tornavis/source/blender/blenkernel/intern/object_dupli.cc

1713 lines
52 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include <climits>
#include <cstddef>
#include <cstdlib>
#include "MEM_guardedalloc.h"
#include "BLI_listbase.h"
#include "BLI_string_utf8.h"
#include "BLI_array.hh"
#include "BLI_float3.hh"
#include "BLI_float4x4.hh"
#include "BLI_math.h"
#include "BLI_rand.h"
#include "BLI_span.hh"
#include "BLI_vector.hh"
#include "DNA_anim_types.h"
#include "DNA_collection_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_pointcloud_types.h"
#include "DNA_scene_types.h"
#include "DNA_vfont_types.h"
#include "BKE_collection.h"
#include "BKE_duplilist.h"
#include "BKE_editmesh.h"
#include "BKE_editmesh_cache.h"
#include "BKE_geometry_set.h"
#include "BKE_geometry_set.hh"
#include "BKE_global.h"
#include "BKE_idprop.h"
#include "BKE_lattice.h"
#include "BKE_main.h"
#include "BKE_mesh.h"
#include "BKE_mesh_iterators.h"
#include "BKE_mesh_runtime.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "BKE_vfont.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
#include "BLI_hash.h"
#include "BLI_strict_flags.h"
using blender::Array;
using blender::float3;
using blender::float4x4;
using blender::Span;
using blender::Vector;
/* -------------------------------------------------------------------- */
/** \name Internal Duplicate Context
* \{ */
struct DupliContext {
Depsgraph *depsgraph;
/** XXX child objects are selected from this group if set, could be nicer. */
Collection *collection;
/** Only to check if the object is in edit-mode. */
Object *obedit;
Scene *scene;
Object *object;
float space_mat[4][4];
/**
* A stack that contains all the "parent" objects of a particular instance when recursive
* instancing is used. This is used to prevent objects from instancing themselves accidentally.
* Use a vector instead of a stack because we want to use the #contains method.
*/
Vector<Object *> *instance_stack;
int persistent_id[MAX_DUPLI_RECUR];
int level;
const struct DupliGenerator *gen;
/** Result containers. */
ListBase *duplilist; /* Legacy doubly-linked list. */
};
struct DupliGenerator {
short type; /* Dupli Type, see members of #OB_DUPLI. */
void (*make_duplis)(const DupliContext *ctx);
};
static const DupliGenerator *get_dupli_generator(const DupliContext *ctx);
/**
* Create initial context for root object.
*/
static void init_context(DupliContext *r_ctx,
Depsgraph *depsgraph,
Scene *scene,
Object *ob,
const float space_mat[4][4],
Vector<Object *> &instance_stack)
{
r_ctx->depsgraph = depsgraph;
r_ctx->scene = scene;
r_ctx->collection = nullptr;
r_ctx->object = ob;
r_ctx->obedit = OBEDIT_FROM_OBACT(ob);
r_ctx->instance_stack = &instance_stack;
if (space_mat) {
copy_m4_m4(r_ctx->space_mat, space_mat);
}
else {
unit_m4(r_ctx->space_mat);
}
r_ctx->level = 0;
r_ctx->gen = get_dupli_generator(r_ctx);
r_ctx->duplilist = nullptr;
}
/**
* Create sub-context for recursive duplis.
*/
static bool copy_dupli_context(
DupliContext *r_ctx, const DupliContext *ctx, Object *ob, const float mat[4][4], int index)
{
*r_ctx = *ctx;
/* XXX annoying, previously was done by passing an ID* argument,
* this at least is more explicit. */
if (ctx->gen->type == OB_DUPLICOLLECTION) {
r_ctx->collection = ctx->object->instance_collection;
}
r_ctx->object = ob;
r_ctx->instance_stack = ctx->instance_stack;
if (mat) {
mul_m4_m4m4(r_ctx->space_mat, (float(*)[4])ctx->space_mat, mat);
}
r_ctx->persistent_id[r_ctx->level] = index;
++r_ctx->level;
if (r_ctx->level == MAX_DUPLI_RECUR - 1) {
std::cerr << "Warning: Maximum instance recursion level reached.\n";
return false;
}
r_ctx->gen = get_dupli_generator(r_ctx);
return true;
}
/**
* Generate a dupli instance.
*
* \param mat: is transform of the object relative to current context (including #Object.obmat).
*/
static DupliObject *make_dupli(const DupliContext *ctx,
Object *ob,
const float mat[4][4],
int index)
{
DupliObject *dob;
int i;
/* Add a #DupliObject instance to the result container. */
if (ctx->duplilist) {
dob = MEM_cnew<DupliObject>("dupli object");
BLI_addtail(ctx->duplilist, dob);
}
else {
return nullptr;
}
dob->ob = ob;
dob->ob_data = (ID *)ob->data;
mul_m4_m4m4(dob->mat, (float(*)[4])ctx->space_mat, mat);
dob->type = ctx->gen->type;
/* Set persistent id, which is an array with a persistent index for each level
* (particle number, vertex number, ..). by comparing this we can find the same
* dupli-object between frames, which is needed for motion blur.
* The last level is ordered first in the array. */
dob->persistent_id[0] = index;
for (i = 1; i < ctx->level + 1; i++) {
dob->persistent_id[i] = ctx->persistent_id[ctx->level - i];
}
/* Fill rest of values with #INT_MAX which index will never have as value. */
for (; i < MAX_DUPLI_RECUR; i++) {
dob->persistent_id[i] = INT_MAX;
}
/* Meta-balls never draw in duplis, they are instead merged into one by the basis
* meta-ball outside of the group. this does mean that if that meta-ball is not in the
* scene, they will not show up at all, limitation that should be solved once. */
if (ob->type == OB_MBALL) {
dob->no_draw = true;
}
/* Random number.
* The logic here is designed to match Cycles. */
dob->random_id = BLI_hash_string(dob->ob->id.name + 2);
if (dob->persistent_id[0] != INT_MAX) {
for (i = 0; i < MAX_DUPLI_RECUR; i++) {
dob->random_id = BLI_hash_int_2d(dob->random_id, (unsigned int)dob->persistent_id[i]);
}
}
else {
dob->random_id = BLI_hash_int_2d(dob->random_id, 0);
}
if (ctx->object != ob) {
dob->random_id ^= BLI_hash_int(BLI_hash_string(ctx->object->id.name + 2));
}
return dob;
}
/**
* Recursive dupli-objects.
*
* \param space_mat: is the local dupli-space (excluding dupli #Object.obmat).
