK_RECAST | CD_MASK_FACEMAP | CD_MASK_FREESTYLE_FACE | CD_MASK_GENERIC_DATA |
CD_MASK_SCULPT_FACE_SETS),
};
static const LayerTypeInfo *layerType_getInfo(int type)
{
if (type < 0 || type >= CD_NUMTYPES) {
return NULL;
}
return &LAYERTYPEINFO[type];
}
static const char *layerType_getName(int type)
{
if (type < 0 || type >= CD_NUMTYPES) {
return NULL;
}
return LAYERTYPENAMES[type];
}
void customData_mask_layers__print(const CustomData_MeshMasks *mask)
{
int i;
printf("verts mask=0x%lx:\n", (long unsigned int)mask->vmask);
for (i = 0; i < CD_NUMTYPES; i++) {
if (mask->vmask & CD_TYPE_AS_MASK(i)) {
printf(" %s\n", layerType_getName(i));
}
}
printf("edges mask=0x%lx:\n", (long unsigned int)mask->emask);
for (i = 0; i < CD_NUMTYPES; i++) {
if (mask->emask & CD_TYPE_AS_MASK(i)) {
printf(" %s\n", layerType_getName(i));
}
}
printf("faces mask=0x%lx:\n", (long unsigned int)mask->fmask);
for (i = 0; i < CD_NUMTYPES; i++) {
if (mask->fmask & CD_TYPE_AS_MASK(i)) {
printf(" %s\n", layerType_getName(i));
}
}
printf("loops mask=0x%lx:\n", (long unsigned int)mask->lmask);
for (i = 0; i < CD_NUMTYPES; i++) {
if (mask->lmask & CD_TYPE_AS_MASK(i)) {
printf(" %s\n", layerType_getName(i));
}
}
printf("polys mask=0x%lx:\n", (long unsigned int)mask->pmask);
for (i = 0; i < CD_NUMTYPES; i++) {
if (mask->pmask & CD_TYPE_AS_MASK(i)) {
printf(" %s\n", layerType_getName(i));
}
}
}
/********************* CustomData functions *********************/
static void customData_update_offsets(CustomData *data);
static CustomDataLayer *customData_add_layer__internal(CustomData *data,
int type,
eCDAllocType alloctype,
void *layerdata,
int totelem,
const char *name);
void CustomData_update_typemap(CustomData *data)
{
int i, lasttype = -1;
for (i = 0; i < CD_NUMTYPES; i++) {
data->typemap[i] = -1;
}
for (i = 0; i < data->totlayer; i++) {
const int type = data->layers[i].type;
if (type != lasttype) {
data->typemap[type] = i;
lasttype = type;
}
}
}
/* currently only used in BLI_assert */
#ifndef NDEBUG
static bool customdata_typemap_is_valid(const CustomData *data)
{
CustomData data_copy = *data;
CustomData_update_typemap(&data_copy);
return (memcmp(data->typemap, data_copy.typemap, sizeof(data->typemap)) == 0);
}
#endif
bool CustomData_merge(const struct CustomData *source,
struct CustomData *dest,
CustomDataMask mask,
eCDAllocType alloctype,
int totelem)
{
/*const LayerTypeInfo *typeInfo;*/
CustomDataLayer *layer, *newlayer;
void *data;
int i, type, lasttype = -1, lastactive = 0, lastrender = 0, lastclone = 0, lastmask = 0,
flag = 0;
int number = 0, maxnumber = -1;
bool changed = false;
for (i = 0; i < source->totlayer; i++) {
layer = &source->layers[i];
/*typeInfo = layerType_getInfo(layer->type);*/ /*UNUSED*/
type = layer->type;
flag = layer->flag;
if (type != lasttype) {
number = 0;
maxnumber = CustomData_layertype_layers_max(type);
lastactive = layer->active;
lastrender = layer->active_rnd;
lastclone = layer->active_clone;
lastmask = layer->active_mask;
lasttype = type;
}
else {
number++;
}
if (flag & CD_FLAG_NOCOPY) {
continue;
}
else if (!(mask & CD_TYPE_AS_MASK(type))) {
continue;
}
else if ((maxnumber != -1) && (number >= maxnumber)) {
continue;
}
else if (CustomData_get_named_layer_index(dest, type, layer->name) != -1) {
continue;
}
switch (alloctype) {
case CD_ASSIGN:
case CD_REFERENCE:
case CD_DUPLICATE:
data = layer->data;
break;
default:
data = NULL;
break;
}
if ((alloctype == CD_ASSIGN) && (flag & CD_FLAG_NOFREE)) {
newlayer = customData_add_layer__internal(
dest, type, CD_REFERENCE, data, totelem, layer->name);
}
else {
newlayer = customData_add_layer__internal(dest, type, alloctype, data, totelem, layer->name);
}
if (newlayer) {
newlayer->uid = layer->uid;
newlayer->active = lastactive;
newlayer->active_rnd = lastrender;
newlayer->active_clone = lastclone;
newlayer->active_mask = lastmask;
newlayer->flag |= flag & (CD_FLAG_EXTERNAL | CD_FLAG_IN_MEMORY);
changed = true;
}
}
CustomData_update_typemap(dest);
return changed;
}
/* NOTE: Take care of referenced layers by yourself! */
void CustomData_realloc(CustomData *data, int totelem)
{
int i;
for (i = 0; i < data->totlayer; i++) {
CustomDataLayer *layer = &data->layers[i];
const LayerTypeInfo *typeInfo;
if (layer->flag & CD_FLAG_NOFREE) {
continue;
}
typeInfo = layerType_getInfo(layer->type);
layer->data = MEM_reallocN(layer->data, (size_t)totelem * typeInfo->size);
}
}
void CustomData_copy(const struct CustomData *source,
struct CustomData *dest,
CustomDataMask mask,
eCDAllocType alloctype,
int totelem)
{
CustomData_reset(dest);
if (source->external) {
dest->external = MEM_dupallocN(source->external);
}
CustomData_merge(source, dest, mask, alloctype, totelem);
}
static void customData_free_layer__internal(CustomDataLayer *layer, int totelem)
{
const LayerTypeInfo *typeInfo;
if (!(layer->flag & CD_FLAG_NOFREE) && layer->data) {
typeInfo = layerType_getInfo(layer->type);
if (typeInfo->free) {
typeInfo->free(layer->data, totelem, typeInfo->size);
}
if (layer->data) {
MEM_freeN(layer->data);
}
}
}
static void CustomData_external_free(CustomData *data)
{
if (data->external) {
MEM_freeN(data->external);
data->external = NULL;
}
}
void CustomData_reset(CustomData *data)
{
memset(data, 0, sizeof(*data));
copy_vn_i(data->typemap, CD_NUMTYPES, -1);
}
void CustomData_free(CustomData *data, int totelem)
{
int i;
for (i = 0; i < data->totlayer; i++) {
customData_free_layer__internal(&data->layers[i], totelem);
}
if (data->layers) {
MEM_freeN(data->layers);
}
CustomData_external_free(data);
CustomData_reset(data);
}
void CustomData_free_typemask(struct CustomData *data, int totelem, CustomDataMask mask)
{
int i;
for (i = 0; i < data->totlayer; i++) {
CustomDataLayer *layer = &data->layers[i];
if (!(mask & CD_TYPE_AS_MASK(layer->type))) {
continue;
}
customData_free_layer__internal(layer, totelem);
}
if (data->layers) {
MEM_freeN(data->layers);
}
CustomData_external_free(data);
CustomData_reset(data);
}
static void customData_update_offsets(CustomData *data)
{
const LayerTypeInfo *typeInfo;
int i, offset = 0;
for (i = 0; i < data->totlayer; i++) {
typeInfo = layerType_getInfo(data->layers[i].type);
data->layers[i].offset = offset;
offset += typeInfo->size;
}
data->totsize = offset;
CustomData_update_typemap(data);
}
/* to use when we're in the middle of modifying layers */
static int CustomData_get_layer_index__notypemap(const CustomData *data, int type)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
return i;
}
}
return -1;
}
/* -------------------------------------------------------------------- */
/* index values to access the layers (offset from the layer start) */
int CustomData_get_layer_index(const CustomData *data, int type)
{
BLI_assert(customdata_typemap_is_valid(data));
return data->typemap[type];
}
int CustomData_get_layer_index_n(const struct CustomData *data, int type, int n)
{
int i = CustomData_get_layer_index(data, type);
if (i != -1) {
BLI_assert(i + n < data->totlayer);
i = (data->layers[i + n].type == type) ? (i + n) : (-1);
}
return i;
}
int CustomData_get_named_layer_index(const CustomData *data, int type, const char *name)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
if (STREQ(data->layers[i].name, name)) {
return i;
}
}
}
return -1;
}
int CustomData_get_active_layer_index(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? layer_index + data->layers[layer_index].active : -1;
}
int CustomData_get_render_layer_index(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? layer_index + data->layers[layer_index].active_rnd : -1;
}
int CustomData_get_clone_layer_index(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? layer_index + data->layers[layer_index].active_clone : -1;
}
int CustomData_get_stencil_layer_index(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? layer_index + data->layers[layer_index].active_mask : -1;
}
/* -------------------------------------------------------------------- */
/* index values per layer type */
int CustomData_get_named_layer(const struct CustomData *data, int type, const char *name)
{
const int named_index = CustomData_get_named_layer_index(data, type, name);
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (named_index != -1) ? named_index - layer_index : -1;
}
int CustomData_get_active_layer(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? data->layers[layer_index].active : -1;
}
