tornavis/source/blender/blenkernel/intern/key.c

2616 lines
63 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include <math.h>
#include <stddef.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_endian_switch.h"
#include "BLI_math_vector.h"
#include "BLI_string_utils.h"
#include "BLI_utildefines.h"
#include "BLT_translation.h"
/* Allow using deprecated functionality for .blend file I/O. */
#define DNA_DEPRECATED_ALLOW
#include "DNA_ID.h"
#include "DNA_anim_types.h"
#include "DNA_key_types.h"
#include "DNA_lattice_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_anim_data.h"
#include "BKE_curve.h"
#include "BKE_customdata.h"
#include "BKE_deform.h"
#include "BKE_editmesh.h"
#include "BKE_idtype.h"
#include "BKE_key.h"
#include "BKE_lattice.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_main.h"
#include "BKE_mesh.h"
#include "BKE_scene.h"
#include "RNA_access.h"
#include "BLO_read_write.h"
static void shapekey_copy_data(Main *UNUSED(bmain),
ID *id_dst,
const ID *id_src,
const int UNUSED(flag))
{
Key *key_dst = (Key *)id_dst;
const Key *key_src = (const Key *)id_src;
BLI_duplicatelist(&key_dst->block, &key_src->block);
KeyBlock *kb_dst, *kb_src;
for (kb_src = key_src->block.first, kb_dst = key_dst->block.first; kb_dst;
kb_src = kb_src->next, kb_dst = kb_dst->next) {
if (kb_dst->data) {
kb_dst->data = MEM_dupallocN(kb_dst->data);
}
if (kb_src == key_src->refkey) {
key_dst->refkey = kb_dst;
}
}
}
static void shapekey_free_data(ID *id)
{
Key *key = (Key *)id;
KeyBlock *kb;
while ((kb = BLI_pophead(&key->block))) {
if (kb->data) {
MEM_freeN(kb->data);
}
MEM_freeN(kb);
}
}
static void shapekey_foreach_id(ID *id, LibraryForeachIDData *data)
{
Key *key = (Key *)id;
BKE_LIB_FOREACHID_PROCESS_ID(data, key->from, IDWALK_CB_LOOPBACK);
}
static ID *shapekey_owner_get(Main *UNUSED(bmain), ID *id)
{
return ((Key *)id)->from;
}
static void shapekey_blend_write(BlendWriter *writer, ID *id, const void *id_address)
{
Key *key = (Key *)id;
const bool is_undo = BLO_write_is_undo(writer);
/* write LibData */
BLO_write_id_struct(writer, Key, id_address, &key->id);
BKE_id_blend_write(writer, &key->id);
if (key->adt) {
BKE_animdata_blend_write(writer, key->adt);
}
/* direct data */
LISTBASE_FOREACH (KeyBlock *, kb, &key->block) {
KeyBlock tmp_kb = *kb;
/* Do not store actual geometry data in case this is a library override ID. */
if (ID_IS_OVERRIDE_LIBRARY(key) && !is_undo) {
tmp_kb.totelem = 0;
tmp_kb.data = NULL;
}
BLO_write_struct_at_address(writer, KeyBlock, kb, &tmp_kb);
if (tmp_kb.data != NULL) {
BLO_write_raw(writer, tmp_kb.totelem * key->elemsize, tmp_kb.data);
}
}
}
/* old defines from DNA_ipo_types.h for data-type, stored in DNA - don't modify! */
#define IPO_FLOAT 4
#define IPO_BEZTRIPLE 100
#define IPO_BPOINT 101
static void switch_endian_keyblock(Key *key, KeyBlock *kb)
{
int elemsize = key->elemsize;
char *data = kb->data;
for (int a = 0; a < kb->totelem; a++) {
const char *cp = key->elemstr;
char *poin = data;
while (cp[0]) { /* cp[0] == amount */
switch (cp[1]) { /* cp[1] = type */
case IPO_FLOAT:
case IPO_BPOINT:
case IPO_BEZTRIPLE: {
int b = cp[0];
BLI_endian_switch_float_array((float *)poin, b);
poin += sizeof(float) * b;
break;
}
}
cp += 2;
}
data += elemsize;
}
