tornavis/source/blender/blenkernel/intern/mesh_validate.c

1574 lines
44 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2011 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "CLG_log.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "BLI_sys_types.h"
#include "BLI_edgehash.h"
#include "BLI_math_base.h"
#include "BLI_math_vector.h"
#include "BLI_utildefines.h"
#include "BKE_customdata.h"
#include "BKE_deform.h"
#include "BKE_mesh.h"
#include "DEG_depsgraph.h"
#include "MEM_guardedalloc.h"
/* loop v/e are unsigned, so using max uint_32 value as invalid marker... */
#define INVALID_LOOP_EDGE_MARKER 4294967295u
static CLG_LogRef LOG = {"bke.mesh"};
/* -------------------------------------------------------------------- */
/** \name Internal functions
* \{ */
typedef union {
uint32_t verts[2];
int64_t edval;
} EdgeUUID;
typedef struct SortFace {
EdgeUUID es[4];
uint index;
} SortFace;
/* Used to detect polys (faces) using exactly the same vertices. */
/* Used to detect loops used by no (disjoint) or more than one (intersect) polys. */
typedef struct SortPoly {
int *verts;
int numverts;
int loopstart;
uint index;
bool invalid; /* Poly index. */
} SortPoly;
static void edge_store_assign(uint32_t verts[2], const uint32_t v1, const uint32_t v2)
{
if (v1 < v2) {
verts[0] = v1;
verts[1] = v2;
}
else {
verts[0] = v2;
verts[1] = v1;
}
}
static void edge_store_from_mface_quad(EdgeUUID es[4], MFace *mf)
{
edge_store_assign(es[0].verts, mf->v1, mf->v2);
edge_store_assign(es[1].verts, mf->v2, mf->v3);
edge_store_assign(es[2].verts, mf->v3, mf->v4);
edge_store_assign(es[3].verts, mf->v4, mf->v1);
}
static void edge_store_from_mface_tri(EdgeUUID es[4], MFace *mf)
{
edge_store_assign(es[0].verts, mf->v1, mf->v2);
edge_store_assign(es[1].verts, mf->v2, mf->v3);
edge_store_assign(es[2].verts, mf->v3, mf->v1);
es[3].verts[0] = es[3].verts[1] = UINT_MAX;
}
static int int64_cmp(const void *v1, const void *v2)
{
const int64_t x1 = *(const int64_t *)v1;
const int64_t x2 = *(const int64_t *)v2;
if (x1 > x2) {
return 1;
}
if (x1 < x2) {
return -1;
}
return 0;
}
static int search_face_cmp(const void *v1, const void *v2)
{
const SortFace *sfa = v1, *sfb = v2;
if (sfa->es[0].edval > sfb->es[0].edval) {
return 1;
}
if (sfa->es[0].edval < sfb->es[0].edval) {
return -1;
}
if (sfa->es[1].edval > sfb->es[1].edval) {
return 1;
}
if (sfa->es[1].edval < sfb->es[1].edval) {
return -1;
}
if (sfa->es[2].edval > sfb->es[2].edval) {
return 1;
}
if (sfa->es[2].edval < sfb->es[2].edval) {
return -1;
}
if (sfa->es[3].edval > sfb->es[3].edval) {
return 1;
}
if (sfa->es[3].edval < sfb->es[3].edval) {
return -1;
}
return 0;
}
/* TODO: check there is not some standard define of this somewhere! */
static int int_cmp(const void *v1, const void *v2)
{
return *(int *)v1 > *(int *)v2 ? 1 : *(int *)v1 < *(int *)v2 ? -1 : 0;
}
static int search_poly_cmp(const void *v1, const void *v2)
{
const SortPoly *sp1 = v1;
const SortPoly *sp2 = v2;
/* Reject all invalid polys at end of list! */
if (sp1->invalid || sp2->invalid) {
return sp1->invalid ? (sp2->invalid ? 0 : 1) : -1;
}
/* Else, sort on first non-equal verts (remember verts of valid polys are sorted). */
const int max_idx = sp1->numverts > sp2->numverts ? sp2->numverts : sp1->numverts;
for (int idx = 0; idx < max_idx; idx++) {
const int v1_i = sp1->verts[idx];
const int v2_i = sp2->verts[idx];
if (v1_i != v2_i) {
return (v1_i > v2_i) ? 1 : -1;
}
}
return sp1->numverts > sp2->numverts ? 1 : sp1->numverts < sp2->numverts ? -1 : 0;
}
static int search_polyloop_cmp(const void *v1, const void *v2)
{
const SortPoly *sp1 = v1;
const SortPoly *sp2 = v2;
/* Reject all invalid polys at end of list! */
if (sp1->invalid || sp2->invalid) {
return sp1->invalid && sp2->invalid ? 0 : sp1->invalid ? 1 : -1;
}
/* Else, sort on loopstart. */
return sp1->loopstart > sp2->loopstart ? 1 : sp1->loopstart < sp2->loopstart ? -1 : 0;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh Validation
* \{ */
#define PRINT_MSG(...) \
if (do_verbose) { \
CLOG_INFO(&LOG, 1, __VA_ARGS__); \
} \
((void)0)
#define PRINT_ERR(...) \
do { \
is_valid = false; \
if (do_verbose) { \
CLOG_ERROR(&LOG, __VA_ARGS__); \
} \
} while (0)
/* NOLINTNEXTLINE: readability-function-size */
bool BKE_mesh_validate_arrays(Mesh *mesh,
MVert *mverts,
uint totvert,
MEdge *medges,
uint totedge,
MFace *mfaces,
uint totface,
MLoop *mloops,
uint totloop,
MPoly *mpolys,
uint totpoly,
MDeformVert *dverts, /* assume totvert length */
const bool do_verbose,
const bool do_fixes,