int CustomData_get_render_layer(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? data->layers[layer_index].active_rnd : -1;
}
int CustomData_get_clone_layer(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? data->layers[layer_index].active_clone : -1;
}
int CustomData_get_stencil_layer(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? data->layers[layer_index].active_mask : -1;
}
void CustomData_set_layer_active(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
data->layers[i].active = n;
}
}
}
void CustomData_set_layer_render(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
data->layers[i].active_rnd = n;
}
}
}
void CustomData_set_layer_clone(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
data->layers[i].active_clone = n;
}
}
}
void CustomData_set_layer_stencil(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
data->layers[i].active_mask = n;
}
}
}
/* For using with an index from CustomData_get_active_layer_index and
* CustomData_get_render_layer_index. */
void CustomData_set_layer_active_index(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
data->layers[i].active = n - i;
}
}
}
void CustomData_set_layer_render_index(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
data->layers[i].active_rnd = n - i;
}
}
}
void CustomData_set_layer_clone_index(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
data->layers[i].active_clone = n - i;
}
}
}
void CustomData_set_layer_stencil_index(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
data->layers[i].active_mask = n - i;
}
}
}
void CustomData_set_layer_flag(struct CustomData *data, int type, int flag)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
data->layers[i].flag |= flag;
}
}
}
void CustomData_clear_layer_flag(struct CustomData *data, int type, int flag)
{
const int nflag = ~flag;
for (int i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
data->layers[i].flag &= nflag;
}
}
}
static int customData_resize(CustomData *data, int amount)
{
CustomDataLayer *tmp = MEM_calloc_arrayN(
(data->maxlayer + amount), sizeof(*tmp), "CustomData->layers");
if (!tmp) {
return 0;
}
data->maxlayer += amount;
if (data->layers) {
memcpy(tmp, data->layers, sizeof(*tmp) * data->totlayer);
MEM_freeN(data->layers);
}
data->layers = tmp;
return 1;
}
static CustomDataLayer *customData_add_layer__internal(CustomData *data,
int type,
eCDAllocType alloctype,
void *layerdata,
int totelem,
const char *name)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
int flag = 0, index = data->totlayer;
void *newlayerdata = NULL;
/* Passing a layer-data to copy from with an alloctype that won't copy is
* most likely a bug */
BLI_assert(!layerdata || (alloctype == CD_ASSIGN) || (alloctype == CD_DUPLICATE) ||
(alloctype == CD_REFERENCE));
if (!typeInfo->defaultname && CustomData_has_layer(data, type)) {
return &data->layers[CustomData_get_layer_index(data, type)];
}
if ((alloctype == CD_ASSIGN) || (alloctype == CD_REFERENCE)) {
newlayerdata = layerdata;
}
else if (totelem > 0 && typeInfo->size > 0) {
if (alloctype == CD_DUPLICATE && layerdata) {
newlayerdata = MEM_malloc_arrayN((size_t)totelem, typeInfo->size, layerType_getName(type));
}
else {
newlayerdata = MEM_calloc_arrayN((size_t)totelem, typeInfo->size, layerType_getName(type));
}
if (!newlayerdata) {
return NULL;
}
}
if (alloctype == CD_DUPLICATE && layerdata) {
if (typeInfo->copy) {
typeInfo->copy(layerdata, newlayerdata, totelem);
}
else {
memcpy(newlayerdata, layerdata, (size_t)totelem * typeInfo->size);
}
}
else if (alloctype == CD_DEFAULT) {
if (typeInfo->set_default) {
typeInfo->set_default(newlayerdata, totelem);
}
}
else if (alloctype == CD_REFERENCE) {
flag |= CD_FLAG_NOFREE;
}
if (index >= data->maxlayer) {
if (!customData_resize(data, CUSTOMDATA_GROW)) {
if (newlayerdata != layerdata) {
MEM_freeN(newlayerdata);
}
return NULL;
}
}
data->totlayer++;
/* keep layers ordered by type */
for (; index > 0 && data->layers[index - 1].type > type; index--) {
data->layers[index] = data->layers[index - 1];
}
data->layers[index].type = type;
data->layers[index].flag = flag;
data->layers[index].data = newlayerdata;
/* Set default name if none exists. Note we only call DATA_() once
* we know there is a default name, to avoid overhead of locale lookups
* in the depsgraph. */
if (!name && typeInfo->defaultname) {
name = DATA_(typeInfo->defaultname);
}
if (name) {
BLI_strncpy(data->layers[index].name, name, sizeof(data->layers[index].name));
CustomData_set_layer_unique_name(data, index);
}
else {
data->layers[index].name[0] = '\0';
}
if (index > 0 && data->layers[index - 1].type == type) {
data->layers[index].active = data->layers[index - 1].active;
data->layers[index].active_rnd = data->layers[index - 1].active_rnd;
data->layers[index].active_clone = data->layers[index - 1].active_clone;
data->layers[index].active_mask = data->layers[index - 1].active_mask;
}
else {
data->layers[index].active = 0;
data->layers[index].active_rnd = 0;
data->layers[index].active_clone = 0;
data->layers[index].active_mask = 0;
}
customData_update_offsets(data);
return &data->layers[index];
}
void *CustomData_add_layer(
CustomData *data, int type, eCDAllocType alloctype, void *layerdata, int totelem)
{
CustomDataLayer *layer;
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
layer = customData_add_layer__internal(
data, type, alloctype, layerdata, totelem, typeInfo->defaultname);
CustomData_update_typemap(data);
if (layer) {
return layer->data;
}
return NULL;
}
/*same as above but accepts a name*/
void *CustomData_add_layer_named(CustomData *data,
int type,
eCDAllocType alloctype,
void *layerdata,
int totelem,
const char *name)
{
CustomDataLayer *layer;
layer = customData_add_layer__internal(data, type, alloctype, layerdata, totelem, name);
CustomData_update_typemap(data);
if (layer) {
return layer->data;
}
return NULL;
}
bool CustomData_free_layer(CustomData *data, int type, int totelem, int index)
{
const int index_first = CustomData_get_layer_index(data, type);
const int n = index - index_first;
int i;
BLI_assert(index >= index_first);
if ((index_first == -1) || (n < 0)) {
return false;
}
BLI_assert(data->layers[index].type == type);
customData_free_layer__internal(&data->layers[index], totelem);
for (i = index + 1; i < data->totlayer; i++) {
data->layers[i - 1] = data->layers[i];
}
data->totlayer--;
/* if layer was last of type in array, set new active layer */
i = CustomData_get_layer_index__notypemap(data, type);
if (i != -1) {
/* don't decrement zero index */
const int index_nonzero = n ? n : 1;
CustomDataLayer *layer;
for (layer = &data->layers[i]; i < data->totlayer && layer->type == type; i++, layer++) {
if (layer->active >= index_nonzero) {
layer->active--;
}
if (layer->active_rnd >= index_nonzero) {
layer->active_rnd--;
}
if (layer->active_clone >= index_nonzero) {
layer->active_clone--;
}
if (layer->active_mask >= index_nonzero) {
layer->active_mask--;
}
}
}
if (data->totlayer <= data->maxlayer - CUSTOMDATA_GROW) {
customData_resize(data, -CUSTOMDATA_GROW);
}
customData_update_offsets(data);
return true;
}
bool CustomData_free_layer_active(CustomData *data, int type, int totelem)
{
int index = 0;
index = CustomData_get_active_layer_index(data, type);
if (index == -1) {
return false;
}
return CustomData_free_layer(data, type, totelem, index);
}
void CustomData_free_layers(CustomData *data, int type, int totelem)
{
const int index = CustomData_get_layer_index(data, type);
while (CustomData_free_layer(data, type, totelem, index)) {
/* pass */
}
}
bool CustomData_has_layer(const CustomData *data, int type)
{
return (CustomData_get_layer_index(data, type) != -1);
}
int CustomData_number_of_layers(const CustomData *data, int type)
{
int i, number = 0;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type == type) {
number++;
}
}
return number;
}
int CustomData_number_of_layers_typemask(const CustomData *data, CustomDataMask mask)
{
int i, number = 0;
for (i = 0; i < data->totlayer; i++) {
if (mask & CD_TYPE_AS_MASK(data->layers[i].type)) {
number++;
}
}
return number;
}
static void *customData_duplicate_referenced_layer_index(CustomData *data,
const int layer_index,
const int totelem)
{
CustomDataLayer *layer;
if (layer_index == -1) {
return NULL;
}
layer = &data->layers[layer_index];
if (layer->flag & CD_FLAG_NOFREE) {
/* MEM_dupallocN won't work in case of complex layers, like e.g.
* CD_MDEFORMVERT, which has pointers to allocated data...
* So in case a custom copy function is defined, use it!