*/
static void make_recursive_duplis(const DupliContext *ctx,
Object *ob,
const float space_mat[4][4],
int index)
{
if (ctx->instance_stack->contains(ob)) {
/* Avoid recursive instances. */
printf("Warning: '%s' object is trying to instance itself.\n", ob->id.name + 2);
return;
}
/* Simple preventing of too deep nested collections with #MAX_DUPLI_RECUR. */
if (ctx->level < MAX_DUPLI_RECUR) {
DupliContext rctx;
if (!copy_dupli_context(&rctx, ctx, ob, space_mat, index)) {
return;
}
if (rctx.gen) {
ctx->instance_stack->append(ob);
rctx.gen->make_duplis(&rctx);
ctx->instance_stack->remove_last();
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Internal Child Duplicates (Used by Other Functions)
* \{ */
using MakeChildDuplisFunc = void (*)(const DupliContext *ctx, void *userdata, Object *child);
static bool is_child(const Object *ob, const Object *parent)
{
const Object *ob_parent = ob->parent;
while (ob_parent) {
if (ob_parent == parent) {
return true;
}
ob_parent = ob_parent->parent;
}
return false;
}
/**
* Create duplis from every child in scene or collection.
*/
static void make_child_duplis(const DupliContext *ctx,
void *userdata,
MakeChildDuplisFunc make_child_duplis_cb)
{
Object *parent = ctx->object;
if (ctx->collection) {
eEvaluationMode mode = DEG_get_mode(ctx->depsgraph);
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (ctx->collection, ob, mode) {
if ((ob != ctx->obedit) && is_child(ob, parent)) {
DupliContext pctx;
if (copy_dupli_context(&pctx, ctx, ctx->object, nullptr, _base_id)) {
/* Meta-balls have a different dupli handling. */
if (ob->type != OB_MBALL) {
ob->flag |= OB_DONE; /* Doesn't render. */
}
make_child_duplis_cb(&pctx, userdata, ob);
}
}
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
else {
/* FIXME: using a mere counter to generate a 'persistent' dupli id is very weak. One possible
* better solution could be to use `session_uuid` of ID's instead? */
int persistent_dupli_id = 0;
/* NOTE: this set of flags ensure we only iterate over objects that have a base in either the
* current scene, or the set (background) scene. */
int deg_objects_visibility_flags = DEG_ITER_OBJECT_FLAG_LINKED_DIRECTLY |
DEG_ITER_OBJECT_FLAG_LINKED_VIA_SET;
DEG_OBJECT_ITER_BEGIN (ctx->depsgraph, ob, deg_objects_visibility_flags) {
if ((ob != ctx->obedit) && is_child(ob, parent)) {
DupliContext pctx;
if (copy_dupli_context(&pctx, ctx, ctx->object, nullptr, persistent_dupli_id)) {
/* Meta-balls have a different dupli-handling. */
if (ob->type != OB_MBALL) {
ob->flag |= OB_DONE; /* Doesn't render. */
}
make_child_duplis_cb(&pctx, userdata, ob);
}
}
persistent_dupli_id++;
}
DEG_OBJECT_ITER_END;
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Internal Data Access Utilities
* \{ */
static const Mesh *mesh_data_from_duplicator_object(Object *ob,
BMEditMesh **r_em,
const float (**r_vert_coords)[3],
const float (**r_vert_normals)[3])
{
/* Gather mesh info. */
BMEditMesh *em = BKE_editmesh_from_object(ob);
const Mesh *me_eval;
*r_em = nullptr;
*r_vert_coords = nullptr;
if (r_vert_normals != nullptr) {
*r_vert_normals = nullptr;
}
/* We do not need any render-specific handling anymore, depsgraph takes care of that. */
/* NOTE: Do direct access to the evaluated mesh: this function is used
* during meta balls evaluation. But even without those all the objects
* which are needed for correct instancing are already evaluated. */
if (em != nullptr) {
/* Note that this will only show deformation if #eModifierMode_OnCage is enabled.
* We could change this but it matches 2.7x behavior. */
me_eval = em->mesh_eval_cage;
if ((me_eval == nullptr) || (me_eval->runtime.wrapper_type == ME_WRAPPER_TYPE_BMESH)) {
EditMeshData *emd = me_eval ? me_eval->runtime.edit_data : nullptr;
/* Only assign edit-mesh in the case we can't use `me_eval`. */
*r_em = em;
me_eval = nullptr;
if ((emd != nullptr) && (emd->vertexCos != nullptr)) {
*r_vert_coords = emd->vertexCos;
if (r_vert_normals != nullptr) {
BKE_editmesh_cache_ensure_vert_normals(em, emd);
*r_vert_normals = emd->vertexNos;
}
}
}
}
else {
me_eval = BKE_object_get_evaluated_mesh(ob);
}
return me_eval;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Collection Implementation (#OB_DUPLICOLLECTION)
* \{ */
static void make_duplis_collection(const DupliContext *ctx)
{
Object *ob = ctx->object;
Collection *collection;
float collection_mat[4][4];
if (ob->instance_collection == nullptr) {
return;
}
collection = ob->instance_collection;
/* Combine collection offset and `obmat`. */
unit_m4(collection_mat);
sub_v3_v3(collection_mat[3], collection->instance_offset);
mul_m4_m4m4(collection_mat, ob->obmat, collection_mat);
/* Don't access 'ob->obmat' from now on. */
eEvaluationMode mode = DEG_get_mode(ctx->depsgraph);
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (collection, cob, mode) {
if (cob != ob) {
float mat[4][4];
/* Collection dupli-offset, should apply after everything else. */
mul_m4_m4m4(mat, collection_mat, cob->obmat);
make_dupli(ctx, cob, mat, _base_id);
/* Recursion. */
make_recursive_duplis(ctx, cob, collection_mat, _base_id);
}
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
static const DupliGenerator gen_dupli_collection = {
OB_DUPLICOLLECTION, /* type */
make_duplis_collection /* make_duplis */
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Vertices Implementation (#OB_DUPLIVERTS for Geometry)
* \{ */
/** Values shared between different mesh types. */
struct VertexDupliData_Params {
/**
* It's important we use this context instead of the `ctx` passed into #make_child_duplis
* since these won't match in the case of recursion.