bool *r_changed)
{
#define REMOVE_EDGE_TAG(_me) \
{ \
_me->v2 = _me->v1; \
free_flag.edges = do_fixes; \
} \
(void)0
#define IS_REMOVED_EDGE(_me) (_me->v2 == _me->v1)
#define REMOVE_LOOP_TAG(_ml) \
{ \
_ml->e = INVALID_LOOP_EDGE_MARKER; \
free_flag.polyloops = do_fixes; \
} \
(void)0
#define REMOVE_POLY_TAG(_mp) \
{ \
_mp->totloop *= -1; \
free_flag.polyloops = do_fixes; \
} \
(void)0
MVert *mv = mverts;
MEdge *me;
MLoop *ml;
MPoly *mp;
uint i, j;
int *v;
bool is_valid = true;
union {
struct {
int verts : 1;
int verts_weight : 1;
int loops_edge : 1;
};
int as_flag;
} fix_flag;
union {
struct {
int edges : 1;
int faces : 1;
/* This regroups loops and polys! */
int polyloops : 1;
int mselect : 1;
};
int as_flag;
} free_flag;
union {
struct {
int edges : 1;
};
int as_flag;
} recalc_flag;
EdgeHash *edge_hash = BLI_edgehash_new_ex(__func__, totedge);
BLI_assert(!(do_fixes && mesh == NULL));
fix_flag.as_flag = 0;
free_flag.as_flag = 0;
recalc_flag.as_flag = 0;
PRINT_MSG("verts(%u), edges(%u), loops(%u), polygons(%u)", totvert, totedge, totloop, totpoly);
if (totedge == 0 && totpoly != 0) {
PRINT_ERR("\tLogical error, %u polygons and 0 edges", totpoly);
recalc_flag.edges = do_fixes;
}
for (i = 0; i < totvert; i++, mv++) {
bool fix_normal = true;
for (j = 0; j < 3; j++) {
if (!isfinite(mv->co[j])) {
PRINT_ERR("\tVertex %u: has invalid coordinate", i);
if (do_fixes) {
zero_v3(mv->co);
fix_flag.verts = true;
}
}
if (mv->no[j] != 0) {
fix_normal = false;
break;
}
}
if (fix_normal) {
/* If the vertex normal accumulates to zero or isn't part of a face, the location is used.
* When the location is also zero, a zero normal warning should not be raised.
* since this is the expected behavior of normal calculation.
*
* This avoids false positives but isn't foolproof as it's possible the vertex
* is part of a polygon that has a normal which this vertex should be using,
* although it's also possible degenerate/opposite faces accumulate to a zero vector.
* To detect this a full normal recalculation would be needed, which is out of scope
* for a basic validity check (see "Vertex Normal" in the doc-string). */
if (!is_zero_v3(mv->co)) {
PRINT_ERR("\tVertex %u: has zero normal, assuming Z-up normal", i);
if (do_fixes) {
mv->no[2] = SHRT_MAX;
fix_flag.verts = true;
}
}
}
}
for (i = 0, me = medges; i < totedge; i++, me++) {
bool remove = false;
if (me->v1 == me->v2) {
PRINT_ERR("\tEdge %u: has matching verts, both %u", i, me->v1);
remove = do_fixes;
}
if (me->v1 >= totvert) {
PRINT_ERR("\tEdge %u: v1 index out of range, %u", i, me->v1);
remove = do_fixes;
}
if (me->v2 >= totvert) {
PRINT_ERR("\tEdge %u: v2 index out of range, %u", i, me->v2);
remove = do_fixes;
}
if ((me->v1 != me->v2) && BLI_edgehash_haskey(edge_hash, me->v1, me->v2)) {
PRINT_ERR("\tEdge %u: is a duplicate of %d",
i,
POINTER_AS_INT(BLI_edgehash_lookup(edge_hash, me->v1, me->v2)));
remove = do_fixes;
}
if (remove == false) {
if (me->v1 != me->v2) {
BLI_edgehash_insert(edge_hash, me->v1, me->v2, POINTER_FROM_INT(i));
}
}
else {
REMOVE_EDGE_TAG(me);
}
}
if (mfaces && !mpolys) {
#define REMOVE_FACE_TAG(_mf) \
{ \
_mf->v3 = 0; \
free_flag.faces = do_fixes; \
} \
(void)0
#define CHECK_FACE_VERT_INDEX(a, b) \
if (mf->a == mf->b) { \
PRINT_ERR(" face %u: verts invalid, " STRINGIFY(a) "/" STRINGIFY(b) " both %u", i, mf->a); \
remove = do_fixes; \
} \
(void)0
#define CHECK_FACE_EDGE(a, b) \
if (!BLI_edgehash_haskey(edge_hash, mf->a, mf->b)) { \
PRINT_ERR(" face %u: edge " STRINGIFY(a) "/" STRINGIFY(b) " (%u,%u) is missing edge data", \
i, \
mf->a, \
mf->b); \
recalc_flag.edges = do_fixes; \
} \
(void)0
MFace *mf;
MFace *mf_prev;
SortFace *sort_faces = MEM_callocN(sizeof(SortFace) * totface, "search faces");
SortFace *sf;
SortFace *sf_prev;
uint totsortface = 0;
PRINT_ERR("No Polys, only tessellated Faces");
for (i = 0, mf = mfaces, sf = sort_faces; i < totface; i++, mf++) {
bool remove = false;
int fidx;
uint fv[4];
fidx = mf->v4 ? 3 : 2;
do {
fv[fidx] = *(&(mf->v1) + fidx);
if (fv[fidx] >= totvert) {
PRINT_ERR("\tFace %u: 'v%d' index out of range, %u", i, fidx + 1, fv[fidx]);
remove = do_fixes;
}
} while (fidx--);
if (remove == false) {
if (mf->v4) {
CHECK_FACE_VERT_INDEX(v1, v2);
CHECK_FACE_VERT_INDEX(v1, v3);
CHECK_FACE_VERT_INDEX(v1, v4);
CHECK_FACE_VERT_INDEX(v2, v3);
CHECK_FACE_VERT_INDEX(v2, v4);
CHECK_FACE_VERT_INDEX(v3, v4);
}
else {
CHECK_FACE_VERT_INDEX(v1, v2);
CHECK_FACE_VERT_INDEX(v1, v3);
CHECK_FACE_VERT_INDEX(v2, v3);
}
if (remove == false) {
if (totedge) {