}
static void shapekey_blend_read_data(BlendDataReader *reader, ID *id)
{
Key *key = (Key *)id;
BLO_read_list(reader, &(key->block));
BLO_read_data_address(reader, &key->adt);
BKE_animdata_blend_read_data(reader, key->adt);
BLO_read_data_address(reader, &key->refkey);
LISTBASE_FOREACH (KeyBlock *, kb, &key->block) {
BLO_read_data_address(reader, &kb->data);
if (BLO_read_requires_endian_switch(reader)) {
switch_endian_keyblock(key, kb);
}
}
}
static void shapekey_blend_read_lib(BlendLibReader *reader, ID *id)
{
Key *key = (Key *)id;
BLI_assert((key->id.tag & LIB_TAG_EXTERN) == 0);
BLO_read_id_address(reader, key->id.lib, &key->ipo); /* XXX deprecated - old animation system */
BLO_read_id_address(reader, key->id.lib, &key->from);
}
static void shapekey_blend_read_expand(BlendExpander *expander, ID *id)
{
Key *key = (Key *)id;
BLO_expand(expander, key->ipo); /* XXX deprecated - old animation system */
}
IDTypeInfo IDType_ID_KE = {
.id_code = ID_KE,
.id_filter = 0,
.main_listbase_index = INDEX_ID_KE,
.struct_size = sizeof(Key),
.name = "Key",
.name_plural = "shape_keys",
.translation_context = BLT_I18NCONTEXT_ID_SHAPEKEY,
.flags = IDTYPE_FLAGS_NO_LIBLINKING,
.asset_type_info = NULL,
.init_data = NULL,
.copy_data = shapekey_copy_data,
.free_data = shapekey_free_data,
.make_local = NULL,
.foreach_id = shapekey_foreach_id,
.foreach_cache = NULL,
.foreach_path = NULL,
/* A bit weird, due to shapekeys not being strictly speaking embedded data... But they also
* share a lot with those (non linkable, only ever used by one owner ID, etc.). */
.owner_get = shapekey_owner_get,
.blend_write = shapekey_blend_write,
.blend_read_data = shapekey_blend_read_data,
.blend_read_lib = shapekey_blend_read_lib,
.blend_read_expand = shapekey_blend_read_expand,
.blend_read_undo_preserve = NULL,
.lib_override_apply_post = NULL,
};
#define KEY_MODE_DUMMY 0 /* use where mode isn't checked for */
#define KEY_MODE_BPOINT 1
#define KEY_MODE_BEZTRIPLE 2
/* Internal use only. */
typedef struct WeightsArrayCache {
int num_defgroup_weights;
float **defgroup_weights;
} WeightsArrayCache;
/** Free (or release) any data used by this shapekey (does not free the key itself). */
void BKE_key_free_data(Key *key)
{
shapekey_free_data(&key->id);
}
void BKE_key_free_nolib(Key *key)
{
KeyBlock *kb;
while ((kb = BLI_pophead(&key->block))) {
if (kb->data) {
MEM_freeN(kb->data);
}
MEM_freeN(kb);
}
}
Key *BKE_key_add(Main *bmain, ID *id) /* common function */
{
Key *key;
char *el;
key = BKE_id_new(bmain, ID_KE, "Key");
key->type = KEY_NORMAL;
key->from = id;
key->uidgen = 1;
/* XXX the code here uses some defines which will soon be deprecated... */
switch (GS(id->name)) {
case ID_ME:
el = key->elemstr;
el[0] = KEYELEM_FLOAT_LEN_COORD;
el[1] = IPO_FLOAT;
el[2] = 0;
key->elemsize = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
break;
case ID_LT:
el = key->elemstr;
el[0] = KEYELEM_FLOAT_LEN_COORD;
el[1] = IPO_FLOAT;
el[2] = 0;
key->elemsize = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
break;
case ID_CU:
el = key->elemstr;
el[0] = KEYELEM_ELEM_SIZE_CURVE;
el[1] = IPO_BPOINT;
el[2] = 0;
key->elemsize = sizeof(float[KEYELEM_ELEM_SIZE_CURVE]);
break;
default:
break;
}
return key;
}
/**
* Sort shape keys after a change.