*/
const LayerTypeInfo *typeInfo = layerType_getInfo(layer->type);
if (typeInfo->copy) {
void *dst_data = MEM_malloc_arrayN(
(size_t)totelem, typeInfo->size, "CD duplicate ref layer");
typeInfo->copy(layer->data, dst_data, totelem);
layer->data = dst_data;
}
else {
layer->data = MEM_dupallocN(layer->data);
}
layer->flag &= ~CD_FLAG_NOFREE;
}
return layer->data;
}
void *CustomData_duplicate_referenced_layer(CustomData *data, const int type, const int totelem)
{
int layer_index;
/* get the layer index of the first layer of type */
layer_index = CustomData_get_active_layer_index(data, type);
return customData_duplicate_referenced_layer_index(data, layer_index, totelem);
}
void *CustomData_duplicate_referenced_layer_n(CustomData *data,
const int type,
const int n,
const int totelem)
{
int layer_index;
/* get the layer index of the desired layer */
layer_index = CustomData_get_layer_index_n(data, type, n);
return customData_duplicate_referenced_layer_index(data, layer_index, totelem);
}
void *CustomData_duplicate_referenced_layer_named(CustomData *data,
const int type,
const char *name,
const int totelem)
{
int layer_index;
/* get the layer index of the desired layer */
layer_index = CustomData_get_named_layer_index(data, type, name);
return customData_duplicate_referenced_layer_index(data, layer_index, totelem);
}
bool CustomData_is_referenced_layer(struct CustomData *data, int type)
{
CustomDataLayer *layer;
int layer_index;
/* get the layer index of the first layer of type */
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index == -1) {
return false;
}
layer = &data->layers[layer_index];
return (layer->flag & CD_FLAG_NOFREE) != 0;
}
void CustomData_free_temporary(CustomData *data, int totelem)
{
CustomDataLayer *layer;
int i, j;
bool changed = false;
for (i = 0, j = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
if (i != j) {
data->layers[j] = data->layers[i];
}
if ((layer->flag & CD_FLAG_TEMPORARY) == CD_FLAG_TEMPORARY) {
customData_free_layer__internal(layer, totelem);
changed = true;
}
else {
j++;
}
}
data->totlayer = j;
if (data->totlayer <= data->maxlayer - CUSTOMDATA_GROW) {
customData_resize(data, -CUSTOMDATA_GROW);
changed = true;
}
if (changed) {
customData_update_offsets(data);
}
}
void CustomData_set_only_copy(const struct CustomData *data, CustomDataMask mask)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (!(mask & CD_TYPE_AS_MASK(data->layers[i].type))) {
data->layers[i].flag |= CD_FLAG_NOCOPY;
}
}
}
void CustomData_copy_elements(int type, void *src_data_ofs, void *dst_data_ofs, int count)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->copy) {
typeInfo->copy(src_data_ofs, dst_data_ofs, count);
}
else {
memcpy(dst_data_ofs, src_data_ofs, (size_t)count * typeInfo->size);
}
}
static void CustomData_copy_data_layer(const CustomData *source,
CustomData *dest,
int src_i,
int dst_i,
int src_index,
int dst_index,
int count)
{
const LayerTypeInfo *typeInfo;
const void *src_data = source->layers[src_i].data;
void *dst_data = dest->layers[dst_i].data;
typeInfo = layerType_getInfo(source->layers[src_i].type);
const size_t src_offset = (size_t)src_index * typeInfo->size;
const size_t dst_offset = (size_t)dst_index * typeInfo->size;
if (!count || !src_data || !dst_data) {
if (count && !(src_data == NULL && dst_data == NULL)) {
CLOG_WARN(&LOG,
"null data for %s type (%p --> %p), skipping",
layerType_getName(source->layers[src_i].type),
(void *)src_data,
(void *)dst_data);
}
return;
}
if (typeInfo->copy) {
typeInfo->copy(
POINTER_OFFSET(src_data, src_offset), POINTER_OFFSET(dst_data, dst_offset), count);
}
else {
memcpy(POINTER_OFFSET(dst_data, dst_offset),
POINTER_OFFSET(src_data, src_offset),
(size_t)count * typeInfo->size);
}
}
void CustomData_copy_data_named(
const CustomData *source, CustomData *dest, int source_index, int dest_index, int count)
{
int src_i, dest_i;
/* copies a layer at a time */
for (src_i = 0; src_i < source->totlayer; src_i++) {
dest_i = CustomData_get_named_layer_index(
dest, source->layers[src_i].type, source->layers[src_i].name);
/* if we found a matching layer, copy the data */
if (dest_i != -1) {
CustomData_copy_data_layer(source, dest, src_i, dest_i, source_index, dest_index, count);
}
}
}
void CustomData_copy_data(
const CustomData *source, CustomData *dest, int source_index, int dest_index, int count)
{
int src_i, dest_i;
/* copies a layer at a time */
dest_i = 0;
for (src_i = 0; src_i < source->totlayer; src_i++) {
/* find the first dest layer with type >= the source type
* (this should work because layers are ordered by type)
*/
while (dest_i < dest->totlayer && dest->layers[dest_i].type < source->layers[src_i].type) {
dest_i++;
}
/* if there are no more dest layers, we're done */
if (dest_i >= dest->totlayer) {
return;
}
/* if we found a matching layer, copy the data */
if (dest->layers[dest_i].type == source->layers[src_i].type) {
CustomData_copy_data_layer(source, dest, src_i, dest_i, source_index, dest_index, count);
/* if there are multiple source & dest layers of the same type,
* we don't want to copy all source layers to the same dest, so
* increment dest_i
*/
dest_i++;
}
}
}
void CustomData_copy_layer_type_data(const CustomData *source,
CustomData *destination,
int type,
int source_index,
int destination_index,
int count)
{
const int source_layer_index = CustomData_get_layer_index(source, type);
if (source_layer_index == -1) {
return;
}
const int destinaiton_layer_index = CustomData_get_layer_index(destination, type);
if (destinaiton_layer_index == -1) {
return;
}
CustomData_copy_data_layer(source,
destination,
source_layer_index,
destinaiton_layer_index,
source_index,
destination_index,
count);
}
void CustomData_free_elem(CustomData *data, int index, int count)
{
int i;
const LayerTypeInfo *typeInfo;
for (i = 0; i < data->totlayer; i++) {
if (!(data->layers[i].flag & CD_FLAG_NOFREE)) {
typeInfo = layerType_getInfo(data->layers[i].type);
if (typeInfo->free) {
size_t offset = (size_t)index * typeInfo->size;
typeInfo->free(POINTER_OFFSET(data->layers[i].data, offset), count, typeInfo->size);
}
}
}
}
#define SOURCE_BUF_SIZE 100
void CustomData_interp(const CustomData *source,
CustomData *dest,
const int *src_indices,
const float *weights,
const float *sub_weights,
int count,
int dest_index)
{
int src_i, dest_i;
int j;
const void *source_buf[SOURCE_BUF_SIZE];
const void **sources = source_buf;
/* Slow fallback in case we're interpolating a ridiculous number of elements. */
if (count > SOURCE_BUF_SIZE) {
sources = MEM_malloc_arrayN(count, sizeof(*sources), __func__);
}
/* interpolates a layer at a time */
dest_i = 0;
for (src_i = 0; src_i < source->totlayer; src_i++) {
const LayerTypeInfo *typeInfo = layerType_getInfo(source->layers[src_i].type);
if (!typeInfo->interp) {
continue;
}
/* find the first dest layer with type >= the source type
* (this should work because layers are ordered by type)
*/
while (dest_i < dest->totlayer && dest->layers[dest_i].type < source->layers[src_i].type) {
dest_i++;
}
/* if there are no more dest layers, we're done */
if (dest_i >= dest->totlayer) {
break;
}
/* if we found a matching layer, copy the data */
if (dest->layers[dest_i].type == source->layers[src_i].type) {
void *src_data = source->layers[src_i].data;
for (j = 0; j < count; j++) {
sources[j] = POINTER_OFFSET(src_data, (size_t)src_indices[j] * typeInfo->size);
}
typeInfo->interp(
sources,
weights,
sub_weights,
count,
POINTER_OFFSET(dest->layers[dest_i].data, (size_t)dest_index * typeInfo->size));
/* if there are multiple source & dest layers of the same type,
* we don't want to copy all source layers to the same dest, so
* increment dest_i
*/
dest_i++;
}
}
if (count > SOURCE_BUF_SIZE) {
MEM_freeN((void *)sources);
}
}
/**
* Swap data inside each item, for all layers.
* This only applies to item types that may store several sub-item data
* (e.g. corner data [UVs, VCol, ...] of tessellated faces).
*
* \param corner_indices: A mapping 'new_index -> old_index' of sub-item data.
*/
void CustomData_swap_corners(struct CustomData *data, int index, const int *corner_indices)
{
const LayerTypeInfo *typeInfo;
int i;
for (i = 0; i < data->totlayer; i++) {
typeInfo = layerType_getInfo(data->layers[i].type);
if (typeInfo->swap) {
const size_t offset = (size_t)index * typeInfo->size;
typeInfo->swap(POINTER_OFFSET(data->layers[i].data, offset), corner_indices);
}
}
}
/**
* Swap two items of given custom data, in all available layers.