*/
const DupliContext *ctx;
bool use_rotation;
};
struct VertexDupliData_Mesh {
VertexDupliData_Params params;
int totvert;
const MVert *mvert;
const float (*orco)[3];
};
struct VertexDupliData_EditMesh {
VertexDupliData_Params params;
BMEditMesh *em;
/* Can be nullptr. */
const float (*vert_coords)[3];
const float (*vert_normals)[3];
/**
* \note The edit-mesh may assign #DupliObject.orco in cases when a regular mesh wouldn't.
* For edit-meshes we only check for deformation, for regular meshes we check if #CD_ORCO exists.
*
* At the moment this isn't a meaningful difference since requesting #CD_ORCO causes the
* edit-mesh to be converted into a mesh.
*/
bool has_orco;
};
/**
* \param no: The direction,
* currently this is copied from a `short[3]` normal without division.
* Can be null when \a use_rotation is false.
*/
static void get_duplivert_transform(const float co[3],
const float no[3],
const bool use_rotation,
const short axis,
const short upflag,
float r_mat[4][4])
{
float quat[4];
const float size[3] = {1.0f, 1.0f, 1.0f};
if (use_rotation) {
/* Construct rotation matrix from normals. */
float no_flip[3];
negate_v3_v3(no_flip, no);
vec_to_quat(quat, no_flip, axis, upflag);
}
else {
unit_qt(quat);
}
loc_quat_size_to_mat4(r_mat, co, quat, size);
}
static DupliObject *vertex_dupli(const DupliContext *ctx,
Object *inst_ob,
const float child_imat[4][4],
int index,
const float co[3],
const float no[3],
const bool use_rotation)
{
/* `obmat` is transform to vertex. */
float obmat[4][4];
get_duplivert_transform(co, no, use_rotation, inst_ob->trackflag, inst_ob->upflag, obmat);
float space_mat[4][4];
/* Make offset relative to inst_ob using relative child transform. */
mul_mat3_m4_v3(child_imat, obmat[3]);
/* Apply `obmat` _after_ the local vertex transform. */
mul_m4_m4m4(obmat, inst_ob->obmat, obmat);
/* Space matrix is constructed by removing `obmat` transform,
* this yields the world-space transform for recursive duplis. */
mul_m4_m4m4(space_mat, obmat, inst_ob->imat);
DupliObject *dob = make_dupli(ctx, inst_ob, obmat, index);
/* Recursion. */
make_recursive_duplis(ctx, inst_ob, space_mat, index);
return dob;
}
static void make_child_duplis_verts_from_mesh(const DupliContext *ctx,
void *userdata,
Object *inst_ob)
{
VertexDupliData_Mesh *vdd = (VertexDupliData_Mesh *)userdata;
const bool use_rotation = vdd->params.use_rotation;
const MVert *mvert = vdd->mvert;
const int totvert = vdd->totvert;
invert_m4_m4(inst_ob->imat, inst_ob->obmat);
/* Relative transform from parent to child space. */
float child_imat[4][4];
mul_m4_m4m4(child_imat, inst_ob->imat, ctx->object->obmat);
const MVert *mv = mvert;
for (int i = 0; i < totvert; i++, mv++) {
const float *co = mv->co;
float no[3];
normal_short_to_float_v3(no, mv->no);
DupliObject *dob = vertex_dupli(vdd->params.ctx, inst_ob, child_imat, i, co, no, use_rotation);
if (vdd->orco) {
copy_v3_v3(dob->orco, vdd->orco[i]);
}
}
}
static void make_child_duplis_verts_from_editmesh(const DupliContext *ctx,
void *userdata,
Object *inst_ob)
{
VertexDupliData_EditMesh *vdd = (VertexDupliData_EditMesh *)userdata;
BMEditMesh *em = vdd->em;
const bool use_rotation = vdd->params.use_rotation;
invert_m4_m4(inst_ob->imat, inst_ob->obmat);
/* Relative transform from parent to child space. */
float child_imat[4][4];
mul_m4_m4m4(child_imat, inst_ob->imat, ctx->object->obmat);
BMVert *v;
BMIter iter;
int i;
const float(*vert_coords)[3] = vdd->vert_coords;
const float(*vert_normals)[3] = vdd->vert_normals;
BM_ITER_MESH_INDEX (v, &iter, em->bm, BM_VERTS_OF_MESH, i) {
const float *co, *no;
if (vert_coords != nullptr) {
co = vert_coords[i];
no = vert_normals ? vert_normals[i] : nullptr;
}
else {
co = v->co;
no = v->no;
}
DupliObject *dob = vertex_dupli(vdd->params.ctx, inst_ob, child_imat, i, co, no, use_rotation);
if (vdd->has_orco) {
copy_v3_v3(dob->orco, v->co);
}
}
}
static void make_duplis_verts(const DupliContext *ctx)
{
Object *parent = ctx->object;
const bool use_rotation = parent->transflag & OB_DUPLIROT;
/* Gather mesh info. */
BMEditMesh *em = nullptr;
const float(*vert_coords)[3] = nullptr;
const float(*vert_normals)[3] = nullptr;
const Mesh *me_eval = mesh_data_from_duplicator_object(
parent, &em, &vert_coords, use_rotation ? &vert_normals : nullptr);
if (em == nullptr && me_eval == nullptr) {
return;
}
VertexDupliData_Params vdd_params{ctx, use_rotation};
if (em != nullptr) {
VertexDupliData_EditMesh vdd{};
vdd.params = vdd_params;
vdd.em = em;
vdd.vert_coords = vert_coords;
vdd.vert_normals = vert_normals;
vdd.has_orco = (vert_coords != nullptr);
make_child_duplis(ctx, &vdd, make_child_duplis_verts_from_editmesh);
}
else {
VertexDupliData_Mesh vdd{};
vdd.params = vdd_params;
vdd.totvert = me_eval->totvert;
vdd.mvert = me_eval->mvert;
vdd.orco = (const float(*)[3])CustomData_get_layer(&me_eval->vdata, CD_ORCO);
make_child_duplis(ctx, &vdd, make_child_duplis_verts_from_mesh);
}
}
static const DupliGenerator gen_dupli_verts = {
OB_DUPLIVERTS, /* type */
make_duplis_verts /* make_duplis */
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Vertices Implementation (#OB_DUPLIVERTS for 3D Text)
* \{ */
static Object *find_family_object(
Main *bmain, const char *family, size_t family_len, unsigned int ch, GHash *family_gh)
{
void *ch_key = POINTER_FROM_UINT(ch);
Object **ob_pt;
if ((ob_pt = (Object **)BLI_ghash_lookup_p(family_gh, ch_key))) {
return *ob_pt;
}
char ch_utf8[BLI_UTF8_MAX + 1];
size_t ch_utf8_len;
ch_utf8_len = BLI_str_utf8_from_unicode(ch, ch_utf8, sizeof(ch_utf8) - 1);