* This assumes that at most one key was moved,
* which is a valid assumption for the places it's currently being called.
*/
void BKE_key_sort(Key *key)
{
KeyBlock *kb;
KeyBlock *kb2;
/* locate the key which is out of position */
for (kb = key->block.first; kb; kb = kb->next) {
if ((kb->next) && (kb->pos > kb->next->pos)) {
break;
}
}
/* if we find a key, move it */
if (kb) {
kb = kb->next; /* next key is the out-of-order one */
BLI_remlink(&key->block, kb);
/* find the right location and insert before */
for (kb2 = key->block.first; kb2; kb2 = kb2->next) {
if (kb2->pos > kb->pos) {
BLI_insertlinkafter(&key->block, kb2->prev, kb);
break;
}
}
}
/* new rule; first key is refkey, this to match drawing channels... */
key->refkey = key->block.first;
}
/**************** do the key ****************/
void key_curve_position_weights(float t, float data[4], int type)
{
float t2, t3, fc;
if (type == KEY_LINEAR) {
data[0] = 0.0f;
data[1] = -t + 1.0f;
data[2] = t;
data[3] = 0.0f;
}
else if (type == KEY_CARDINAL) {
t2 = t * t;
t3 = t2 * t;
fc = 0.71f;
data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
data[3] = fc * t3 - fc * t2;
}
else if (type == KEY_BSPLINE) {
t2 = t * t;
t3 = t2 * t;
data[0] = -0.16666666f * t3 + 0.5f * t2 - 0.5f * t + 0.16666666f;
data[1] = 0.5f * t3 - t2 + 0.66666666f;
data[2] = -0.5f * t3 + 0.5f * t2 + 0.5f * t + 0.16666666f;
data[3] = 0.16666666f * t3;
}
else if (type == KEY_CATMULL_ROM) {
t2 = t * t;
t3 = t2 * t;
fc = 0.5f;
data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
data[3] = fc * t3 - fc * t2;
}
}
/* first derivative */
void key_curve_tangent_weights(float t, float data[4], int type)
{
float t2, fc;
if (type == KEY_LINEAR) {
data[0] = 0.0f;
data[1] = -1.0f;
data[2] = 1.0f;
data[3] = 0.0f;
}
else if (type == KEY_CARDINAL) {
t2 = t * t;
fc = 0.71f;
data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
}
else if (type == KEY_BSPLINE) {
t2 = t * t;
data[0] = -0.5f * t2 + t - 0.5f;
data[1] = 1.5f * t2 - t * 2.0f;
data[2] = -1.5f * t2 + t + 0.5f;
data[3] = 0.5f * t2;
}
else if (type == KEY_CATMULL_ROM) {
t2 = t * t;
fc = 0.5f;
data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
}
}
/* second derivative */
void key_curve_normal_weights(float t, float data[4], int type)
{
float fc;
if (type == KEY_LINEAR) {
data[0] = 0.0f;
data[1] = 0.0f;
data[2] = 0.0f;
data[3] = 0.0f;
}
else if (type == KEY_CARDINAL) {
fc = 0.71f;
data[0] = -6.0f * fc * t + 4.0f * fc;
data[1] = 6.0f * (2.0f - fc) * t + 2.0f * (fc - 3.0f);
data[2] = 6.0f * (fc - 2.0f) * t + 2.0f * (3.0f - 2.0f * fc);
data[3] = 6.0f * fc * t - 2.0f * fc;
}
else if (type == KEY_BSPLINE) {
data[0] = -1.0f * t + 1.0f;
data[1] = 3.0f * t - 2.0f;
data[2] = -3.0f * t + 1.0f;