if (mf->v4) {
CHECK_FACE_EDGE(v1, v2);
CHECK_FACE_EDGE(v2, v3);
CHECK_FACE_EDGE(v3, v4);
CHECK_FACE_EDGE(v4, v1);
}
else {
CHECK_FACE_EDGE(v1, v2);
CHECK_FACE_EDGE(v2, v3);
CHECK_FACE_EDGE(v3, v1);
}
}
sf->index = i;
if (mf->v4) {
edge_store_from_mface_quad(sf->es, mf);
qsort(sf->es, 4, sizeof(int64_t), int64_cmp);
}
else {
edge_store_from_mface_tri(sf->es, mf);
qsort(sf->es, 3, sizeof(int64_t), int64_cmp);
}
totsortface++;
sf++;
}
}
if (remove) {
REMOVE_FACE_TAG(mf);
}
}
qsort(sort_faces, totsortface, sizeof(SortFace), search_face_cmp);
sf = sort_faces;
sf_prev = sf;
sf++;
for (i = 1; i < totsortface; i++, sf++) {
bool remove = false;
/* on a valid mesh, code below will never run */
if (memcmp(sf->es, sf_prev->es, sizeof(sf_prev->es)) == 0) {
mf = mfaces + sf->index;
if (do_verbose) {
mf_prev = mfaces + sf_prev->index;
if (mf->v4) {
PRINT_ERR("\tFace %u & %u: are duplicates (%u,%u,%u,%u) (%u,%u,%u,%u)",
sf->index,
sf_prev->index,
mf->v1,
mf->v2,
mf->v3,
mf->v4,
mf_prev->v1,
mf_prev->v2,
mf_prev->v3,
mf_prev->v4);
}
else {
PRINT_ERR("\tFace %u & %u: are duplicates (%u,%u,%u) (%u,%u,%u)",
sf->index,
sf_prev->index,
mf->v1,
mf->v2,
mf->v3,
mf_prev->v1,
mf_prev->v2,
mf_prev->v3);
}
}
remove = do_fixes;
}
else {
sf_prev = sf;
}
if (remove) {
REMOVE_FACE_TAG(mf);
}
}
MEM_freeN(sort_faces);
#undef REMOVE_FACE_TAG
#undef CHECK_FACE_VERT_INDEX
#undef CHECK_FACE_EDGE
}
/* Checking loops and polys is a bit tricky, as they are quite intricate...
*
* Polys must have:
* - a valid loopstart value.
* - a valid totloop value (>= 3 and loopstart+totloop < me.totloop).
*
* Loops must have:
* - a valid v value.
* - a valid e value (corresponding to the edge it defines with the next loop in poly).
*
* Also, loops not used by polys can be discarded.
* And "intersecting" loops (i.e. loops used by more than one poly) are invalid,
* so be sure to leave at most one poly per loop!
*/
{
SortPoly *sort_polys = MEM_callocN(sizeof(SortPoly) * totpoly, "mesh validate's sort_polys");
SortPoly *prev_sp, *sp = sort_polys;
int prev_end;
for (i = 0, mp = mpolys; i < totpoly; i++, mp++, sp++) {
sp->index = i;
/* Material index, isolated from other tests here. While large indices are clamped,
* negative indices aren't supported by drawing, exporters etc.
* To check the indices are in range, use #BKE_mesh_validate_material_indices */
if (mp->mat_nr < 0) {
PRINT_ERR("\tPoly %u has invalid material (%d)", sp->index, mp->mat_nr);
if (do_fixes) {
mp->mat_nr = 0;
}
}
if (mp->loopstart < 0 || mp->totloop < 3) {
/* Invalid loop data. */
PRINT_ERR("\tPoly %u is invalid (loopstart: %d, totloop: %d)",
sp->index,
mp->loopstart,
mp->totloop);
sp->invalid = true;
}
else if (mp->loopstart + mp->totloop > totloop) {
/* Invalid loop data. */
PRINT_ERR(
"\tPoly %u uses loops out of range (loopstart: %d, loopend: %d, max nbr of loops: %u)",
sp->index,
mp->loopstart,
mp->loopstart + mp->totloop - 1,
totloop - 1);
sp->invalid = true;
}
else {
/* Poly itself is valid, for now. */
int v1, v2; /* v1 is prev loop vert idx, v2 is current loop one. */
sp->invalid = false;
sp->verts = v = MEM_mallocN(sizeof(int) * mp->totloop, "Vert idx of SortPoly");
sp->numverts = mp->totloop;
sp->loopstart = mp->loopstart;
/* Ideally we would only have to do that once on all vertices
* before we start checking each poly, but several polys can use same vert,
* so we have to ensure here all verts of current poly are cleared. */
for (j = 0, ml = &mloops[sp->loopstart]; j < mp->totloop; j++, ml++) {
if (ml->v < totvert) {
mverts[ml->v].flag &= ~ME_VERT_TMP_TAG;
}
}
/* Test all poly's loops' vert idx. */
for (j = 0, ml = &mloops[sp->loopstart]; j < mp->totloop; j++, ml++, v++) {
if (ml->v >= totvert) {
/* Invalid vert idx. */
PRINT_ERR("\tLoop %u has invalid vert reference (%u)", sp->loopstart + j, ml->v);
sp->invalid = true;
}
else if (mverts[ml->v].flag & ME_VERT_TMP_TAG) {
PRINT_ERR("\tPoly %u has duplicated vert reference at corner (%u)", i, j);
sp->invalid = true;
}
else {
mverts[ml->v].flag |= ME_VERT_TMP_TAG;
}
*v = ml->v;
}
if (sp->invalid) {
continue;
}
/* Test all poly's loops. */
for (j = 0, ml = &mloops[sp->loopstart]; j < mp->totloop; j++, ml++) {
v1 = ml->v;
v2 = mloops[sp->loopstart + (j + 1) % mp->totloop].v;
if (!BLI_edgehash_haskey(edge_hash, v1, v2)) {
/* Edge not existing. */
PRINT_ERR("\tPoly %u needs missing edge (%d, %d)", sp->index, v1, v2);
if (do_fixes) {
recalc_flag.edges = true;
}
else {
sp->invalid = true;
}
}
else if (ml->e >= totedge) {
/* Invalid edge idx.