*/
void CustomData_swap(struct CustomData *data, const int index_a, const int index_b)
{
int i;
char buff_static[256];
if (index_a == index_b) {
return;
}
for (i = 0; i < data->totlayer; i++) {
const LayerTypeInfo *typeInfo = layerType_getInfo(data->layers[i].type);
const size_t size = typeInfo->size;
const size_t offset_a = size * index_a;
const size_t offset_b = size * index_b;
void *buff = size <= sizeof(buff_static) ? buff_static : MEM_mallocN(size, __func__);
memcpy(buff, POINTER_OFFSET(data->layers[i].data, offset_a), size);
memcpy(POINTER_OFFSET(data->layers[i].data, offset_a),
POINTER_OFFSET(data->layers[i].data, offset_b),
size);
memcpy(POINTER_OFFSET(data->layers[i].data, offset_b), buff, size);
if (buff != buff_static) {
MEM_freeN(buff);
}
}
}
void *CustomData_get(const CustomData *data, int index, int type)
{
int layer_index;
BLI_assert(index >= 0);
/* get the layer index of the active layer of type */
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index == -1) {
return NULL;
}
/* get the offset of the desired element */
const size_t offset = (size_t)index * layerType_getInfo(type)->size;
return POINTER_OFFSET(data->layers[layer_index].data, offset);
}
void *CustomData_get_n(const CustomData *data, int type, int index, int n)
{
int layer_index;
BLI_assert(index >= 0 && n >= 0);
/* get the layer index of the first layer of type */
layer_index = data->typemap[type];
if (layer_index == -1) {
return NULL;
}
const size_t offset = (size_t)index * layerType_getInfo(type)->size;
return POINTER_OFFSET(data->layers[layer_index + n].data, offset);
}
void *CustomData_get_layer(const CustomData *data, int type)
{
/* get the layer index of the active layer of type */
int layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index == -1) {
return NULL;
}
return data->layers[layer_index].data;
}
void *CustomData_get_layer_n(const CustomData *data, int type, int n)
{
/* get the layer index of the active layer of type */
int layer_index = CustomData_get_layer_index_n(data, type, n);
if (layer_index == -1) {
return NULL;
}
return data->layers[layer_index].data;
}
void *CustomData_get_layer_named(const struct CustomData *data, int type, const char *name)
{
int layer_index = CustomData_get_named_layer_index(data, type, name);
if (layer_index == -1) {
return NULL;
}
return data->layers[layer_index].data;
}
int CustomData_get_offset(const CustomData *data, int type)
{
/* get the layer index of the active layer of type */
int layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index == -1) {
return -1;
}
return data->layers[layer_index].offset;
}
int CustomData_get_n_offset(const CustomData *data, int type, int n)
{
/* get the layer index of the active layer of type */
int layer_index = CustomData_get_layer_index_n(data, type, n);
if (layer_index == -1) {
return -1;
}
return data->layers[layer_index].offset;
}
bool CustomData_set_layer_name(const CustomData *data, int type, int n, const char *name)
{
/* get the layer index of the first layer of type */
const int layer_index = CustomData_get_layer_index_n(data, type, n);
if ((layer_index == -1) || !name) {
return false;
}
BLI_strncpy(data->layers[layer_index].name, name, sizeof(data->layers[layer_index].name));
return true;
}
const char *CustomData_get_layer_name(const CustomData *data, int type, int n)
{
const int layer_index = CustomData_get_layer_index_n(data, type, n);
return (layer_index == -1) ? NULL : data->layers[layer_index].name;
}
void *CustomData_set_layer(const CustomData *data, int type, void *ptr)
{
/* get the layer index of the first layer of type */
int layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index == -1) {
return NULL;
}
data->layers[layer_index].data = ptr;
return ptr;
}
void *CustomData_set_layer_n(const struct CustomData *data, int type, int n, void *ptr)
{
/* get the layer index of the first layer of type */
int layer_index = CustomData_get_layer_index_n(data, type, n);
if (layer_index == -1) {
return NULL;
}
data->layers[layer_index].data = ptr;
return ptr;
}
void CustomData_set(const CustomData *data, int index, int type, const void *source)
{
void *dest = CustomData_get(data, index, type);
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (!dest) {
return;
}
if (typeInfo->copy) {
typeInfo->copy(source, dest, 1);
}
else {
memcpy(dest, source, typeInfo->size);
}
}
/* BMesh functions */
/* needed to convert to/from different face reps */
void CustomData_to_bmeshpoly(CustomData *fdata, CustomData *ldata, int totloop)
{
for (int i = 0; i < fdata->totlayer; i++) {
if (fdata->layers[i].type == CD_MTFACE) {
CustomData_add_layer_named(
ldata, CD_MLOOPUV, CD_CALLOC, NULL, totloop, fdata->layers[i].name);
}
else if (fdata->layers[i].type == CD_MCOL) {
CustomData_add_layer_named(
ldata, CD_MLOOPCOL, CD_CALLOC, NULL, totloop, fdata->layers[i].name);
}
else if (fdata->layers[i].type == CD_MDISPS) {
CustomData_add_layer_named(
ldata, CD_MDISPS, CD_CALLOC, NULL, totloop, fdata->layers[i].name);
}
else if (fdata->layers[i].type == CD_TESSLOOPNORMAL) {
CustomData_add_layer_named(
ldata, CD_NORMAL, CD_CALLOC, NULL, totloop, fdata->layers[i].name);
}
}
}
void CustomData_from_bmeshpoly(CustomData *fdata, CustomData *ldata, int total)
{
int i;
/* avoid accumulating extra layers */
BLI_assert(!CustomData_from_bmeshpoly_test(fdata, ldata, false));
for (i = 0; i < ldata->totlayer; i++) {
if (ldata->layers[i].type == CD_MLOOPUV) {
CustomData_add_layer_named(fdata, CD_MTFACE, CD_CALLOC, NULL, total, ldata->layers[i].name);
}
if (ldata->layers[i].type == CD_MLOOPCOL) {
CustomData_add_layer_named(fdata, CD_MCOL, CD_CALLOC, NULL, total, ldata->layers[i].name);
}
else if (ldata->layers[i].type == CD_PREVIEW_MLOOPCOL) {
CustomData_add_layer_named(
fdata, CD_PREVIEW_MCOL, CD_CALLOC, NULL, total, ldata->layers[i].name);
}
else if (ldata->layers[i].type == CD_ORIGSPACE_MLOOP) {
CustomData_add_layer_named(
fdata, CD_ORIGSPACE, CD_CALLOC, NULL, total, ldata->layers[i].name);
}
else if (ldata->layers[i].type == CD_NORMAL) {
CustomData_add_layer_named(
fdata, CD_TESSLOOPNORMAL, CD_CALLOC, NULL, total, ldata->layers[i].name);
}
else if (ldata->layers[i].type == CD_TANGENT) {
CustomData_add_layer_named(fdata, CD_TANGENT, CD_CALLOC, NULL, total, ldata->layers[i].name);
}
}
CustomData_bmesh_update_active_layers(fdata, ldata);
}
#ifndef NDEBUG
/**
* Debug check, used to assert when we expect layers to be in/out of sync.
*
* \param fallback: Use when there are no layers to handle,
* since callers may expect success or failure.
*/
bool CustomData_from_bmeshpoly_test(CustomData *fdata, CustomData *ldata, bool fallback)
{
int a_num = 0, b_num = 0;
# define LAYER_CMP(l_a, t_a, l_b, t_b) \
((a_num += CustomData_number_of_layers(l_a, t_a)) == \
(b_num += CustomData_number_of_layers(l_b, t_b)))
if (!LAYER_CMP(ldata, CD_MLOOPUV, fdata, CD_MTFACE)) {
return false;
}
if (!LAYER_CMP(ldata, CD_MLOOPCOL, fdata, CD_MCOL)) {
return false;
}
if (!LAYER_CMP(ldata, CD_PREVIEW_MLOOPCOL, fdata, CD_PREVIEW_MCOL)) {
return false;
}
if (!LAYER_CMP(ldata, CD_ORIGSPACE_MLOOP, fdata, CD_ORIGSPACE)) {
return false;
}
if (!LAYER_CMP(ldata, CD_NORMAL, fdata, CD_TESSLOOPNORMAL)) {
return false;
}
if (!LAYER_CMP(ldata, CD_TANGENT, fdata, CD_TANGENT)) {
return false;
}
# undef LAYER_CMP
/* if no layers are on either CustomData's,
* then there was nothing to do... */
return a_num ? true : fallback;
}
#endif
void CustomData_bmesh_update_active_layers(CustomData *fdata, CustomData *ldata)
{
int act;
if (CustomData_has_layer(ldata, CD_MLOOPUV)) {
act = CustomData_get_active_layer(ldata, CD_MLOOPUV);
CustomData_set_layer_active(fdata, CD_MTFACE, act);
act = CustomData_get_render_layer(ldata, CD_MLOOPUV);
CustomData_set_layer_render(fdata, CD_MTFACE, act);
act = CustomData_get_clone_layer(ldata, CD_MLOOPUV);
CustomData_set_layer_clone(fdata, CD_MTFACE, act);
act = CustomData_get_stencil_layer(ldata, CD_MLOOPUV);
CustomData_set_layer_stencil(fdata, CD_MTFACE, act);
}
if (CustomData_has_layer(ldata, CD_MLOOPCOL)) {
act = CustomData_get_active_layer(ldata, CD_MLOOPCOL);
CustomData_set_layer_active(fdata, CD_MCOL, act);
act = CustomData_get_render_layer(ldata, CD_MLOOPCOL);
CustomData_set_layer_render(fdata, CD_MCOL, act);
act = CustomData_get_clone_layer(ldata, CD_MLOOPCOL);
CustomData_set_layer_clone(fdata, CD_MCOL, act);
act = CustomData_get_stencil_layer(ldata, CD_MLOOPCOL);
CustomData_set_layer_stencil(fdata, CD_MCOL, act);
}
}
/* update active indices for active/render/clone/stencil custom data layers