data[3] = 1.0f * t;
}
else if (type == KEY_CATMULL_ROM) {
fc = 0.5f;
data[0] = -6.0f * fc * t + 4.0f * fc;
data[1] = 6.0f * (2.0f - fc) * t + 2.0f * (fc - 3.0f);
data[2] = 6.0f * (fc - 2.0f) * t + 2.0f * (3.0f - 2.0f * fc);
data[3] = 6.0f * fc * t - 2.0f * fc;
}
}
static int setkeys(float fac, ListBase *lb, KeyBlock *k[], float t[4], int cycl)
{
/* return 1 means k[2] is the position, return 0 means interpolate */
KeyBlock *k1, *firstkey;
float d, dpos, ofs = 0, lastpos;
short bsplinetype;
firstkey = lb->first;
k1 = lb->last;
lastpos = k1->pos;
dpos = lastpos - firstkey->pos;
if (fac < firstkey->pos) {
fac = firstkey->pos;
}
else if (fac > k1->pos) {
fac = k1->pos;
}
k1 = k[0] = k[1] = k[2] = k[3] = firstkey;
t[0] = t[1] = t[2] = t[3] = k1->pos;
/* if (fac < 0.0 || fac > 1.0) return 1; */
if (k1->next == NULL) {
return 1;
}
if (cycl) { /* pre-sort */
k[2] = k1->next;
k[3] = k[2]->next;
if (k[3] == NULL) {
k[3] = k1;
}
while (k1) {
if (k1->next == NULL) {
k[0] = k1;
}
k1 = k1->next;
}
/* k1 = k[1]; */ /* UNUSED */
t[0] = k[0]->pos;
t[1] += dpos;
t[2] = k[2]->pos + dpos;
t[3] = k[3]->pos + dpos;
fac += dpos;
ofs = dpos;
if (k[3] == k[1]) {
t[3] += dpos;
ofs = 2.0f * dpos;
}
if (fac < t[1]) {
fac += dpos;
}
k1 = k[3];
}
else { /* pre-sort */
k[2] = k1->next;
t[2] = k[2]->pos;
k[3] = k[2]->next;
if (k[3] == NULL) {
k[3] = k[2];
}
t[3] = k[3]->pos;
k1 = k[3];
}
while (t[2] < fac) { /* find correct location */
if (k1->next == NULL) {
if (cycl) {
k1 = firstkey;
ofs += dpos;
}
else if (t[2] == t[3]) {
break;
}
}
else {
k1 = k1->next;
}
t[0] = t[1];
k[0] = k[1];
t[1] = t[2];
k[1] = k[2];
t[2] = t[3];
k[2] = k[3];
t[3] = k1->pos + ofs;
k[3] = k1;
if (ofs > 2.1f + lastpos) {
break;
}
}
bsplinetype = 0;
if (k[1]->type == KEY_BSPLINE || k[2]->type == KEY_BSPLINE) {
bsplinetype = 1;
}
if (cycl == 0) {
if (bsplinetype == 0) { /* B spline doesn't go through the control points */
if (fac <= t[1]) { /* fac for 1st key */
t[2] = t[1];
k[2] = k[1];
return 1;
}
if (fac >= t[2]) { /* fac after 2nd key */
return 1;
}
}
else if (fac > t[2]) { /* last key */
fac = t[2];
k[3] = k[2];
t[3] = t[2];
}
}
d = t[2] - t[1];
if (d == 0.0f) {
if (bsplinetype == 0) {
return 1; /* both keys equal */
}
}
else {
d = (fac - t[1]) / d;
}
/* interpolation */
key_curve_position_weights(d, t, k[1]->type);
if (k[1]->type != k[2]->type) {
float t_other[4];
key_curve_position_weights(d, t_other, k[2]->type);
interp_v4_v4v4(t, t, t_other, d);
}
return 0;
}
static void flerp(int tot,
float *in,
const float *f0,
const float *f1,
const float *f2,
const float *f3,
const float *t)
{
int a;
for (a = 0; a < tot; a++) {
in[a] = t[0] * f0[a] + t[1] * f1[a] + t[2] * f2[a] + t[3] * f3[a];
}
}