ch_utf8[ch_utf8_len] = '\0';
ch_utf8_len += 1; /* Compare with null terminator. */
LISTBASE_FOREACH (Object *, ob, &bmain->objects) {
if (STREQLEN(ob->id.name + 2 + family_len, ch_utf8, ch_utf8_len)) {
if (STREQLEN(ob->id.name + 2, family, family_len)) {
/* Inserted value can be nullptr, just to save searches in future. */
BLI_ghash_insert(family_gh, ch_key, ob);
return ob;
}
}
}
return nullptr;
}
static void make_duplis_font(const DupliContext *ctx)
{
Object *par = ctx->object;
GHash *family_gh;
Object *ob;
Curve *cu;
struct CharTrans *ct, *chartransdata = nullptr;
float vec[3], obmat[4][4], pmat[4][4], fsize, xof, yof;
int text_len, a;
size_t family_len;
const char32_t *text = nullptr;
bool text_free = false;
/* Font dupli-verts not supported inside collections. */
if (ctx->collection) {
return;
}
copy_m4_m4(pmat, par->obmat);
/* In `par` the family name is stored, use this to find the other objects. */
BKE_vfont_to_curve_ex(
par, (Curve *)par->data, FO_DUPLI, nullptr, &text, &text_len, &text_free, &chartransdata);
if (text == nullptr || chartransdata == nullptr) {
return;
}
cu = (Curve *)par->data;
fsize = cu->fsize;
xof = cu->xof;
yof = cu->yof;
ct = chartransdata;
/* Cache result. */
family_len = strlen(cu->family);
family_gh = BLI_ghash_int_new_ex(__func__, 256);
/* Safety check even if it might fail badly when called for original object. */
const bool is_eval_curve = DEG_is_evaluated_id(&cu->id);
/* Advance matching BLI_str_utf8_as_utf32. */
for (a = 0; a < text_len; a++, ct++) {
/* XXX That G.main is *really* ugly, but not sure what to do here.
* Definitively don't think it would be safe to put back `Main *bmain` pointer
* in #DupliContext as done in 2.7x? */
ob = find_family_object(G.main, cu->family, family_len, (unsigned int)text[a], family_gh);
if (is_eval_curve) {
/* Workaround for the above hack. */
ob = DEG_get_evaluated_object(ctx->depsgraph, ob);
}
if (ob) {
vec[0] = fsize * (ct->xof - xof);
vec[1] = fsize * (ct->yof - yof);
vec[2] = 0.0;
mul_m4_v3(pmat, vec);
copy_m4_m4(obmat, par->obmat);
if (UNLIKELY(ct->rot != 0.0f)) {
float rmat[4][4];
zero_v3(obmat[3]);
axis_angle_to_mat4_single(rmat, 'Z', -ct->rot);
mul_m4_m4m4(obmat, obmat, rmat);
}
copy_v3_v3(obmat[3], vec);
make_dupli(ctx, ob, obmat, a);
}
}
if (text_free) {
MEM_freeN((void *)text);
}
BLI_ghash_free(family_gh, nullptr, nullptr);
MEM_freeN(chartransdata);
}
static const DupliGenerator gen_dupli_verts_font = {
OB_DUPLIVERTS, /* type */
make_duplis_font /* make_duplis */
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Vertices Implementation (#OB_DUPLIVERTS for #PointCloud)
* \{ */
static void make_child_duplis_pointcloud(const DupliContext *ctx,
void *UNUSED(userdata),
Object *child)
{
const Object *parent = ctx->object;
const PointCloud *pointcloud = (PointCloud *)parent->data;
const float(*co)[3] = pointcloud->co;
const float *radius = pointcloud->radius;
const float(*rotation)[4] = nullptr; /* TODO: add optional rotation attribute. */
const float(*orco)[3] = nullptr; /* TODO: add optional texture coordinate attribute. */
/* Relative transform from parent to child space. */
float child_imat[4][4];
mul_m4_m4m4(child_imat, child->imat, parent->obmat);
for (int i = 0; i < pointcloud->totpoint; i++) {
/* Transform matrix from point position, radius and rotation. */
float quat[4] = {1.0f, 0.0f, 0.0f, 0.0f};
float size[3] = {1.0f, 1.0f, 1.0f};
if (radius) {
copy_v3_fl(size, radius[i]);
}
if (rotation) {
copy_v4_v4(quat, rotation[i]);
}
float space_mat[4][4];
loc_quat_size_to_mat4(space_mat, co[i], quat, size);
/* Make offset relative to child object using relative child transform,
* and apply object matrix after local vertex transform. */
mul_mat3_m4_v3(child_imat, space_mat[3]);
/* Create dupli object. */
float obmat[4][4];
mul_m4_m4m4(obmat, child->obmat, space_mat);
DupliObject *dob = make_dupli(ctx, child, obmat, i);
if (orco) {
copy_v3_v3(dob->orco, orco[i]);
}
/* Recursion. */
make_recursive_duplis(ctx, child, space_mat, i);
}
}
static void make_duplis_pointcloud(const DupliContext *ctx)
{
make_child_duplis(ctx, nullptr, make_child_duplis_pointcloud);
}
static const DupliGenerator gen_dupli_verts_pointcloud = {
OB_DUPLIVERTS, /* type */
make_duplis_pointcloud /* make_duplis */
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Instances Geometry Component Implementation
* \{ */
static void make_duplis_geometry_set_impl(const DupliContext *ctx,
const GeometrySet &geometry_set,
const float parent_transform[4][4],
bool geometry_set_is_instance)
{
int component_index = 0;
if (ctx->object->type != OB_MESH || geometry_set_is_instance) {
const Mesh *mesh = geometry_set.get_mesh_for_read();
if (mesh != nullptr) {
DupliObject *dupli = make_dupli(ctx, ctx->object, parent_transform, component_index++);
dupli->ob_data = (ID *)mesh;
}
}
if (ctx->object->type != OB_VOLUME || geometry_set_is_instance) {
const Volume *volume = geometry_set.get_volume_for_read();
if (volume != nullptr) {
DupliObject *dupli = make_dupli(ctx, ctx->object, parent_transform, component_index++);
dupli->ob_data = (ID *)volume;
}
}
if (!ELEM(ctx->object->type, OB_CURVE, OB_FONT) || geometry_set_is_instance) {
const CurveComponent *curve_component = geometry_set.get_component_for_read<CurveComponent>();
if (curve_component != nullptr) {
const Curve *curve = curve_component->get_curve_for_render();
if (curve != nullptr) {
DupliObject *dupli = make_dupli(ctx, ctx->object, parent_transform, component_index++);
dupli->ob_data = (ID *)curve;