* We already know from previous text that a valid edge exists, use it (if allowed)! */
if (do_fixes) {
int prev_e = ml->e;
ml->e = POINTER_AS_INT(BLI_edgehash_lookup(edge_hash, v1, v2));
fix_flag.loops_edge = true;
PRINT_ERR("\tLoop %u has invalid edge reference (%d), fixed using edge %u",
sp->loopstart + j,
prev_e,
ml->e);
}
else {
PRINT_ERR("\tLoop %u has invalid edge reference (%u)", sp->loopstart + j, ml->e);
sp->invalid = true;
}
}
else {
me = &medges[ml->e];
if (IS_REMOVED_EDGE(me) ||
!((me->v1 == v1 && me->v2 == v2) || (me->v1 == v2 && me->v2 == v1))) {
/* The pointed edge is invalid (tagged as removed, or vert idx mismatch),
* and we already know from previous test that a valid one exists,
* use it (if allowed)! */
if (do_fixes) {
int prev_e = ml->e;
ml->e = POINTER_AS_INT(BLI_edgehash_lookup(edge_hash, v1, v2));
fix_flag.loops_edge = true;
PRINT_ERR(
"\tPoly %u has invalid edge reference (%d, is_removed: %d), fixed using edge "
"%u",
sp->index,
prev_e,
IS_REMOVED_EDGE(me),
ml->e);
}
else {
PRINT_ERR("\tPoly %u has invalid edge reference (%u)", sp->index, ml->e);
sp->invalid = true;
}
}
}
}
if (!sp->invalid) {
/* Needed for checking polys using same verts below. */
qsort(sp->verts, sp->numverts, sizeof(int), int_cmp);
}
}
}
/* Second check pass, testing polys using the same verts. */
qsort(sort_polys, totpoly, sizeof(SortPoly), search_poly_cmp);
sp = prev_sp = sort_polys;
sp++;
for (i = 1; i < totpoly; i++, sp++) {
int p1_nv = sp->numverts, p2_nv = prev_sp->numverts;
const int *p1_v = sp->verts, *p2_v = prev_sp->verts;
if (sp->invalid) {
/* Break, because all known invalid polys have been put at the end
* by qsort with search_poly_cmp. */
break;
}
/* Test same polys. */
if ((p1_nv == p2_nv) && (memcmp(p1_v, p2_v, p1_nv * sizeof(*p1_v)) == 0)) {
if (do_verbose) {
/* TODO: convert list to string */
PRINT_ERR("\tPolys %u and %u use same vertices (%d", prev_sp->index, sp->index, *p1_v);
for (j = 1; j < p1_nv; j++) {
PRINT_ERR(", %d", p1_v[j]);
}
PRINT_ERR("), considering poly %u as invalid.", sp->index);
}
else {
is_valid = false;
}
sp->invalid = true;
}
else {
prev_sp = sp;
}
}
/* Third check pass, testing loops used by none or more than one poly. */
qsort(sort_polys, totpoly, sizeof(SortPoly), search_polyloop_cmp);
sp = sort_polys;
prev_sp = NULL;
prev_end = 0;
for (i = 0; i < totpoly; i++, sp++) {
/* Free this now, we don't need it anymore, and avoid us another loop! */
if (sp->verts) {
MEM_freeN(sp->verts);
}
/* Note above prev_sp: in following code, we make sure it is always valid poly (or NULL). */
if (sp->invalid) {
if (do_fixes) {
REMOVE_POLY_TAG((&mpolys[sp->index]));
/* DO NOT REMOVE ITS LOOPS!!!
* As already invalid polys are at the end of the SortPoly list, the loops they
* were the only users have already been tagged as "to remove" during previous
* iterations, and we don't want to remove some loops that may be used by
* another valid poly! */
}
}
/* Test loops users. */
else {
/* Unused loops. */
if (prev_end < sp->loopstart) {
for (j = prev_end, ml = &mloops[prev_end]; j < sp->loopstart; j++, ml++) {
PRINT_ERR("\tLoop %u is unused.", j);
if (do_fixes) {
REMOVE_LOOP_TAG(ml);
}
}
prev_end = sp->loopstart + sp->numverts;
prev_sp = sp;
}
/* Multi-used loops. */
else if (prev_end > sp->loopstart) {
PRINT_ERR("\tPolys %u and %u share loops from %d to %d, considering poly %u as invalid.",
prev_sp->index,
sp->index,
sp->loopstart,
prev_end,
sp->index);
if (do_fixes) {
REMOVE_POLY_TAG((&mpolys[sp->index]));
/* DO NOT REMOVE ITS LOOPS!!!