static void rel_flerp(int tot, float *in, const float *ref, const float *out, float fac)
{
int a;
for (a = 0; a < tot; a++) {
in[a] -= fac * (ref[a] - out[a]);
}
}
static char *key_block_get_data(Key *key, KeyBlock *actkb, KeyBlock *kb, char **freedata)
{
if (kb == actkb) {
/* this hack makes it possible to edit shape keys in
* edit mode with shape keys blending applied */
if (GS(key->from->name) == ID_ME) {
Mesh *me;
BMVert *eve;
BMIter iter;
float(*co)[3];
int a;
me = (Mesh *)key->from;
if (me->edit_mesh && me->edit_mesh->bm->totvert == kb->totelem) {
a = 0;
co = MEM_mallocN(sizeof(float[3]) * me->edit_mesh->bm->totvert, "key_block_get_data");
BM_ITER_MESH (eve, &iter, me->edit_mesh->bm, BM_VERTS_OF_MESH) {
copy_v3_v3(co[a], eve->co);
a++;
}
*freedata = (char *)co;
return (char *)co;
}
}
}
*freedata = NULL;
return kb->data;
}
/* currently only the first value of 'ofs' may be set. */
static bool key_pointer_size(const Key *key, const int mode, int *poinsize, int *ofs, int *step)
{
if (key->from == NULL) {
return false;
}
*step = 1;
switch (GS(key->from->name)) {
case ID_ME:
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
*poinsize = *ofs;
break;
case ID_LT:
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
*poinsize = *ofs;
break;
case ID_CU:
if (mode == KEY_MODE_BPOINT) {
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_BPOINT]);
*step = KEYELEM_ELEM_LEN_BPOINT;
}
else {
*ofs = sizeof(float[KEYELEM_FLOAT_LEN_BEZTRIPLE]);
*step = KEYELEM_ELEM_LEN_BEZTRIPLE;
}
*poinsize = sizeof(float[KEYELEM_ELEM_SIZE_CURVE]);
break;
default:
BLI_assert_msg(0, "invalid 'key->from' ID type");
return false;
}
return true;
}
static void cp_key(const int start,
int end,
const int tot,
char *poin,
Key *key,
KeyBlock *actkb,
KeyBlock *kb,
float *weights,
const int mode)
{
float ktot = 0.0, kd = 0.0;
int elemsize, poinsize = 0, a, step, *ofsp, ofs[32], flagflo = 0;
char *k1, *kref, *freek1, *freekref;
char *cp, elemstr[8];
/* currently always 0, in future key_pointer_size may assign */
ofs[1] = 0;
if (!key_pointer_size(key, mode, &poinsize, &ofs[0], &step)) {
return;
}
if (end > tot) {
end = tot;
}
if (tot != kb->totelem) {
ktot = 0.0;
flagflo = 1;
if (kb->totelem) {
kd = kb->totelem / (float)tot;
}
else {
return;
}
}
k1 = key_block_get_data(key, actkb, kb, &freek1);
kref = key_block_get_data(key, actkb, key->refkey, &freekref);
/* this exception is needed curves with multiple splines */
if (start != 0) {
poin += poinsize * start;
if (flagflo) {
ktot += start * kd;
a = (int)floor(ktot);
if (a) {
ktot -= a;
k1 += a * key->elemsize;
}
}
else {
k1 += start * key->elemsize;
}
}
if (mode == KEY_MODE_BEZTRIPLE) {
elemstr[0] = 1;
elemstr[1] = IPO_BEZTRIPLE;
elemstr[2] = 0;