}
}
}
if (ctx->object->type != OB_POINTCLOUD || geometry_set_is_instance) {
const PointCloud *pointcloud = geometry_set.get_pointcloud_for_read();
if (pointcloud != nullptr) {
DupliObject *dupli = make_dupli(ctx, ctx->object, parent_transform, component_index++);
dupli->ob_data = (ID *)pointcloud;
}
}
const bool creates_duplis_for_components = component_index >= 1;
const InstancesComponent *component = geometry_set.get_component_for_read<InstancesComponent>();
if (component == nullptr) {
return;
}
const DupliContext *instances_ctx = ctx;
/* Create a sub-context if some duplis were created above. This is to avoid dupli id collisions
* between the instances component below and the other components above. */
DupliContext new_instances_ctx;
if (creates_duplis_for_components) {
if (!copy_dupli_context(&new_instances_ctx, ctx, ctx->object, nullptr, component_index)) {
return;
}
instances_ctx = &new_instances_ctx;
}
Span<float4x4> instance_offset_matrices = component->instance_transforms();
Span<int> instance_reference_handles = component->instance_reference_handles();
Span<int> almost_unique_ids = component->almost_unique_ids();
Span<InstanceReference> references = component->references();
for (int64_t i : instance_offset_matrices.index_range()) {
const InstanceReference &reference = references[instance_reference_handles[i]];
const int id = almost_unique_ids[i];
switch (reference.type()) {
case InstanceReference::Type::Object: {
Object &object = reference.object();
float matrix[4][4];
mul_m4_m4m4(matrix, parent_transform, instance_offset_matrices[i].values);
make_dupli(instances_ctx, &object, matrix, id);
float space_matrix[4][4];
mul_m4_m4m4(space_matrix, instance_offset_matrices[i].values, object.imat);
mul_m4_m4_pre(space_matrix, parent_transform);
make_recursive_duplis(instances_ctx, &object, space_matrix, id);
break;
}
case InstanceReference::Type::Collection: {
Collection &collection = reference.collection();
float collection_matrix[4][4];
unit_m4(collection_matrix);
sub_v3_v3(collection_matrix[3], collection.instance_offset);
mul_m4_m4_pre(collection_matrix, instance_offset_matrices[i].values);
mul_m4_m4_pre(collection_matrix, parent_transform);
DupliContext sub_ctx;
if (!copy_dupli_context(&sub_ctx, instances_ctx, instances_ctx->object, nullptr, id)) {
break;
}
eEvaluationMode mode = DEG_get_mode(instances_ctx->depsgraph);
int object_id = 0;
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (&collection, object, mode) {
if (object == instances_ctx->object) {
continue;
}
float instance_matrix[4][4];
mul_m4_m4m4(instance_matrix, collection_matrix, object->obmat);
make_dupli(&sub_ctx, object, instance_matrix, object_id++);
make_recursive_duplis(&sub_ctx, object, collection_matrix, object_id++);
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
break;
}
case InstanceReference::Type::GeometrySet: {
float new_transform[4][4];
mul_m4_m4m4(new_transform, parent_transform, instance_offset_matrices[i].values);
DupliContext sub_ctx;
if (copy_dupli_context(&sub_ctx, instances_ctx, instances_ctx->object, nullptr, id)) {
make_duplis_geometry_set_impl(&sub_ctx, reference.geometry_set(), new_transform, true);
}
break;
}
case InstanceReference::Type::None: {
break;
}
}
}
}
static void make_duplis_geometry_set(const DupliContext *ctx)
{
const GeometrySet *geometry_set = ctx->object->runtime.geometry_set_eval;
make_duplis_geometry_set_impl(ctx, *geometry_set, ctx->object->obmat, false);
}
static const DupliGenerator gen_dupli_geometry_set = {
0,
make_duplis_geometry_set,
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Faces Implementation (#OB_DUPLIFACES)
* \{ */
/** Values shared between different mesh types. */
struct FaceDupliData_Params {
/**
* It's important we use this context instead of the `ctx` passed into #make_child_duplis
* since these won't match in the case of recursion.
*/
const DupliContext *ctx;
bool use_scale;
};
struct FaceDupliData_Mesh {
FaceDupliData_Params params;
int totface;
const MPoly *mpoly;
const MLoop *mloop;
const MVert *mvert;
const float (*orco)[3];
const MLoopUV *mloopuv;
};
struct FaceDupliData_EditMesh {
FaceDupliData_Params params;
BMEditMesh *em;
bool has_orco, has_uvs;
int cd_loop_uv_offset;
/* Can be nullptr. */
const float (*vert_coords)[3];
};
static void get_dupliface_transform_from_coords(Span<float3> coords,
const bool use_scale,
const float scale_fac,
float r_mat[4][4])
{
/* Location. */
float3 location(0);
for (const float3 &coord : coords) {
location += coord;
}
location *= 1.0f / (float)coords.size();
/* Rotation. */
float quat[4];
float3 f_no;
cross_poly_v3(f_no, (const float(*)[3])coords.data(), (uint)coords.size());
f_no.normalize();
tri_to_quat_ex(quat, coords[0], coords[1], coords[2], f_no);
/* Scale. */
float scale;
if (use_scale) {
const float area = area_poly_v3((const float(*)[3])coords.data(), (uint)coords.size());
scale = sqrtf(area) * scale_fac;
}
else {
scale = 1.0f;
}
loc_quat_size_to_mat4(r_mat, location, quat, float3(scale));
}
static DupliObject *face_dupli(const DupliContext *ctx,
Object *inst_ob,
const float child_imat[4][4],
const int index,
const bool use_scale,
const float scale_fac,
Span<float3> coords)
{
float obmat[4][4];
float space_mat[4][4];
/* `obmat` is transform to face. */
get_dupliface_transform_from_coords(coords, use_scale, scale_fac, obmat);
/* Make offset relative to inst_ob using relative child transform. */
mul_mat3_m4_v3(child_imat, obmat[3]);
/* XXX ugly hack to ensure same behavior as in master.