* based on indices from fdata layers
* used by do_versions in readfile.c when creating pdata and ldata for pre-bmesh
* meshes and needed to preserve active/render/clone/stencil flags set in pre-bmesh files
*/
void CustomData_bmesh_do_versions_update_active_layers(CustomData *fdata, CustomData *ldata)
{
int act;
if (CustomData_has_layer(fdata, CD_MTFACE)) {
act = CustomData_get_active_layer(fdata, CD_MTFACE);
CustomData_set_layer_active(ldata, CD_MLOOPUV, act);
act = CustomData_get_render_layer(fdata, CD_MTFACE);
CustomData_set_layer_render(ldata, CD_MLOOPUV, act);
act = CustomData_get_clone_layer(fdata, CD_MTFACE);
CustomData_set_layer_clone(ldata, CD_MLOOPUV, act);
act = CustomData_get_stencil_layer(fdata, CD_MTFACE);
CustomData_set_layer_stencil(ldata, CD_MLOOPUV, act);
}
if (CustomData_has_layer(fdata, CD_MCOL)) {
act = CustomData_get_active_layer(fdata, CD_MCOL);
CustomData_set_layer_active(ldata, CD_MLOOPCOL, act);
act = CustomData_get_render_layer(fdata, CD_MCOL);
CustomData_set_layer_render(ldata, CD_MLOOPCOL, act);
act = CustomData_get_clone_layer(fdata, CD_MCOL);
CustomData_set_layer_clone(ldata, CD_MLOOPCOL, act);
act = CustomData_get_stencil_layer(fdata, CD_MCOL);
CustomData_set_layer_stencil(ldata, CD_MLOOPCOL, act);
}
}
void CustomData_bmesh_init_pool(CustomData *data, int totelem, const char htype)
{
int chunksize;
/* Dispose old pools before calling here to avoid leaks */
BLI_assert(data->pool == NULL);
switch (htype) {
case BM_VERT:
chunksize = bm_mesh_chunksize_default.totvert;
break;
case BM_EDGE:
chunksize = bm_mesh_chunksize_default.totedge;
break;
case BM_LOOP:
chunksize = bm_mesh_chunksize_default.totloop;
break;
case BM_FACE:
chunksize = bm_mesh_chunksize_default.totface;
break;
default:
BLI_assert(0);
chunksize = 512;
break;
}
/* If there are no layers, no pool is needed just yet */
if (data->totlayer) {
data->pool = BLI_mempool_create(data->totsize, totelem, chunksize, BLI_MEMPOOL_NOP);
}
}
bool CustomData_bmesh_merge(const CustomData *source,
CustomData *dest,
CustomDataMask mask,
eCDAllocType alloctype,
BMesh *bm,
const char htype)
{
BMHeader *h;
BMIter iter;
CustomData destold;
void *tmp;
int iter_type;
int totelem;
if (CustomData_number_of_layers_typemask(source, mask) == 0) {
return false;
}
/* copy old layer description so that old data can be copied into
* the new allocation */
destold = *dest;
if (destold.layers) {
destold.layers = MEM_dupallocN(destold.layers);
}
if (CustomData_merge(source, dest, mask, alloctype, 0) == false) {
if (destold.layers) {
MEM_freeN(destold.layers);
}
return false;
}
switch (htype) {
case BM_VERT:
iter_type = BM_VERTS_OF_MESH;
totelem = bm->totvert;
break;
case BM_EDGE:
iter_type = BM_EDGES_OF_MESH;
totelem = bm->totedge;
break;
case BM_LOOP:
iter_type = BM_LOOPS_OF_FACE;
totelem = bm->totloop;
break;
case BM_FACE:
iter_type = BM_FACES_OF_MESH;
totelem = bm->totface;
break;
default: /* should never happen */
BLI_assert(!"invalid type given");
iter_type = BM_VERTS_OF_MESH;
totelem = bm->totvert;
break;
}
dest->pool = NULL;
CustomData_bmesh_init_pool(dest, totelem, htype);
if (iter_type != BM_LOOPS_OF_FACE) {
/*ensure all current elements follow new customdata layout*/
BM_ITER_MESH (h, &iter, bm, iter_type) {
tmp = NULL;
CustomData_bmesh_copy_data(&destold, dest, h->data, &tmp);
CustomData_bmesh_free_block(&destold, &h->data);
h->data = tmp;
}
}
else {
BMFace *f;
BMLoop *l;
BMIter liter;
/*ensure all current elements follow new customdata layout*/
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
tmp = NULL;
CustomData_bmesh_copy_data(&destold, dest, l->head.data, &tmp);
CustomData_bmesh_free_block(&destold, &l->head.data);
l->head.data = tmp;
}
}
}
if (destold.pool) {
BLI_mempool_destroy(destold.pool);
}
if (destold.layers) {
MEM_freeN(destold.layers);
}
return true;
}
void CustomData_bmesh_free_block(CustomData *data, void **block)
{
const LayerTypeInfo *typeInfo;
int i;
if (*block == NULL) {
return;
}
for (i = 0; i < data->totlayer; i++) {
if (!(data->layers[i].flag & CD_FLAG_NOFREE)) {
typeInfo = layerType_getInfo(data->layers[i].type);
if (typeInfo->free) {
int offset = data->layers[i].offset;
typeInfo->free(POINTER_OFFSET(*block, offset), 1, typeInfo->size);
}
}
}
if (data->totsize) {
BLI_mempool_free(data->pool, *block);
}
*block = NULL;
}
/**
* Same as #CustomData_bmesh_free_block but zero the memory rather then freeing.
*/
void CustomData_bmesh_free_block_data(CustomData *data, void *block)
{
if (block == NULL) {
return;
}
for (int i = 0; i < data->totlayer; i++) {
if (!(data->layers[i].flag & CD_FLAG_NOFREE)) {
const LayerTypeInfo *typeInfo = layerType_getInfo(data->layers[i].type);
if (typeInfo->free) {
const size_t offset = data->layers[i].offset;
typeInfo->free(POINTER_OFFSET(block, offset), 1, typeInfo->size);
}
}
}
if (data->totsize) {
memset(block, 0, data->totsize);
}
}
static void CustomData_bmesh_alloc_block(CustomData *data, void **block)
{
if (*block) {
CustomData_bmesh_free_block(data, block);
}
if (data->totsize > 0) {
*block = BLI_mempool_alloc(data->pool);
}
else {
*block = NULL;
}
}
/**
* A selective version of #CustomData_bmesh_free_block_data.
*/
void CustomData_bmesh_free_block_data_exclude_by_type(CustomData *data,
void *block,
const CustomDataMask mask_exclude)
{
if (block == NULL) {
return;
}
for (int i = 0; i < data->totlayer; i++) {
if ((CD_TYPE_AS_MASK(data->layers[i].type) & mask_exclude) == 0) {
const LayerTypeInfo *typeInfo = layerType_getInfo(data->layers[i].type);
const size_t offset = data->layers[i].offset;
if (!(data->layers[i].flag & CD_FLAG_NOFREE)) {
if (typeInfo->free) {
typeInfo->free(POINTER_OFFSET(block, offset), 1, typeInfo->size);
}
}
memset(POINTER_OFFSET(block, offset), 0, typeInfo->size);
}
}
}
static void CustomData_bmesh_set_default_n(CustomData *data, void **block, int n)
{
const LayerTypeInfo *typeInfo;
int offset = data->layers[n].offset;
typeInfo = layerType_getInfo(data->layers[n].type);
if (typeInfo->set_default) {
typeInfo->set_default(POINTER_OFFSET(*block, offset), 1);
}
else {
memset(POINTER_OFFSET(*block, offset), 0, typeInfo->size);
}
}
void CustomData_bmesh_set_default(CustomData *data, void **block)
{
int i;
if (*block == NULL) {
CustomData_bmesh_alloc_block(data, block);
}
for (i = 0; i < data->totlayer; i++) {
CustomData_bmesh_set_default_n(data, block, i);
}
}
void CustomData_bmesh_copy_data_exclude_by_type(const CustomData *source,
CustomData *dest,
void *src_block,
void **dest_block,
const CustomDataMask mask_exclude)
{
/* Note that having a version of this function without a 'mask_exclude'
* would cause too much duplicate code, so add a check instead. */
const bool no_mask = (mask_exclude == 0);
int dest_i, src_i;
if (*dest_block == NULL) {
CustomData_bmesh_alloc_block(dest, dest_block);
if (*dest_block) {
memset(*dest_block, 0, dest->totsize);
}
}
/* copies a layer at a time */
dest_i = 0;
for (src_i = 0; src_i < source->totlayer; src_i++) {
/* find the first dest layer with type >= the source type
* (this should work because layers are ordered by type)
*/
while (dest_i < dest->totlayer && dest->layers[dest_i].type < source->layers[src_i].type) {
CustomData_bmesh_set_default_n(dest, dest_block, dest_i);
dest_i++;
}
/* if there are no more dest layers, we're done */
if (dest_i >= dest->totlayer) {
return;
}
/* if we found a matching layer, copy the data */
if (dest->layers[dest_i].type == source->layers[src_i].type &&
STREQ(dest->layers[dest_i].name, source->layers[src_i].name)) {
if (no_mask || ((CD_TYPE_AS_MASK(dest->layers[dest_i].type) & mask_exclude) == 0)) {
const void *src_data = POINTER_OFFSET(src_block, source->layers[src_i].offset);
void *dest_data = POINTER_OFFSET(*dest_block, dest->layers[dest_i].offset);
const LayerTypeInfo *typeInfo = layerType_getInfo(source->layers[src_i].type);
if (typeInfo->copy) {
typeInfo->copy(src_data, dest_data, 1);
}
else {
memcpy(dest_data, src_data, typeInfo->size);
}
}
/* if there are multiple source & dest layers of the same type,
* we don't want to copy all source layers to the same dest, so
* increment dest_i
*/
dest_i++;
}
}
while (dest_i < dest->totlayer) {
CustomData_bmesh_set_default_n(dest, dest_block, dest_i);
dest_i++;
}
}
void CustomData_bmesh_copy_data(const CustomData *source,
CustomData *dest,
void *src_block,
void **dest_block)
{
CustomData_bmesh_copy_data_exclude_by_type(source, dest, src_block, dest_block, 0);
}
/* BMesh Custom Data Functions.
* Should replace edit-mesh ones with these as well, due to more efficient memory alloc.