}
/* just do it here, not above! */
elemsize = key->elemsize * step;
for (a = start; a < end; a += step) {
cp = key->elemstr;
if (mode == KEY_MODE_BEZTRIPLE) {
cp = elemstr;
}
ofsp = ofs;
while (cp[0]) {
switch (cp[1]) {
case IPO_FLOAT:
if (weights) {
memcpy(poin, kref, sizeof(float[KEYELEM_FLOAT_LEN_COORD]));
if (*weights != 0.0f) {
rel_flerp(
KEYELEM_FLOAT_LEN_COORD, (float *)poin, (float *)kref, (float *)k1, *weights);
}
weights++;
}
else {
memcpy(poin, k1, sizeof(float[KEYELEM_FLOAT_LEN_COORD]));
}
break;
case IPO_BPOINT:
memcpy(poin, k1, sizeof(float[KEYELEM_FLOAT_LEN_BPOINT]));
break;
case IPO_BEZTRIPLE:
memcpy(poin, k1, sizeof(float[KEYELEM_FLOAT_LEN_BEZTRIPLE]));
break;
default:
/* should never happen */
if (freek1) {
MEM_freeN(freek1);
}
if (freekref) {
MEM_freeN(freekref);
}
BLI_assert_msg(0, "invalid 'cp[1]'");
return;
}
poin += *ofsp;
cp += 2;
ofsp++;
}
/* are we going to be nasty? */
if (flagflo) {
ktot += kd;
while (ktot >= 1.0f) {
ktot -= 1.0f;
k1 += elemsize;
kref += elemsize;
}
}
else {
k1 += elemsize;
kref += elemsize;
}
}
if (freek1) {
MEM_freeN(freek1);
}
if (freekref) {
MEM_freeN(freekref);
}
}
static void cp_cu_key(Curve *cu,
Key *key,
KeyBlock *actkb,
KeyBlock *kb,
const int start,
int end,
char *out,
const int tot)
{
Nurb *nu;
int a, step, a1, a2;
for (a = 0, nu = cu->nurb.first; nu; nu = nu->next, a += step) {
if (nu->bp) {
step = KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
a1 = max_ii(a, start);
a2 = min_ii(a + step, end);
if (a1 < a2) {
cp_key(a1, a2, tot, out, key, actkb, kb, NULL, KEY_MODE_BPOINT);
}
}
else if (nu->bezt) {
step = KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
/* exception because keys prefer to work with complete blocks */
a1 = max_ii(a, start);
a2 = min_ii(a + step, end);
if (a1 < a2) {
cp_key(a1, a2, tot, out, key, actkb, kb, NULL, KEY_MODE_BEZTRIPLE);
}
}
else {
step = 0;
}
}
}
static void key_evaluate_relative(const int start,
int end,
const int tot,
char *basispoin,
Key *key,
KeyBlock *actkb,
float **per_keyblock_weights,
const int mode)
{
KeyBlock *kb;
int *ofsp, ofs[3], elemsize, b, step;
char *cp, *poin, *reffrom, *from, elemstr[8];
int poinsize, keyblock_index;
/* currently always 0, in future key_pointer_size may assign */
ofs[1] = 0;
if (!key_pointer_size(key, mode, &poinsize, &ofs[0], &step)) {
return;
}
if (end > tot) {
end = tot;
}
/* in case of beztriple */
elemstr[0] = 1; /* nr of ipofloats */
elemstr[1] = IPO_BEZTRIPLE;
elemstr[2] = 0;
/* just here, not above! */
elemsize = key->elemsize * step;
/* step 1 init */
cp_key(start, end, tot, basispoin, key, actkb, key->refkey, NULL, mode);
/* step 2: do it */
for (kb = key->block.first, keyblock_index = 0; kb; kb = kb->next, keyblock_index++) {