* They might be used by some next, valid poly!
* Just not updating prev_end/prev_sp vars is enough to ensure the loops
* effectively no more needed will be marked as "to be removed"! */
}
}
else {
prev_end = sp->loopstart + sp->numverts;
prev_sp = sp;
}
}
}
/* We may have some remaining unused loops to get rid of! */
if (prev_end < totloop) {
for (j = prev_end, ml = &mloops[prev_end]; j < totloop; j++, ml++) {
PRINT_ERR("\tLoop %u is unused.", j);
if (do_fixes) {
REMOVE_LOOP_TAG(ml);
}
}
}
MEM_freeN(sort_polys);
}
BLI_edgehash_free(edge_hash, NULL);
/* fix deform verts */
if (dverts) {
MDeformVert *dv;
for (i = 0, dv = dverts; i < totvert; i++, dv++) {
MDeformWeight *dw;
for (j = 0, dw = dv->dw; j < dv->totweight; j++, dw++) {
/* NOTE: greater than max defgroups is accounted for in our code, but not < 0. */
if (!isfinite(dw->weight)) {
PRINT_ERR("\tVertex deform %u, group %u has weight: %f", i, dw->def_nr, dw->weight);
if (do_fixes) {
dw->weight = 0.0f;
fix_flag.verts_weight = true;
}
}
else if (dw->weight < 0.0f || dw->weight > 1.0f) {
PRINT_ERR("\tVertex deform %u, group %u has weight: %f", i, dw->def_nr, dw->weight);
if (do_fixes) {
CLAMP(dw->weight, 0.0f, 1.0f);
fix_flag.verts_weight = true;
}
}
/* Not technically incorrect since this is unsigned, however,
* a value over INT_MAX is almost certainly caused by wrapping an uint. */
if (dw->def_nr >= INT_MAX) {
PRINT_ERR("\tVertex deform %u, has invalid group %u", i, dw->def_nr);
if (do_fixes) {
BKE_defvert_remove_group(dv, dw);
fix_flag.verts_weight = true;
if (dv->dw) {
/* re-allocated, the new values compensate for stepping
* within the for loop and may not be valid */
j--;
dw = dv->dw + j;
}
else { /* all freed */
break;
}
}
}
}
}
}
#undef REMOVE_EDGE_TAG
#undef IS_REMOVED_EDGE
#undef REMOVE_LOOP_TAG
#undef REMOVE_POLY_TAG
if (mesh) {
if (free_flag.faces) {
BKE_mesh_strip_loose_faces(mesh);
}
if (free_flag.polyloops) {
BKE_mesh_strip_loose_polysloops(mesh);
}
if (free_flag.edges) {
BKE_mesh_strip_loose_edges(mesh);
}
if (recalc_flag.edges) {
BKE_mesh_calc_edges(mesh, true, false);
}
}
if (mesh && mesh->mselect) {
MSelect *msel;
for (i = 0, msel = mesh->mselect; i < mesh->totselect; i++, msel++) {
int tot_elem = 0;
if (msel->index < 0) {
PRINT_ERR(
"\tMesh select element %u type %d index is negative, "
"resetting selection stack.\n",
i,
msel->type);
free_flag.mselect = do_fixes;
break;
}
switch (msel->type) {
case ME_VSEL:
tot_elem = mesh->totvert;
break;
case ME_ESEL:
tot_elem = mesh->totedge;
break;
case ME_FSEL:
tot_elem = mesh->totpoly;
break;
}
if (msel->index > tot_elem) {
PRINT_ERR(
"\tMesh select element %u type %d index %d is larger than data array size %d, "
"resetting selection stack.\n",
i,
msel->type,
msel->index,
tot_elem);
free_flag.mselect = do_fixes;
break;
}
}
if (free_flag.mselect) {
MEM_freeN(mesh->mselect);
mesh->mselect = NULL;
mesh->totselect = 0;
}
}
PRINT_MSG("%s: finished\n\n", __func__);
*r_changed = (fix_flag.as_flag || free_flag.as_flag || recalc_flag.as_flag);
BLI_assert((*r_changed == false) || (do_fixes == true));
return is_valid;
}
static bool mesh_validate_customdata(CustomData *data,
CustomDataMask mask,
const uint totitems,
const bool do_verbose,
const bool do_fixes,
bool *r_change)
{
bool is_valid = true;
bool has_fixes = false;
int i = 0;
PRINT_MSG("%s: Checking %d CD layers...\n", __func__, data->totlayer);
while (i < data->totlayer) {
CustomDataLayer *layer = &data->layers[i];
bool ok = true;
if (CustomData_layertype_is_singleton(layer->type)) {
const int layer_tot = CustomData_number_of_layers(data, layer->type);
if (layer_tot > 1) {
PRINT_ERR("\tCustomDataLayer type %d is a singleton, found %d in Mesh structure\n",
layer->type,
layer_tot);
ok = false;
}
}
if (mask != 0) {
CustomDataMask layer_typemask = CD_TYPE_AS_MASK(layer->type);
if ((layer_typemask & mask) == 0) {
PRINT_ERR("\tCustomDataLayer type %d which isn't in the mask\n", layer->type);
ok = false;
}
}
if (ok == false) {
if (do_fixes) {
CustomData_free_layer(data, layer->type, 0, i);
has_fixes = true;
}
}
if (ok) {
if (CustomData_layer_validate(layer, totitems, do_fixes)) {
PRINT_ERR("\tCustomDataLayer type %d has some invalid data\n", layer->type);
has_fixes = do_fixes;
}
i++;
}
}
PRINT_MSG("%s: Finished (is_valid=%d)\n\n", __func__, (int)!has_fixes);