*/
void *CustomData_bmesh_get(const CustomData *data, void *block, int type)
{
int layer_index;
/* get the layer index of the first layer of type */
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index == -1) {
return NULL;
}
return POINTER_OFFSET(block, data->layers[layer_index].offset);
}
void *CustomData_bmesh_get_n(const CustomData *data, void *block, int type, int n)
{
int layer_index;
/* get the layer index of the first layer of type */
layer_index = CustomData_get_layer_index(data, type);
if (layer_index == -1) {
return NULL;
}
return POINTER_OFFSET(block, data->layers[layer_index + n].offset);
}
/*gets from the layer at physical index n, note: doesn't check type.*/
void *CustomData_bmesh_get_layer_n(const CustomData *data, void *block, int n)
{
if (n < 0 || n >= data->totlayer) {
return NULL;
}
return POINTER_OFFSET(block, data->layers[n].offset);
}
bool CustomData_layer_has_math(const struct CustomData *data, int layer_n)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(data->layers[layer_n].type);
if (typeInfo->equal && typeInfo->add && typeInfo->multiply && typeInfo->initminmax &&
typeInfo->dominmax) {
return true;
}
return false;
}
bool CustomData_layer_has_interp(const struct CustomData *data, int layer_n)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(data->layers[layer_n].type);
if (typeInfo->interp) {
return true;
}
return false;
}
bool CustomData_has_math(const struct CustomData *data)
{
int i;
/* interpolates a layer at a time */
for (i = 0; i < data->totlayer; i++) {
if (CustomData_layer_has_math(data, i)) {
return true;
}
}
return false;
}
/* a non bmesh version would have to check layer->data */
bool CustomData_bmesh_has_free(const struct CustomData *data)
{
const LayerTypeInfo *typeInfo;
int i;
for (i = 0; i < data->totlayer; i++) {
if (!(data->layers[i].flag & CD_FLAG_NOFREE)) {
typeInfo = layerType_getInfo(data->layers[i].type);
if (typeInfo->free) {
return true;
}
}
}
return false;
}
bool CustomData_has_interp(const struct CustomData *data)
{
int i;
/* interpolates a layer at a time */
for (i = 0; i < data->totlayer; i++) {
if (CustomData_layer_has_interp(data, i)) {
return true;
}
}
return false;
}
bool CustomData_has_referenced(const struct CustomData *data)
{
int i;
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].flag & CD_FLAG_NOFREE) {
return true;
}
}
return false;
}
/* copies the "value" (e.g. mloopuv uv or mloopcol colors) from one block to
* another, while not overwriting anything else (e.g. flags)*/
void CustomData_data_copy_value(int type, const void *source, void *dest)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (!dest) {
return;
}
if (typeInfo->copyvalue) {
typeInfo->copyvalue(source, dest, CDT_MIX_NOMIX, 0.0f);
}
else {
memcpy(dest, source, typeInfo->size);
}
}
/* Mixes the "value" (e.g. mloopuv uv or mloopcol colors) from one block into
* another, while not overwriting anything else (e.g. flags)*/
void CustomData_data_mix_value(
int type, const void *source, void *dest, const int mixmode, const float mixfactor)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (!dest) {
return;
}
if (typeInfo->copyvalue) {
typeInfo->copyvalue(source, dest, mixmode, mixfactor);
}
else {
/* Mere copy if no advanced interpolation is supported. */
memcpy(dest, source, typeInfo->size);
}
}
bool CustomData_data_equals(int type, const void *data1, const void *data2)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->equal) {
return typeInfo->equal(data1, data2);
}
else {
return !memcmp(data1, data2, typeInfo->size);
}
}
void CustomData_data_initminmax(int type, void *min, void *max)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->initminmax) {
typeInfo->initminmax(min, max);
}
}
void CustomData_data_dominmax(int type, const void *data, void *min, void *max)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->dominmax) {
typeInfo->dominmax(data, min, max);
}
}
void CustomData_data_multiply(int type, void *data, float fac)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->multiply) {
typeInfo->multiply(data, fac);
}
}
void CustomData_data_add(int type, void *data1, const void *data2)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->add) {
typeInfo->add(data1, data2);
}
}
void CustomData_bmesh_set(const CustomData *data, void *block, int type, const void *source)
{
void *dest = CustomData_bmesh_get(data, block, type);
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (!dest) {
return;
}
if (typeInfo->copy) {
typeInfo->copy(source, dest, 1);
}
else {
memcpy(dest, source, typeInfo->size);
}
}
void CustomData_bmesh_set_n(CustomData *data, void *block, int type, int n, const void *source)
{
void *dest = CustomData_bmesh_get_n(data, block, type, n);
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (!dest) {
return;
}
if (typeInfo->copy) {
typeInfo->copy(source, dest, 1);
}
else {
memcpy(dest, source, typeInfo->size);
}
}
void CustomData_bmesh_set_layer_n(CustomData *data, void *block, int n, const void *source)
{
void *dest = CustomData_bmesh_get_layer_n(data, block, n);
const LayerTypeInfo *typeInfo = layerType_getInfo(data->layers[n].type);
if (!dest) {
return;
}
if (typeInfo->copy) {
typeInfo->copy(source, dest, 1);
}
else {
memcpy(dest, source, typeInfo->size);
}
}
/**
* \note src_blocks_ofs & dst_block_ofs
* must be pointers to the data, offset by layer->offset already.
*/
void CustomData_bmesh_interp_n(CustomData *data,
const void **src_blocks_ofs,
const float *weights,
const float *sub_weights,
int count,
void *dst_block_ofs,
int n)
{
CustomDataLayer *layer = &data->layers[n];
const LayerTypeInfo *typeInfo = layerType_getInfo(layer->type);
typeInfo->interp(src_blocks_ofs, weights, sub_weights, count, dst_block_ofs);
}
void CustomData_bmesh_interp(CustomData *data,
const void **src_blocks,
const float *weights,
const float *sub_weights,
int count,
void *dst_block)
{
int i, j;
void *source_buf[SOURCE_BUF_SIZE];
const void **sources = (const void **)source_buf;
/* Slow fallback in case we're interpolating a ridiculous number of elements. */
if (count > SOURCE_BUF_SIZE) {
sources = MEM_malloc_arrayN(count, sizeof(*sources), __func__);
}
/* interpolates a layer at a time */
for (i = 0; i < data->totlayer; i++) {
CustomDataLayer *layer = &data->layers[i];
const LayerTypeInfo *typeInfo = layerType_getInfo(layer->type);
if (typeInfo->interp) {
for (j = 0; j < count; j++) {
sources[j] = POINTER_OFFSET(src_blocks[j], layer->offset);
}
CustomData_bmesh_interp_n(
data, sources, weights, sub_weights, count, POINTER_OFFSET(dst_block, layer->offset), i);
}
}
if (count > SOURCE_BUF_SIZE) {
MEM_freeN((void *)sources);
}
}
/**
* \param use_default_init: initializes data which can't be copied,
* typically you'll want to use this if the BM_xxx create function
* is called with BM_CREATE_SKIP_CD flag
*/
void CustomData_to_bmesh_block(const CustomData *source,
CustomData *dest,
int src_index,
void **dest_block,
bool use_default_init)
{
const LayerTypeInfo *typeInfo;
int dest_i, src_i;
if (*dest_block == NULL) {
CustomData_bmesh_alloc_block(dest, dest_block);
}
/* copies a layer at a time */
dest_i = 0;
for (src_i = 0; src_i < source->totlayer; src_i++) {
/* find the first dest layer with type >= the source type
* (this should work because layers are ordered by type)
*/
while (dest_i < dest->totlayer && dest->layers[dest_i].type < source->layers[src_i].type) {
if (use_default_init) {
CustomData_bmesh_set_default_n(dest, dest_block, dest_i);
}
dest_i++;
}
/* if there are no more dest layers, we're done */
if (dest_i >= dest->totlayer) {
break;
}
/* if we found a matching layer, copy the data */
if (dest->layers[dest_i].type == source->layers[src_i].type) {
int offset = dest->layers[dest_i].offset;
const void *src_data = source->layers[src_i].data;
void *dest_data = POINTER_OFFSET(*dest_block, offset);
typeInfo = layerType_getInfo(dest->layers[dest_i].type);
const size_t src_offset = (size_t)src_index * typeInfo->size;
if (typeInfo->copy) {
typeInfo->copy(POINTER_OFFSET(src_data, src_offset), dest_data, 1);
}
else {
memcpy(dest_data, POINTER_OFFSET(src_data, src_offset), typeInfo->size);
}
/* if there are multiple source & dest layers of the same type,
* we don't want to copy all source layers to the same dest, so
* increment dest_i
*/
dest_i++;
}
}
if (use_default_init) {
while (dest_i < dest->totlayer) {
CustomData_bmesh_set_default_n(dest, dest_block, dest_i);
dest_i++;
}
}
}
void CustomData_from_bmesh_block(const CustomData *source,
CustomData *dest,
void *src_block,
int dst_index)
{
int dest_i, src_i;
/* copies a layer at a time */
dest_i = 0;
for (src_i = 0; src_i < source->totlayer; src_i++) {
/* find the first dest layer with type >= the source type
* (this should work because layers are ordered by type)
*/
while (dest_i < dest->totlayer && dest->layers[dest_i].type < source->layers[src_i].type) {
dest_i++;
}
/* if there are no more dest layers, we're done */
if (dest_i >= dest->totlayer) {
return;
}
/* if we found a matching layer, copy the data */
if (dest->layers[dest_i].type == source->layers[src_i].type) {
const LayerTypeInfo *typeInfo = layerType_getInfo(dest->layers[dest_i].type);
int offset = source->layers[src_i].offset;
const void *src_data = POINTER_OFFSET(src_block, offset);
void *dst_data = POINTER_OFFSET(dest->layers[dest_i].data,
(size_t)dst_index * typeInfo->size);
if (typeInfo->copy) {
typeInfo->copy(src_data, dst_data, 1);
}
else {
memcpy(dst_data, src_data, typeInfo->size);
}
/* if there are multiple source & dest layers of the same type,
* we don't want to copy all source layers to the same dest, so
* increment dest_i
*/
dest_i++;
}
}
}
void CustomData_file_write_info(int type, const char **r_struct_name, int *r_struct_num)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
*r_struct_name = typeInfo->structname;
*r_struct_num = typeInfo->structnum;
}
/**
* Prepare given custom data for file writing.
*
* \param data: the customdata to tweak for .blend file writing (modified in place).
* \param r_write_layers: contains a reduced set of layers to be written to file,
* use it with writestruct_at_address()
* (caller must free it if != \a write_layers_buff).
*
* \param write_layers_buff: an optional buffer for r_write_layers (to avoid allocating it).
* \param write_layers_size: the size of pre-allocated \a write_layer_buff.
*
* \warning After this func has ran, given custom data is no more valid from Blender PoV
* (its totlayer is invalid). This func shall always be called with localized data
* (as it is in write_meshes()).
*
* \note data->typemap is not updated here, since it is always rebuilt on file read anyway.
* This means written typemap does not match written layers (as returned by \a r_write_layers).
* Trivial to fix is ever needed.
*/
void CustomData_file_write_prepare(CustomData *data,
CustomDataLayer **r_write_layers,
CustomDataLayer *write_layers_buff,
size_t write_layers_size)
{
CustomDataLayer *write_layers = write_layers_buff;
const size_t chunk_size = (write_layers_size > 0) ? write_layers_size : CD_TEMP_CHUNK_SIZE;
const int totlayer = data->totlayer;
int i, j;
for (i = 0, j = 0; i < totlayer; i++) {
CustomDataLayer *layer = &data->layers[i];
if (layer->flag & CD_FLAG_NOCOPY) { /* Layers with this flag set are not written to file. */
data->totlayer--;
/* CLOG_WARN(&LOG, "skipping layer %p (%s)", layer, layer->name); */
}
else {
if (UNLIKELY((size_t)j >= write_layers_size)) {
if (write_layers == write_layers_buff) {
write_layers = MEM_malloc_arrayN(
(write_layers_size + chunk_size), sizeof(*write_layers), __func__);
if (write_layers_buff) {
memcpy(write_layers, write_layers_buff, sizeof(*write_layers) * write_layers_size);
}
}
else {
write_layers = MEM_reallocN(write_layers,
sizeof(*write_layers) * (write_layers_size + chunk_size));
}
write_layers_size += chunk_size;
}
write_layers[j++] = *layer;
}
}
BLI_assert(j == data->totlayer);
data->maxlayer = data->totlayer; /* We only write that much of data! */
*r_write_layers = write_layers;
}
int CustomData_sizeof(int type)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
return typeInfo->size;
}
const char *CustomData_layertype_name(int type)
{
return layerType_getName(type);
}
/**
* Can only ever be one of these.