if (kb != key->refkey) {
float icuval = kb->curval;
/* only with value, and no difference allowed */
if (!(kb->flag & KEYBLOCK_MUTE) && icuval != 0.0f && kb->totelem == tot) {
KeyBlock *refb;
float weight,
*weights = per_keyblock_weights ? per_keyblock_weights[keyblock_index] : NULL;
char *freefrom = NULL;
/* reference now can be any block */
refb = BLI_findlink(&key->block, kb->relative);
if (refb == NULL) {
continue;
}
poin = basispoin;
from = key_block_get_data(key, actkb, kb, &freefrom);
/* For meshes, use the original values instead of the bmesh values to
* maintain a constant offset. */
reffrom = refb->data;
poin += start * poinsize;
reffrom += key->elemsize * start; /* key elemsize yes! */
from += key->elemsize * start;
for (b = start; b < end; b += step) {
weight = weights ? (*weights * icuval) : icuval;
cp = key->elemstr;
if (mode == KEY_MODE_BEZTRIPLE) {
cp = elemstr;
}
ofsp = ofs;
while (cp[0]) { /* (cp[0] == amount) */
switch (cp[1]) {
case IPO_FLOAT:
rel_flerp(KEYELEM_FLOAT_LEN_COORD,
(float *)poin,
(float *)reffrom,
(float *)from,
weight);
break;
case IPO_BPOINT:
rel_flerp(KEYELEM_FLOAT_LEN_BPOINT,
(float *)poin,
(float *)reffrom,
(float *)from,
weight);
break;
case IPO_BEZTRIPLE:
rel_flerp(KEYELEM_FLOAT_LEN_BEZTRIPLE,
(float *)poin,
(float *)reffrom,
(float *)from,
weight);
break;
default:
/* should never happen */
if (freefrom) {
MEM_freeN(freefrom);
}
BLI_assert_msg(0, "invalid 'cp[1]'");
return;
}
poin += *ofsp;
cp += 2;
ofsp++;
}
reffrom += elemsize;
from += elemsize;
if (weights) {
weights++;
}
}
if (freefrom) {
MEM_freeN(freefrom);
}
}
}
}
}
static void do_key(const int start,
int end,
const int tot,
char *poin,
Key *key,
KeyBlock *actkb,
KeyBlock **k,
float *t,
const int mode)
{
float k1tot = 0.0, k2tot = 0.0, k3tot = 0.0, k4tot = 0.0;
float k1d = 0.0, k2d = 0.0, k3d = 0.0, k4d = 0.0;
int a, step, ofs[32], *ofsp;
int flagdo = 15, flagflo = 0, elemsize, poinsize = 0;
char *k1, *k2, *k3, *k4, *freek1, *freek2, *freek3, *freek4;
char *cp, elemstr[8];
/* currently always 0, in future key_pointer_size may assign */
ofs[1] = 0;
if (!key_pointer_size(key, mode, &poinsize, &ofs[0], &step)) {
return;
}
if (end > tot) {
end = tot;
}
k1 = key_block_get_data(key, actkb, k[0], &freek1);
k2 = key_block_get_data(key, actkb, k[1], &freek2);
k3 = key_block_get_data(key, actkb, k[2], &freek3);
k4 = key_block_get_data(key, actkb, k[3], &freek4);
/* Test for more or less points (per key!) */
if (tot != k[0]->totelem) {
k1tot = 0.0;
flagflo |= 1;
if (k[0]->totelem) {
k1d = k[0]->totelem / (float)tot;
}
else {
flagdo -= 1;
}
}
if (tot != k[1]->totelem) {
k2tot = 0.0;
flagflo |= 2;
if (k[0]->totelem) {