* This should not be needed, #Object.parentinv is not consistent outside of parenting. */
{
float imat[3][3];
copy_m3_m4(imat, inst_ob->parentinv);
mul_m4_m3m4(obmat, imat, obmat);
}
/* Apply `obmat` _after_ the local face transform. */
mul_m4_m4m4(obmat, inst_ob->obmat, obmat);
/* Space matrix is constructed by removing `obmat` transform,
* this yields the world-space transform for recursive duplis. */
mul_m4_m4m4(space_mat, obmat, inst_ob->imat);
DupliObject *dob = make_dupli(ctx, inst_ob, obmat, index);
/* Recursion. */
make_recursive_duplis(ctx, inst_ob, space_mat, index);
return dob;
}
static DupliObject *face_dupli_from_mesh(const DupliContext *ctx,
Object *inst_ob,
const float child_imat[4][4],
const int index,
const bool use_scale,
const float scale_fac,
/* Mesh variables. */
const MPoly *mpoly,
const MLoop *mloopstart,
const MVert *mvert)
{
const int coords_len = mpoly->totloop;
Array<float3, 64> coords(coords_len);
const MLoop *ml = mloopstart;
for (int i = 0; i < coords_len; i++, ml++) {
coords[i] = float3(mvert[ml->v].co);
}
return face_dupli(ctx, inst_ob, child_imat, index, use_scale, scale_fac, coords);
}
static DupliObject *face_dupli_from_editmesh(const DupliContext *ctx,
Object *inst_ob,
const float child_imat[4][4],
const int index,
const bool use_scale,
const float scale_fac,
/* Mesh variables. */
BMFace *f,
const float (*vert_coords)[3])
{
const int coords_len = f->len;
Array<float3, 64> coords(coords_len);
BMLoop *l_first, *l_iter;
int i = 0;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
if (vert_coords != nullptr) {
do {
copy_v3_v3(coords[i++], vert_coords[BM_elem_index_get(l_iter->v)]);
} while ((l_iter = l_iter->next) != l_first);
}
else {
do {
copy_v3_v3(coords[i++], l_iter->v->co);
} while ((l_iter = l_iter->next) != l_first);
}
return face_dupli(ctx, inst_ob, child_imat, index, use_scale, scale_fac, coords);
}
static void make_child_duplis_faces_from_mesh(const DupliContext *ctx,
void *userdata,
Object *inst_ob)
{
FaceDupliData_Mesh *fdd = (FaceDupliData_Mesh *)userdata;
const MPoly *mpoly = fdd->mpoly, *mp;
const MLoop *mloop = fdd->mloop;
const MVert *mvert = fdd->mvert;
const float(*orco)[3] = fdd->orco;
const MLoopUV *mloopuv = fdd->mloopuv;
const int totface = fdd->totface;
const bool use_scale = fdd->params.use_scale;
int a;
float child_imat[4][4];
invert_m4_m4(inst_ob->imat, inst_ob->obmat);
/* Relative transform from parent to child space. */
mul_m4_m4m4(child_imat, inst_ob->imat, ctx->object->obmat);
const float scale_fac = ctx->object->instance_faces_scale;
for (a = 0, mp = mpoly; a < totface; a++, mp++) {
const MLoop *loopstart = mloop + mp->loopstart;
DupliObject *dob = face_dupli_from_mesh(
fdd->params.ctx, inst_ob, child_imat, a, use_scale, scale_fac, mp, loopstart, mvert);
const float w = 1.0f / (float)mp->totloop;
if (orco) {
for (int j = 0; j < mp->totloop; j++) {
madd_v3_v3fl(dob->orco, orco[loopstart[j].v], w);
}
}
if (mloopuv) {
for (int j = 0; j < mp->totloop; j++) {
madd_v2_v2fl(dob->uv, mloopuv[mp->loopstart + j].uv, w);
}
}
}
}
static void make_child_duplis_faces_from_editmesh(const DupliContext *ctx,
void *userdata,
Object *inst_ob)
{
FaceDupliData_EditMesh *fdd = (FaceDupliData_EditMesh *)userdata;
BMEditMesh *em = fdd->em;
float child_imat[4][4];
int a;
BMFace *f;
BMIter iter;
const bool use_scale = fdd->params.use_scale;
const float(*vert_coords)[3] = fdd->vert_coords;
BLI_assert((vert_coords == nullptr) || (em->bm->elem_index_dirty & BM_VERT) == 0);
invert_m4_m4(inst_ob->imat, inst_ob->obmat);
/* Relative transform from parent to child space. */
mul_m4_m4m4(child_imat, inst_ob->imat, ctx->object->obmat);
const float scale_fac = ctx->object->instance_faces_scale;
BM_ITER_MESH_INDEX (f, &iter, em->bm, BM_FACES_OF_MESH, a) {
DupliObject *dob = face_dupli_from_editmesh(
fdd->params.ctx, inst_ob, child_imat, a, use_scale, scale_fac, f, vert_coords);
if (fdd->has_orco) {
const float w = 1.0f / (float)f->len;
BMLoop *l_first, *l_iter;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
madd_v3_v3fl(dob->orco, l_iter->v->co, w);
} while ((l_iter = l_iter->next) != l_first);
}
if (fdd->has_uvs) {
BM_face_uv_calc_center_median(f, fdd->cd_loop_uv_offset, dob->uv);
}
}
}
static void make_duplis_faces(const DupliContext *ctx)
{
Object *parent = ctx->object;
/* Gather mesh info. */
BMEditMesh *em = nullptr;
const float(*vert_coords)[3] = nullptr;
const Mesh *me_eval = mesh_data_from_duplicator_object(parent, &em, &vert_coords, nullptr);
if (em == nullptr && me_eval == nullptr) {
return;
}
FaceDupliData_Params fdd_params = {ctx, (parent->transflag & OB_DUPLIFACES_SCALE) != 0};
if (em != nullptr) {
const int uv_idx = CustomData_get_render_layer(&em->bm->ldata, CD_MLOOPUV);
FaceDupliData_EditMesh fdd{};
fdd.params = fdd_params;
fdd.em = em;
fdd.vert_coords = vert_coords;
fdd.has_orco = (vert_coords != nullptr);
fdd.has_uvs = (uv_idx != -1);
fdd.cd_loop_uv_offset = (uv_idx != -1) ?