*/
bool CustomData_layertype_is_singleton(int type)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
return typeInfo->defaultname == NULL;
}
/**
* \return Maximum number of layers of given \a type, -1 means 'no limit'.
*/
int CustomData_layertype_layers_max(const int type)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
/* Same test as for singleton above. */
if (typeInfo->defaultname == NULL) {
return 1;
}
else if (typeInfo->layers_max == NULL) {
return -1;
}
return typeInfo->layers_max();
}
static bool CustomData_is_property_layer(int type)
{
if ((type == CD_PROP_FLOAT) || (type == CD_PROP_INT32) || (type == CD_PROP_STRING)) {
return true;
}
return false;
}
static bool cd_layer_find_dupe(CustomData *data, const char *name, int type, int index)
{
int i;
/* see if there is a duplicate */
for (i = 0; i < data->totlayer; i++) {
if (i != index) {
CustomDataLayer *layer = &data->layers[i];
if (CustomData_is_property_layer(type)) {
if (CustomData_is_property_layer(layer->type) && STREQ(layer->name, name)) {
return true;
}
}
else {
if (i != index && layer->type == type && STREQ(layer->name, name)) {
return true;
}
}
}
}
return false;
}
static bool customdata_unique_check(void *arg, const char *name)
{
struct {
CustomData *data;
int type;
int index;
} *data_arg = arg;
return cd_layer_find_dupe(data_arg->data, name, data_arg->type, data_arg->index);
}
void CustomData_set_layer_unique_name(CustomData *data, int index)
{
CustomDataLayer *nlayer = &data->layers[index];
const LayerTypeInfo *typeInfo = layerType_getInfo(nlayer->type);
struct {
CustomData *data;
int type;
int index;
} data_arg;
data_arg.data = data;
data_arg.type = nlayer->type;
data_arg.index = index;
if (!typeInfo->defaultname) {
return;
}
/* Set default name if none specified. Note we only call DATA_() when
* needed to avoid overhead of locale lookups in the depsgraph. */
if (nlayer->name[0] == '\0') {
STRNCPY(nlayer->name, DATA_(typeInfo->defaultname));
}
BLI_uniquename_cb(
customdata_unique_check, &data_arg, NULL, '.', nlayer->name, sizeof(nlayer->name));
}
void CustomData_validate_layer_name(const CustomData *data,
int type,
const char *name,
char *outname)
{
int index = -1;
/* if a layer name was given, try to find that layer */
if (name[0]) {
index = CustomData_get_named_layer_index(data, type, name);
}
if (index == -1) {
/* either no layer was specified, or the layer we want has been
* deleted, so assign the active layer to name
*/
index = CustomData_get_active_layer_index(data, type);
BLI_strncpy(outname, data->layers[index].name, MAX_CUSTOMDATA_LAYER_NAME);
}
else {
BLI_strncpy(outname, name, MAX_CUSTOMDATA_LAYER_NAME);
}
}
bool CustomData_verify_versions(struct CustomData *data, int index)
{
const LayerTypeInfo *typeInfo;
CustomDataLayer *layer = &data->layers[index];
bool keeplayer = true;
int i;
if (layer->type >= CD_NUMTYPES) {
keeplayer = false; /* unknown layer type from future version */
}
else {
typeInfo = layerType_getInfo(layer->type);
if (!typeInfo->defaultname && (index > 0) && data->layers[index - 1].type == layer->type) {
keeplayer = false; /* multiple layers of which we only support one */
}
/* This is a preemptive fix for cases that should not happen
* (layers that should not be written in .blend files),
* but can happen due to bugs (see e.g. T62318).
* Also for forward compatibility, in future,
* we may put into `.blend` file some currently un-written data types,
* this should cover that case as well.
* Better to be safe here, and fix issue on the fly rather than crash... */
/* 0 structnum is used in writing code to tag layer types that should not be written. */
else if (typeInfo->structnum == 0 &&
/* XXX Not sure why those three are exception, maybe that should be fixed? */
!ELEM(layer->type, CD_PAINT_MASK, CD_FACEMAP, CD_MTEXPOLY, CD_SCULPT_FACE_SETS)) {
keeplayer = false;
CLOG_WARN(&LOG, ".blend file read: removing a data layer that should not have been written");
}
}
if (!keeplayer) {
for (i = index + 1; i < data->totlayer; i++) {
data->layers[i - 1] = data->layers[i];
}
data->totlayer--;
}
return keeplayer;
}
/**
* Validate and fix data of \a layer,
* if possible (needs relevant callback in layer's type to be defined).
*
* \return True if some errors were found.
*/
bool CustomData_layer_validate(CustomDataLayer *layer, const uint totitems, const bool do_fixes)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(layer->type);
if (typeInfo->validate != NULL) {
return typeInfo->validate(layer->data, totitems, do_fixes);
}
return false;
}
/****************************** External Files *******************************/
static void customdata_external_filename(char filename[FILE_MAX],
ID *id,
CustomDataExternal *external)
{
BLI_strncpy(filename, external->filename, FILE_MAX);
BLI_path_abs(filename, ID_BLEND_PATH_FROM_GLOBAL(id));
}
void CustomData_external_reload(CustomData *data, ID *UNUSED(id), CustomDataMask mask, int totelem)
{
CustomDataLayer *layer;
const LayerTypeInfo *typeInfo;
int i;
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if (!(mask & CD_TYPE_AS_MASK(layer->type))) {
/* pass */
}
else if ((layer->flag & CD_FLAG_EXTERNAL) && (layer->flag & CD_FLAG_IN_MEMORY)) {
if (typeInfo->free) {
typeInfo->free(layer->data, totelem, typeInfo->size);
}
layer->flag &= ~CD_FLAG_IN_MEMORY;
}
}
}
void CustomData_external_read(CustomData *data, ID *id, CustomDataMask mask, int totelem)
{
CustomDataExternal *external = data->external;
CustomDataLayer *layer;
CDataFile *cdf;
CDataFileLayer *blay;
char filename[FILE_MAX];
const LayerTypeInfo *typeInfo;
int i, update = 0;
if (!external) {
return;
}
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if (!(mask & CD_TYPE_AS_MASK(layer->type))) {
/* pass */
}
else if (layer->flag & CD_FLAG_IN_MEMORY) {
/* pass */
}
else if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->read) {
update = 1;
}
}
if (!update) {
return;
}
customdata_external_filename(filename, id, external);
cdf = cdf_create(CDF_TYPE_MESH);
if (!cdf_read_open(cdf, filename)) {
cdf_free(cdf);
CLOG_ERROR(&LOG, "Failed to read %s layer from %s.", layerType_getName(layer->type), filename);
return;
}
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if (!(mask & CD_TYPE_AS_MASK(layer->type))) {
/* pass */
}
else if (layer->flag & CD_FLAG_IN_MEMORY) {
/* pass */
}
else if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->read) {
blay = cdf_layer_find(cdf, layer->type, layer->name);
if (blay) {
if (cdf_read_layer(cdf, blay)) {
if (typeInfo->read(cdf, layer->data, totelem)) {
/* pass */
}
else {
break;
}
layer->flag |= CD_FLAG_IN_MEMORY;
}
else {
break;
}
}
}
}
cdf_read_close(cdf);
cdf_free(cdf);
}
void CustomData_external_write(
CustomData *data, ID *id, CustomDataMask mask, int totelem, int free)
{
CustomDataExternal *external = data->external;
CustomDataLayer *layer;
CDataFile *cdf;
CDataFileLayer *blay;
const LayerTypeInfo *typeInfo;
int i, update = 0;
char filename[FILE_MAX];
if (!external) {
return;
}
/* test if there is anything to write */
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if (!(mask & CD_TYPE_AS_MASK(layer->type))) {
/* pass */
}
else if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->write) {
update = 1;
}
}
if (!update) {
return;
}
/* make sure data is read before we try to write */
CustomData_external_read(data, id, mask, totelem);
customdata_external_filename(filename, id, external);
cdf = cdf_create(CDF_TYPE_MESH);
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->filesize) {
if (layer->flag & CD_FLAG_IN_MEMORY) {
cdf_layer_add(
cdf, layer->type, layer->name, typeInfo->filesize(cdf, layer->data, totelem));
}
else {
cdf_free(cdf);
return; /* read failed for a layer! */
}
}
}
if (!cdf_write_open(cdf, filename)) {
CLOG_ERROR(&LOG, "Failed to open %s for writing.", filename);
cdf_free(cdf);
return;
}
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->write) {
blay = cdf_layer_find(cdf, layer->type, layer->name);
if (cdf_write_layer(cdf, blay)) {
if (typeInfo->write(cdf, layer->data, totelem)) {
/* pass */
}
else {
break;
}
}
else {
break;
}
}
}
if (i != data->totlayer) {
CLOG_ERROR(&LOG, "Failed to write data to %s.", filename);
cdf_write_close(cdf);
cdf_free(cdf);
return;
}
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->write) {
if (free) {
if (typeInfo->free) {
typeInfo->free(layer->data, totelem, typeInfo->size);
}
layer->flag &= ~CD_FLAG_IN_MEMORY;
}
}
}
cdf_write_close(cdf);