*r_change = has_fixes;
return is_valid;
}
bool BKE_mesh_validate_all_customdata(CustomData *vdata,
const uint totvert,
CustomData *edata,
const uint totedge,
CustomData *ldata,
const uint totloop,
CustomData *pdata,
const uint totpoly,
const bool check_meshmask,
const bool do_verbose,
const bool do_fixes,
bool *r_change)
{
bool is_valid = true;
bool is_change_v, is_change_e, is_change_l, is_change_p;
CustomData_MeshMasks mask = {0};
if (check_meshmask) {
mask = CD_MASK_MESH;
}
is_valid &= mesh_validate_customdata(
vdata, mask.vmask, totvert, do_verbose, do_fixes, &is_change_v);
is_valid &= mesh_validate_customdata(
edata, mask.emask, totedge, do_verbose, do_fixes, &is_change_e);
is_valid &= mesh_validate_customdata(
ldata, mask.lmask, totloop, do_verbose, do_fixes, &is_change_l);
is_valid &= mesh_validate_customdata(
pdata, mask.pmask, totpoly, do_verbose, do_fixes, &is_change_p);
const int tot_uvloop = CustomData_number_of_layers(ldata, CD_MLOOPUV);
const int tot_vcolloop = CustomData_number_of_layers(ldata, CD_MLOOPCOL);
if (tot_uvloop > MAX_MTFACE) {
PRINT_ERR(
"\tMore UV layers than %d allowed, %d last ones won't be available for render, shaders, "
"etc.\n",
MAX_MTFACE,
tot_uvloop - MAX_MTFACE);
}
if (tot_vcolloop > MAX_MCOL) {
PRINT_ERR(
"\tMore VCol layers than %d allowed, %d last ones won't be available for render, shaders, "
"etc.\n",
MAX_MCOL,
tot_vcolloop - MAX_MCOL);
}
/* check indices of clone/stencil */
if (do_fixes && CustomData_get_clone_layer(ldata, CD_MLOOPUV) >= tot_uvloop) {
CustomData_set_layer_clone(ldata, CD_MLOOPUV, 0);
is_change_l = true;
}
if (do_fixes && CustomData_get_stencil_layer(ldata, CD_MLOOPUV) >= tot_uvloop) {
CustomData_set_layer_stencil(ldata, CD_MLOOPUV, 0);
is_change_l = true;
}
*r_change = (is_change_v || is_change_e || is_change_l || is_change_p);
return is_valid;
}
bool BKE_mesh_validate(Mesh *me, const bool do_verbose, const bool cddata_check_mask)
{
bool is_valid = true;
bool changed;
if (do_verbose) {
CLOG_INFO(&LOG, 0, "MESH: %s", me->id.name + 2);
}
is_valid &= BKE_mesh_validate_all_customdata(&me->vdata,
me->totvert,
&me->edata,
me->totedge,
&me->ldata,
me->totloop,
&me->pdata,
me->totpoly,
cddata_check_mask,
do_verbose,
true,
&changed);
is_valid &= BKE_mesh_validate_arrays(me,
me->mvert,
me->totvert,
me->medge,
me->totedge,
me->mface,
me->totface,
me->mloop,
me->totloop,
me->mpoly,
me->totpoly,
me->dvert,
do_verbose,
true,
&changed);
if (changed) {
DEG_id_tag_update(&me->id, ID_RECALC_GEOMETRY_ALL_MODES);
return true;
}
return false;
}
bool BKE_mesh_is_valid(Mesh *me)
{
const bool do_verbose = true;
const bool do_fixes = false;
bool is_valid = true;
bool changed = true;
is_valid &= BKE_mesh_validate_all_customdata(
&me->vdata,
me->totvert,
&me->edata,
me->totedge,
&me->ldata,
me->totloop,
&me->pdata,
me->totpoly,
false, /* setting mask here isn't useful, gives false positives */
do_verbose,
do_fixes,
&changed);
is_valid &= BKE_mesh_validate_arrays(me,
me->mvert,
me->totvert,
me->medge,
me->totedge,
me->mface,
me->totface,
me->mloop,
me->totloop,
me->mpoly,
me->totpoly,
me->dvert,
do_verbose,
do_fixes,
&changed);
BLI_assert(changed == false);
return is_valid;
}
bool BKE_mesh_validate_material_indices(Mesh *me)
{
/* Cast to unsigned to catch negative indices too. */
const uint16_t mat_nr_max = max_ii(0, me->totcol - 1);
MPoly *mp;
const int totpoly = me->totpoly;
int i;
bool is_valid = true;
for (mp = me->mpoly, i = 0; i < totpoly; i++, mp++) {
if ((uint16_t)mp->mat_nr > mat_nr_max) {
mp->mat_nr = 0;
is_valid = false;
}
}
if (!is_valid) {
DEG_id_tag_update(&me->id, ID_RECALC_GEOMETRY_ALL_MODES);
return true;
}
return false;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh Stripping (removing invalid data)
* \{ */
void BKE_mesh_strip_loose_faces(Mesh *me)
{
/* NOTE: We need to keep this for edge creation (for now?), and some old `readfile.c` code. */
MFace *f;
int a, b;
for (a = b = 0, f = me->mface; a < me->totface; a++, f++) {
if (f->v3) {
if (a != b) {
memcpy(&me->mface[b], f, sizeof(me->mface[b]));
CustomData_copy_data(&me->fdata, &me->fdata, a, b, 1);
}
b++;
}
}
if (a != b) {
CustomData_free_elem(&me->fdata, b, a - b);
me->totface = b;
}
}
void BKE_mesh_strip_loose_polysloops(Mesh *me)
{
MPoly *p;