CustomData_get_n_offset(&em->bm->ldata, CD_MLOOPUV, uv_idx) :
-1;
make_child_duplis(ctx, &fdd, make_child_duplis_faces_from_editmesh);
}
else {
const int uv_idx = CustomData_get_render_layer(&me_eval->ldata, CD_MLOOPUV);
FaceDupliData_Mesh fdd{};
fdd.params = fdd_params;
fdd.totface = me_eval->totpoly;
fdd.mpoly = me_eval->mpoly;
fdd.mloop = me_eval->mloop;
fdd.mvert = me_eval->mvert;
fdd.mloopuv = (uv_idx != -1) ? (const MLoopUV *)CustomData_get_layer_n(
&me_eval->ldata, CD_MLOOPUV, uv_idx) :
nullptr;
fdd.orco = (const float(*)[3])CustomData_get_layer(&me_eval->vdata, CD_ORCO);
make_child_duplis(ctx, &fdd, make_child_duplis_faces_from_mesh);
}
}
static const DupliGenerator gen_dupli_faces = {
OB_DUPLIFACES, /* type */
make_duplis_faces /* make_duplis */
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Particles Implementation (#OB_DUPLIPARTS)
* \{ */
static void make_duplis_particle_system(const DupliContext *ctx, ParticleSystem *psys)
{
Scene *scene = ctx->scene;
Object *par = ctx->object;
eEvaluationMode mode = DEG_get_mode(ctx->depsgraph);
bool for_render = mode == DAG_EVAL_RENDER;
Object *ob = nullptr, **oblist = nullptr;
DupliObject *dob;
ParticleSettings *part;
ParticleData *pa;
ChildParticle *cpa = nullptr;
ParticleKey state;
ParticleCacheKey *cache;
float ctime, scale = 1.0f;
float tmat[4][4], mat[4][4], pamat[4][4], size = 0.0;
int a, b, hair = 0;
int totpart, totchild;
int no_draw_flag = PARS_UNEXIST;
if (psys == nullptr) {
return;
}
part = psys->part;
if (part == nullptr) {
return;
}
if (!psys_check_enabled(par, psys, for_render)) {
return;
}
if (!for_render) {
no_draw_flag |= PARS_NO_DISP;
}
/* NOTE: in old animation system, used parent object's time-offset. */
ctime = DEG_get_ctime(ctx->depsgraph);
totpart = psys->totpart;
totchild = psys->totchild;
if ((for_render || part->draw_as == PART_DRAW_REND) &&
ELEM(part->ren_as, PART_DRAW_OB, PART_DRAW_GR)) {
ParticleSimulationData sim = {nullptr};
sim.depsgraph = ctx->depsgraph;
sim.scene = scene;
sim.ob = par;
sim.psys = psys;
sim.psmd = psys_get_modifier(par, psys);
/* Make sure emitter `imat` is in global coordinates instead of render view coordinates. */
invert_m4_m4(par->imat, par->obmat);
/* First check for loops (particle system object used as dupli-object). */
if (part->ren_as == PART_DRAW_OB) {
if (ELEM(part->instance_object, nullptr, par)) {
return;
}
}
else { /* #PART_DRAW_GR. */
if (part->instance_collection == nullptr) {
return;
}
const ListBase dup_collection_objects = BKE_collection_object_cache_get(
part->instance_collection);
if (BLI_listbase_is_empty(&dup_collection_objects)) {
return;
}
if (BLI_findptr(&dup_collection_objects, par, offsetof(Base, object))) {
return;
}
}
/* If we have a hair particle system, use the path cache. */
if (part->type == PART_HAIR) {
if (psys->flag & PSYS_HAIR_DONE) {
hair = (totchild == 0 || psys->childcache) && psys->pathcache;
}
if (!hair) {
return;
}
/* We use cache, update `totchild` according to cached data. */
totchild = psys->totchildcache;
totpart = psys->totcached;
}
RNG *rng = BLI_rng_new_srandom(31415926u + (unsigned int)psys->seed);
psys->lattice_deform_data = psys_create_lattice_deform_data(&sim);
/* Gather list of objects or single object. */
int totcollection = 0;
const bool use_whole_collection = part->draw & PART_DRAW_WHOLE_GR;
const bool use_collection_count = part->draw & PART_DRAW_COUNT_GR && !use_whole_collection;
if (part->ren_as == PART_DRAW_GR) {
if (use_collection_count) {
psys_find_group_weights(part);
LISTBASE_FOREACH (ParticleDupliWeight *, dw, &part->instance_weights) {
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (
part->instance_collection, object, mode) {
if (dw->ob == object) {
totcollection += dw->count;
break;
}
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
}
else {
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (
part->instance_collection, object, mode) {
(void)object;
totcollection++;
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
oblist = (Object **)MEM_callocN((size_t)totcollection * sizeof(Object *),
"dupcollection object list");
if (use_collection_count) {
a = 0;
LISTBASE_FOREACH (ParticleDupliWeight *, dw, &part->instance_weights) {
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (
part->instance_collection, object, mode) {
if (dw->ob == object) {
for (b = 0; b < dw->count; b++, a++) {
oblist[a] = dw->ob;
}
break;
}
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
}
else {
a = 0;
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (
part->instance_collection, object, mode) {
oblist[a] = object;
a++;
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
}
else {
ob = part->instance_object;
}
if (totchild == 0 || part->draw & PART_DRAW_PARENT) {
a = 0;
}
else {
a = totpart;
}
for (pa = psys->particles; a < totpart + totchild; a++, pa++) {
if (a < totpart) {
/* Handle parent particle. */
if (pa->flag & no_draw_flag) {
continue;
}
#if 0 /* UNUSED */
pa_num = pa->num;
#endif
size = pa->size;
}
else {
/* Handle child particle. */
cpa = &psys->child[a - totpart];
#if 0 /* UNUSED */
pa_num = a;
#endif
size = psys_get_child_size(psys, cpa, ctime, nullptr);
}
/* Some hair paths might be non-existent so they can't be used for duplication. */
if (hair && psys->pathcache &&
((a < totpart && psys->pathcache[a]->segments < 0) ||
(a >= totpart && psys->childcache[a - totpart]->segments < 0))) {
continue;
}
if (part->ren_as == PART_DRAW_GR) {