cdf_free(cdf);
}
void CustomData_external_add(
CustomData *data, ID *UNUSED(id), int type, int UNUSED(totelem), const char *filename)
{
CustomDataExternal *external = data->external;
CustomDataLayer *layer;
int layer_index;
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index == -1) {
return;
}
layer = &data->layers[layer_index];
if (layer->flag & CD_FLAG_EXTERNAL) {
return;
}
if (!external) {
external = MEM_callocN(sizeof(CustomDataExternal), "CustomDataExternal");
data->external = external;
}
BLI_strncpy(external->filename, filename, sizeof(external->filename));
layer->flag |= CD_FLAG_EXTERNAL | CD_FLAG_IN_MEMORY;
}
void CustomData_external_remove(CustomData *data, ID *id, int type, int totelem)
{
CustomDataExternal *external = data->external;
CustomDataLayer *layer;
// char filename[FILE_MAX];
int layer_index; // i, remove_file;
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index == -1) {
return;
}
layer = &data->layers[layer_index];
if (!external) {
return;
}
if (layer->flag & CD_FLAG_EXTERNAL) {
if (!(layer->flag & CD_FLAG_IN_MEMORY)) {
CustomData_external_read(data, id, CD_TYPE_AS_MASK(layer->type), totelem);
}
layer->flag &= ~CD_FLAG_EXTERNAL;
}
}
bool CustomData_external_test(CustomData *data, int type)
{
CustomDataLayer *layer;
int layer_index;
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index == -1) {
return false;
}
layer = &data->layers[layer_index];
return (layer->flag & CD_FLAG_EXTERNAL) != 0;
}
/* ********** Mesh-to-mesh data transfer ********** */
static void copy_bit_flag(void *dst, const void *src, const size_t data_size, const uint64_t flag)
{
#define COPY_BIT_FLAG(_type, _dst, _src, _f) \
{ \
const _type _val = *((_type *)(_src)) & ((_type)(_f)); \
*((_type *)(_dst)) &= ~((_type)(_f)); \
*((_type *)(_dst)) |= _val; \
} \
(void)0
switch (data_size) {
case 1:
COPY_BIT_FLAG(uint8_t, dst, src, flag);
break;
case 2:
COPY_BIT_FLAG(uint16_t, dst, src, flag);
break;
case 4:
COPY_BIT_FLAG(uint32_t, dst, src, flag);
break;
case 8:
COPY_BIT_FLAG(uint64_t, dst, src, flag);
break;
default:
// CLOG_ERROR(&LOG, "Unknown flags-container size (%zu)", datasize);
break;
}
#undef COPY_BIT_FLAG
}
static bool check_bit_flag(const void *data, const size_t data_size, const uint64_t flag)
{
switch (data_size) {
case 1:
return ((*((uint8_t *)data) & ((uint8_t)flag)) != 0);
case 2:
return ((*((uint16_t *)data) & ((uint16_t)flag)) != 0);
case 4:
return ((*((uint32_t *)data) & ((uint32_t)flag)) != 0);
case 8:
return ((*((uint64_t *)data) & ((uint64_t)flag)) != 0);
default:
// CLOG_ERROR(&LOG, "Unknown flags-container size (%zu)", datasize);
return false;
}
}
static void customdata_data_transfer_interp_generic(const CustomDataTransferLayerMap *laymap,
void *data_dst,
const void **sources,
const float *weights,
const int count,
const float mix_factor)
{
/* Fake interpolation, we actually copy highest weighted source to dest.
* Note we also handle bitflags here,
* in which case we rather choose to transfer value of elements totaling
* more than 0.5 of weight. */
int best_src_idx = 0;
const int data_type = laymap->data_type;
const int mix_mode = laymap->mix_mode;
size_t data_size;
const uint64_t data_flag = laymap->data_flag;
cd_interp interp_cd = NULL;
cd_copy copy_cd = NULL;
void *tmp_dst;
if (!sources) {
/* Not supported here, abort. */
return;
}
if (data_type & CD_FAKE) {
data_size = laymap->data_size;
}
else {
const LayerTypeInfo *type_info = layerType_getInfo(data_type);
data_size = (size_t)type_info->size;
interp_cd = type_info->interp;
copy_cd = type_info->copy;
}
tmp_dst = MEM_mallocN(data_size, __func__);
if (count > 1 && !interp_cd) {
int i;
if (data_flag) {
/* Boolean case, we can 'interpolate' in two groups,
* and choose value from highest weighted group. */
float tot_weight_true = 0.0f;
int item_true_idx = -1, item_false_idx = -1;
for (i = 0; i < count; i++) {
if (check_bit_flag(sources[i], data_size, data_flag)) {
tot_weight_true += weights[i];
item_true_idx = i;
}
else {
item_false_idx = i;
}
}
best_src_idx = (tot_weight_true >= 0.5f) ? item_true_idx : item_false_idx;
}
else {
/* We just choose highest weighted source. */
float max_weight = 0.0f;
for (i = 0; i < count; i++) {
if (weights[i] > max_weight) {
max_weight = weights[i];
best_src_idx = i;
}
}
}
}
BLI_assert(best_src_idx >= 0);
if (interp_cd) {
interp_cd(sources, weights, NULL, count, tmp_dst);
}
else if (data_flag) {
copy_bit_flag(tmp_dst, sources[best_src_idx], data_size, data_flag);
}
/* No interpolation, just copy highest weight source element's data. */
else if (copy_cd) {
copy_cd(sources[best_src_idx], tmp_dst, 1);
}
else {
memcpy(tmp_dst, sources[best_src_idx], data_size);
}
if (data_flag) {
/* Bool flags, only copy if dest data is set (resp. unset) -
* only 'advanced' modes we can support here! */
if (mix_factor >= 0.5f && ((mix_mode == CDT_MIX_TRANSFER) ||
(mix_mode == CDT_MIX_REPLACE_ABOVE_THRESHOLD &&
check_bit_flag(data_dst, data_size, data_flag)) ||
(mix_mode == CDT_MIX_REPLACE_BELOW_THRESHOLD &&
!check_bit_flag(data_dst, data_size, data_flag)))) {
copy_bit_flag(data_dst, tmp_dst, data_size, data_flag);
}
}
else if (!(data_type & CD_FAKE)) {
CustomData_data_mix_value(data_type, tmp_dst, data_dst, mix_mode, mix_factor);
}
/* Else we can do nothing by default, needs custom interp func!
* Note this is here only for sake of consistency, not expected to be used much actually? */
else {
if (mix_factor >= 0.5f) {
memcpy(data_dst, tmp_dst, data_size);
}
}
MEM_freeN(tmp_dst);
}
/* Normals are special, we need to take care of source & destination spaces... */
void customdata_data_transfer_interp_normal_normals(const CustomDataTransferLayerMap *laymap,
void *data_dst,
const void **sources,
const float *weights,
const int count,
const float mix_factor)
{
const int data_type = laymap->data_type;
const int mix_mode = laymap->mix_mode;
SpaceTransform *space_transform = laymap->interp_data;
const LayerTypeInfo *type_info = layerType_getInfo(data_type);
cd_interp interp_cd = type_info->interp;
float tmp_dst[3];
BLI_assert(data_type == CD_NORMAL);
if (!sources) {
/* Not supported here, abort. */
return;
}
interp_cd(sources, weights, NULL, count, tmp_dst);
if (space_transform) {
/* tmp_dst is in source space so far, bring it back in destination space. */
BLI_space_transform_invert_normal(space_transform, tmp_dst);
}
CustomData_data_mix_value(data_type, tmp_dst, data_dst, mix_mode, mix_factor);
}
void CustomData_data_transfer(const MeshPairRemap *me_remap,
const CustomDataTransferLayerMap *laymap)
{
MeshPairRemapItem *mapit = me_remap->items;
const int totelem = me_remap->items_num;
int i;
const int data_type = laymap->data_type;
const void *data_src = laymap->data_src;
void *data_dst = laymap->data_dst;
size_t data_step;
size_t data_size;
size_t data_offset;
cd_datatransfer_interp interp = NULL;
size_t tmp_buff_size = 32;
const void **tmp_data_src = NULL;
/* Note: NULL data_src may happen and be valid (see vgroups...). */
if (!data_dst) {
return;
}
if (data_src) {
tmp_data_src = MEM_malloc_arrayN(tmp_buff_size, sizeof(*tmp_data_src), __func__);
}
if (data_type & CD_FAKE) {
data_step = laymap->elem_size;
data_size = laymap->data_size;
data_offset = laymap->data_offset;
}
else {
const LayerTypeInfo *type_info = layerType_getInfo(data_type);
/* Note: we can use 'fake' CDLayers, like e.g. for crease, bweight, etc. :/ */
data_size = (size_t)type_info->size;
data_step = laymap->elem_size ? laymap->elem_size : data_size;
data_offset = laymap->data_offset;
}
interp = laymap->interp ? laymap->interp : customdata_data_transfer_interp_generic;
for (i = 0; i < totelem; i++, data_dst = POINTER_OFFSET(data_dst, data_step), mapit++) {
const int sources_num = mapit->sources_num;
const float mix_factor = laymap->mix_factor *
(laymap->mix_weights ? laymap->mix_weights[i] : 1.0f);
int j;
if (!sources_num) {
/* No sources for this element, skip it. */
continue;
}
if (tmp_data_src) {
if (UNLIKELY(sources_num > tmp_buff_size)) {
tmp_buff_size = (size_t)sources_num;
tmp_data_src = MEM_reallocN((void *)tmp_data_src, sizeof(*tmp_data_src) * tmp_buff_size);
}
for (j = 0; j < sources_num; j++) {
const size_t src_idx = (size_t)mapit->indices_src[j];
tmp_data_src[j] = POINTER_OFFSET(data_src, (data_step * src_idx) + data_offset);
}
}
interp(laymap,
POINTER_OFFSET(data_dst, data_offset),
tmp_data_src,
mapit->weights_src,
sources_num,
mix_factor);
}
MEM_SAFE_FREE(tmp_data_src);
}