MLoop *l;
int a, b;
/* New loops idx! */
int *new_idx = MEM_mallocN(sizeof(int) * me->totloop, __func__);
for (a = b = 0, p = me->mpoly; a < me->totpoly; a++, p++) {
bool invalid = false;
int i = p->loopstart;
int stop = i + p->totloop;
if (stop > me->totloop || stop < i || p->loopstart < 0) {
invalid = true;
}
else {
l = &me->mloop[i];
i = stop - i;
/* If one of the poly's loops is invalid, the whole poly is invalid! */
for (; i--; l++) {
if (l->e == INVALID_LOOP_EDGE_MARKER) {
invalid = true;
break;
}
}
}
if (p->totloop >= 3 && !invalid) {
if (a != b) {
memcpy(&me->mpoly[b], p, sizeof(me->mpoly[b]));
CustomData_copy_data(&me->pdata, &me->pdata, a, b, 1);
}
b++;
}
}
if (a != b) {
CustomData_free_elem(&me->pdata, b, a - b);
me->totpoly = b;
}
/* And now, get rid of invalid loops. */
for (a = b = 0, l = me->mloop; a < me->totloop; a++, l++) {
if (l->e != INVALID_LOOP_EDGE_MARKER) {
if (a != b) {
memcpy(&me->mloop[b], l, sizeof(me->mloop[b]));
CustomData_copy_data(&me->ldata, &me->ldata, a, b, 1);
}
new_idx[a] = b;
b++;
}
else {
/* XXX Theoretically, we should be able to not do this, as no remaining poly
* should use any stripped loop. But for security's sake... */
new_idx[a] = -a;
}
}
if (a != b) {
CustomData_free_elem(&me->ldata, b, a - b);
me->totloop = b;
}
/* And now, update polys' start loop index. */
/* NOTE: At this point, there should never be any poly using a striped loop! */
for (a = 0, p = me->mpoly; a < me->totpoly; a++, p++) {
p->loopstart = new_idx[p->loopstart];
}
MEM_freeN(new_idx);
}
void BKE_mesh_strip_loose_edges(Mesh *me)
{
MEdge *e;
MLoop *l;
int a, b;
uint *new_idx = MEM_mallocN(sizeof(int) * me->totedge, __func__);
for (a = b = 0, e = me->medge; a < me->totedge; a++, e++) {
if (e->v1 != e->v2) {
if (a != b) {
memcpy(&me->medge[b], e, sizeof(me->medge[b]));
CustomData_copy_data(&me->edata, &me->edata, a, b, 1);
}
new_idx[a] = b;
b++;
}
else {
new_idx[a] = INVALID_LOOP_EDGE_MARKER;
}
}
if (a != b) {
CustomData_free_elem(&me->edata, b, a - b);
me->totedge = b;
}
/* And now, update loops' edge indices. */
/* XXX We hope no loop was pointing to a striped edge!
* Else, its e will be set to INVALID_LOOP_EDGE_MARKER :/ */
for (a = 0, l = me->mloop; a < me->totloop; a++, l++) {
l->e = new_idx[l->e];
}
MEM_freeN(new_idx);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh Edge Calculation
* \{ */
/* make edges in a Mesh, for outside of editmode */
struct EdgeSort {
uint v1, v2;
char is_loose, is_draw;
};
/* edges have to be added with lowest index first for sorting */
static void to_edgesort(struct EdgeSort *ed, uint v1, uint v2, char is_loose, short is_draw)
{
if (v1 < v2) {
ed->v1 = v1;
ed->v2 = v2;
}
else {
ed->v1 = v2;
ed->v2 = v1;
}
ed->is_loose = is_loose;
ed->is_draw = is_draw;
}
static int vergedgesort(const void *v1, const void *v2)
{
const struct EdgeSort *x1 = v1, *x2 = v2;
if (x1->v1 > x2->v1) {
return 1;
}
if (x1->v1 < x2->v1) {
return -1;
}
if (x1->v2 > x2->v2) {
return 1;
}
if (x1->v2 < x2->v2) {
return -1;
}
return 0;
}
/* Create edges based on known verts and faces,
* this function is only used when loading very old blend files */
static void mesh_calc_edges_mdata(MVert *UNUSED(allvert),
MFace *allface,
MLoop *allloop,
MPoly *allpoly,
int UNUSED(totvert),
int totface,
int UNUSED(totloop),
int totpoly,
const bool use_old,
MEdge **r_medge,
int *r_totedge)
{
MPoly *mpoly;
MFace *mface;
MEdge *medge, *med;
EdgeHash *hash;
struct EdgeSort *edsort, *ed;
int a, totedge = 0;
uint totedge_final = 0;
uint edge_index;
/* we put all edges in array, sort them, and detect doubles that way */
for (a = totface, mface = allface; a > 0; a--, mface++) {
if (mface->v4) {
totedge += 4;
}
else if (mface->v3) {
totedge += 3;
}
else {
totedge += 1;
}
}
if (totedge == 0) {
/* flag that mesh has edges */
(*r_medge) = MEM_callocN(0, __func__);
(*r_totedge) = 0;
return;
}
ed = edsort = MEM_mallocN(totedge * sizeof(struct EdgeSort), "EdgeSort");
for (a = totface, mface = allface; a > 0; a--, mface++) {
to_edgesort(ed++, mface->v1, mface->v2, !mface->v3, mface->edcode & ME_V1V2);
if (mface->v4) {
to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3);
to_edgesort(ed++, mface->v3, mface->v4, 0, mface->edcode & ME_V3V4);
to_edgesort(ed++, mface->v4, mface->v1, 0, mface->edcode & ME_V4V1);