/* Prevent divide by zero below T28336. */
if (totcollection == 0) {
continue;
}
/* For collections, pick the object based on settings. */
if (part->draw & PART_DRAW_RAND_GR && !use_whole_collection) {
b = BLI_rng_get_int(rng) % totcollection;
}
else {
b = a % totcollection;
}
ob = oblist[b];
}
if (hair) {
/* Hair we handle separate and compute transform based on hair keys. */
if (a < totpart) {
cache = psys->pathcache[a];
psys_get_dupli_path_transform(&sim, pa, nullptr, cache, pamat, &scale);
}
else {
cache = psys->childcache[a - totpart];
psys_get_dupli_path_transform(&sim, nullptr, cpa, cache, pamat, &scale);
}
copy_v3_v3(pamat[3], cache->co);
pamat[3][3] = 1.0f;
}
else {
/* First key. */
state.time = ctime;
if (psys_get_particle_state(&sim, a, &state, false) == 0) {
continue;
}
float tquat[4];
normalize_qt_qt(tquat, state.rot);
quat_to_mat4(pamat, tquat);
copy_v3_v3(pamat[3], state.co);
pamat[3][3] = 1.0f;
}
if (part->ren_as == PART_DRAW_GR && psys->part->draw & PART_DRAW_WHOLE_GR) {
b = 0;
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_BEGIN (
part->instance_collection, object, mode) {
copy_m4_m4(tmat, oblist[b]->obmat);
/* Apply collection instance offset. */
sub_v3_v3(tmat[3], part->instance_collection->instance_offset);
/* Apply particle scale. */
mul_mat3_m4_fl(tmat, size * scale);
mul_v3_fl(tmat[3], size * scale);
/* Individual particle transform. */
mul_m4_m4m4(mat, pamat, tmat);
dob = make_dupli(ctx, object, mat, a);
dob->particle_system = psys;
psys_get_dupli_texture(psys, part, sim.psmd, pa, cpa, dob->uv, dob->orco);
b++;
}
FOREACH_COLLECTION_VISIBLE_OBJECT_RECURSIVE_END;
}
else {
float obmat[4][4];
copy_m4_m4(obmat, ob->obmat);
float vec[3];
copy_v3_v3(vec, obmat[3]);
zero_v3(obmat[3]);
/* Particle rotation uses x-axis as the aligned axis,
* so pre-rotate the object accordingly. */
if ((part->draw & PART_DRAW_ROTATE_OB) == 0) {
float xvec[3], q[4], size_mat[4][4], original_size[3];
mat4_to_size(original_size, obmat);
size_to_mat4(size_mat, original_size);
xvec[0] = -1.0f;
xvec[1] = xvec[2] = 0;
vec_to_quat(q, xvec, ob->trackflag, ob->upflag);
quat_to_mat4(obmat, q);
obmat[3][3] = 1.0f;
/* Add scaling if requested. */
if ((part->draw & PART_DRAW_NO_SCALE_OB) == 0) {
mul_m4_m4m4(obmat, obmat, size_mat);
}
}
else if (part->draw & PART_DRAW_NO_SCALE_OB) {
/* Remove scaling. */
float size_mat[4][4], original_size[3];
mat4_to_size(original_size, obmat);
size_to_mat4(size_mat, original_size);
invert_m4(size_mat);
mul_m4_m4m4(obmat, obmat, size_mat);
}
mul_m4_m4m4(tmat, pamat, obmat);
mul_mat3_m4_fl(tmat, size * scale);
copy_m4_m4(mat, tmat);
if (part->draw & PART_DRAW_GLOBAL_OB) {
add_v3_v3v3(mat[3], mat[3], vec);
}
dob = make_dupli(ctx, ob, mat, a);
dob->particle_system = psys;
psys_get_dupli_texture(psys, part, sim.psmd, pa, cpa, dob->uv, dob->orco);
}
}
BLI_rng_free(rng);
}
/* Clean up. */
if (oblist) {
MEM_freeN(oblist);
}
if (psys->lattice_deform_data) {
BKE_lattice_deform_data_destroy(psys->lattice_deform_data);
psys->lattice_deform_data = nullptr;
}
}
static void make_duplis_particles(const DupliContext *ctx)
{
/* Particle system take up one level in id, the particles another. */
int psysid;
LISTBASE_FOREACH_INDEX (ParticleSystem *, psys, &ctx->object->particlesystem, psysid) {
/* Particles create one more level for persistent `psys` index. */
DupliContext pctx;
if (copy_dupli_context(&pctx, ctx, ctx->object, nullptr, psysid)) {
make_duplis_particle_system(&pctx, psys);
}
}
}
static const DupliGenerator gen_dupli_particles = {
OB_DUPLIPARTS, /* type */
make_duplis_particles /* make_duplis */
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Generator Selector For The Given Context
* \{ */
static const DupliGenerator *get_dupli_generator(const DupliContext *ctx)
{
int transflag = ctx->object->transflag;
int visibility_flag = ctx->object->visibility_flag;
if ((transflag & OB_DUPLI) == 0 && ctx->object->runtime.geometry_set_eval == nullptr) {
return nullptr;
}
/* Should the dupli's be generated for this object? - Respect restrict flags. */
if (DEG_get_mode(ctx->depsgraph) == DAG_EVAL_RENDER ? (visibility_flag & OB_HIDE_RENDER) :
(visibility_flag & OB_HIDE_VIEWPORT)) {
return nullptr;
}
if (ctx->object->runtime.geometry_set_eval != nullptr) {
if (BKE_object_has_geometry_set_instances(ctx->object)) {
return &gen_dupli_geometry_set;
}
}
if (transflag & OB_DUPLIPARTS) {
return &gen_dupli_particles;
}
if (transflag & OB_DUPLIVERTS) {
if (ctx->object->type == OB_MESH) {
return &gen_dupli_verts;
}
if (ctx->object->type == OB_FONT) {
return &gen_dupli_verts_font;
}
if (ctx->object->type == OB_POINTCLOUD) {
return &gen_dupli_verts_pointcloud;
}
}
else if (transflag & OB_DUPLIFACES) {
if (ctx->object->type == OB_MESH) {
return &gen_dupli_faces;
}
}
else if (transflag & OB_DUPLICOLLECTION) {
return &gen_dupli_collection;
}
return nullptr;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Dupli-Container Implementation
* \{ */
ListBase *object_duplilist(Depsgraph *depsgraph, Scene *sce, Object *ob)
{
ListBase *duplilist = MEM_cnew<ListBase>("duplilist");
DupliContext ctx;
Vector<Object *> instance_stack;
instance_stack.append(ob);
init_context(&ctx, depsgraph, sce, ob, nullptr, instance_stack);
if (ctx.gen) {
ctx.duplilist = duplilist;
ctx.gen->make_duplis(&ctx);
}
return duplilist;
}
void free_object_duplilist(ListBase *lb)
{
BLI_freelistN(lb);
MEM_freeN(lb);
}
/** \} */