}
else if (mface->v3) {
to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3);
to_edgesort(ed++, mface->v3, mface->v1, 0, mface->edcode & ME_V3V1);
}
}
qsort(edsort, totedge, sizeof(struct EdgeSort), vergedgesort);
/* count final amount */
for (a = totedge, ed = edsort; a > 1; a--, ed++) {
/* edge is unique when it differs from next edge, or is last */
if (ed->v1 != (ed + 1)->v1 || ed->v2 != (ed + 1)->v2) {
totedge_final++;
}
}
totedge_final++;
medge = MEM_callocN(sizeof(MEdge) * totedge_final, __func__);
for (a = totedge, med = medge, ed = edsort; a > 1; a--, ed++) {
/* edge is unique when it differs from next edge, or is last */
if (ed->v1 != (ed + 1)->v1 || ed->v2 != (ed + 1)->v2) {
med->v1 = ed->v1;
med->v2 = ed->v2;
if (use_old == false || ed->is_draw) {
med->flag = ME_EDGEDRAW | ME_EDGERENDER;
}
if (ed->is_loose) {
med->flag |= ME_LOOSEEDGE;
}
/* order is swapped so extruding this edge as a surface won't flip face normals
* with cyclic curves */
if (ed->v1 + 1 != ed->v2) {
SWAP(uint, med->v1, med->v2);
}
med++;
}
else {
/* equal edge, we merge the drawflag */
(ed + 1)->is_draw |= ed->is_draw;
}
}
/* last edge */
med->v1 = ed->v1;
med->v2 = ed->v2;
med->flag = ME_EDGEDRAW;
if (ed->is_loose) {
med->flag |= ME_LOOSEEDGE;
}
med->flag |= ME_EDGERENDER;
MEM_freeN(edsort);
/* set edge members of mloops */
hash = BLI_edgehash_new_ex(__func__, totedge_final);
for (edge_index = 0, med = medge; edge_index < totedge_final; edge_index++, med++) {
BLI_edgehash_insert(hash, med->v1, med->v2, POINTER_FROM_UINT(edge_index));
}
mpoly = allpoly;
for (a = 0; a < totpoly; a++, mpoly++) {
MLoop *ml, *ml_next;
int i = mpoly->totloop;
ml_next = allloop + mpoly->loopstart; /* first loop */
ml = &ml_next[i - 1]; /* last loop */
while (i-- != 0) {
ml->e = POINTER_AS_UINT(BLI_edgehash_lookup(hash, ml->v, ml_next->v));
ml = ml_next;
ml_next++;
}
}
BLI_edgehash_free(hash, NULL);
*r_medge = medge;
*r_totedge = totedge_final;
}
void BKE_mesh_calc_edges_legacy(Mesh *me, const bool use_old)
{
MEdge *medge;
int totedge = 0;
mesh_calc_edges_mdata(me->mvert,
me->mface,
me->mloop,
me->mpoly,
me->totvert,
me->totface,
me->totloop,
me->totpoly,
use_old,
&medge,
&totedge);
if (totedge == 0) {
/* flag that mesh has edges */
me->medge = medge;
me->totedge = 0;
return;
}
medge = CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, medge, totedge);
me->medge = medge;
me->totedge = totedge;
BKE_mesh_strip_loose_faces(me);
}
void BKE_mesh_calc_edges_loose(Mesh *mesh)
{
MEdge *med = mesh->medge;
for (int i = 0; i < mesh->totedge; i++, med++) {
med->flag |= ME_LOOSEEDGE;
}
MLoop *ml = mesh->mloop;
for (int i = 0; i < mesh->totloop; i++, ml++) {
mesh->medge[ml->e].flag &= ~ME_LOOSEEDGE;
}
med = mesh->medge;
for (int i = 0; i < mesh->totedge; i++, med++) {
if (med->flag & ME_LOOSEEDGE) {
med->flag |= ME_EDGEDRAW;
}
}
}
void BKE_mesh_calc_edges_tessface(Mesh *mesh)
{
const int numFaces = mesh->totface;
EdgeSet *eh = BLI_edgeset_new_ex(__func__, BLI_EDGEHASH_SIZE_GUESS_FROM_POLYS(numFaces));
MFace *mf = mesh->mface;
for (int i = 0; i < numFaces; i++, mf++) {
BLI_edgeset_add(eh, mf->v1, mf->v2);
BLI_edgeset_add(eh, mf->v2, mf->v3);
if (mf->v4) {
BLI_edgeset_add(eh, mf->v3, mf->v4);
BLI_edgeset_add(eh, mf->v4, mf->v1);
}
else {
BLI_edgeset_add(eh, mf->v3, mf->v1);
}
}
const int numEdges = BLI_edgeset_len(eh);
/* write new edges into a temporary CustomData */
CustomData edgeData;
CustomData_reset(&edgeData);
CustomData_add_layer(&edgeData, CD_MEDGE, CD_CALLOC, NULL, numEdges);
CustomData_add_layer(&edgeData, CD_ORIGINDEX, CD_CALLOC, NULL, numEdges);
MEdge *med = CustomData_get_layer(&edgeData, CD_MEDGE);
int *index = CustomData_get_layer(&edgeData, CD_ORIGINDEX);
EdgeSetIterator *ehi = BLI_edgesetIterator_new(eh);
for (int i = 0; BLI_edgesetIterator_isDone(ehi) == false;
BLI_edgesetIterator_step(ehi), i++, med++, index++) {
BLI_edgesetIterator_getKey(ehi, &med->v1, &med->v2);
med->flag = ME_EDGEDRAW | ME_EDGERENDER;
*index = ORIGINDEX_NONE;
}
BLI_edgesetIterator_free(ehi);
/* free old CustomData and assign new one */
CustomData_free(&mesh->edata, mesh->totedge);
mesh->edata = edgeData;
mesh->totedge = numEdges;
mesh->medge = CustomData_get_layer(&mesh->edata, CD_MEDGE);
BLI_edgeset_free(eh);
}
/** \} */