k2d = k[1]->totelem / (float)tot;
}
else {
flagdo -= 2;
}
}
if (tot != k[2]->totelem) {
k3tot = 0.0;
flagflo |= 4;
if (k[0]->totelem) {
k3d = k[2]->totelem / (float)tot;
}
else {
flagdo -= 4;
}
}
if (tot != k[3]->totelem) {
k4tot = 0.0;
flagflo |= 8;
if (k[0]->totelem) {
k4d = k[3]->totelem / (float)tot;
}
else {
flagdo -= 8;
}
}
/* this exception is needed for curves with multiple splines */
if (start != 0) {
poin += poinsize * start;
if (flagdo & 1) {
if (flagflo & 1) {
k1tot += start * k1d;
a = (int)floor(k1tot);
if (a) {
k1tot -= a;
k1 += a * key->elemsize;
}
}
else {
k1 += start * key->elemsize;
}
}
if (flagdo & 2) {
if (flagflo & 2) {
k2tot += start * k2d;
a = (int)floor(k2tot);
if (a) {
k2tot -= a;
k2 += a * key->elemsize;
}
}
else {
k2 += start * key->elemsize;
}
}
if (flagdo & 4) {
if (flagflo & 4) {
k3tot += start * k3d;
a = (int)floor(k3tot);
if (a) {
k3tot -= a;
k3 += a * key->elemsize;
}
}
else {
k3 += start * key->elemsize;
}
}
if (flagdo & 8) {
if (flagflo & 8) {
k4tot += start * k4d;
a = (int)floor(k4tot);
if (a) {
k4tot -= a;
k4 += a * key->elemsize;
}
}
else {
k4 += start * key->elemsize;
}
}
}
/* in case of beztriple */
elemstr[0] = 1; /* nr of ipofloats */
elemstr[1] = IPO_BEZTRIPLE;
elemstr[2] = 0;
/* only here, not above! */
elemsize = key->elemsize * step;
for (a = start; a < end; a += step) {
cp = key->elemstr;
if (mode == KEY_MODE_BEZTRIPLE) {
cp = elemstr;
}
ofsp = ofs;
while (cp[0]) { /* (cp[0] == amount) */
switch (cp[1]) {
case IPO_FLOAT:
flerp(KEYELEM_FLOAT_LEN_COORD,
(float *)poin,
(float *)k1,
(float *)k2,
(float *)k3,
(float *)k4,
t);
break;
case IPO_BPOINT:
flerp(KEYELEM_FLOAT_LEN_BPOINT,
(float *)poin,
(float *)k1,
(float *)k2,
(float *)k3,
(float *)k4,
t);
break;
case IPO_BEZTRIPLE:
flerp(KEYELEM_FLOAT_LEN_BEZTRIPLE,
(void *)poin,
(void *)k1,
(void *)k2,
(void *)k3,
(void *)k4,
t);
break;
default:
/* should never happen */
if (freek1) {
MEM_freeN(freek1);
}
if (freek2) {
MEM_freeN(freek2);
}
if (freek3) {
MEM_freeN(freek3);
}
if (freek4) {
MEM_freeN(freek4);
}
BLI_assert_msg(0, "invalid 'cp[1]'");
return;
}
poin += *ofsp;
cp += 2;
ofsp++;
}
/* lets do it the difficult way: when keys have a different size */
if (flagdo & 1) {
if (flagflo & 1) {
k1tot += k1d;
while (k1tot >= 1.0f) {
k1tot -= 1.0f;
k1 += elemsize;
}
}
else {
k1 += elemsize;
}
}
if (flagdo & 2) {
if (flagflo & 2) {
k2tot += k2d;
while (k2tot >= 1.0f) {
k2tot -= 1.0f;
k2 += elemsize;
}
}
else {
k2 += elemsize;
}
}
if (flagdo & 4) {
if (flagflo & 4) {
k3tot += k3d;
while (k3tot >= 1.0f) {
k3tot -= 1.0f;
k3 += elemsize;
}
}
else {
k3 += elemsize;
}
}
if (flagdo & 8) {
if (flagflo & 8) {
k4tot += k4d;
while (k4tot >= 1.0f) {
k4tot -= 1.0f;
k4 += elemsize;
}
}
else {
k4 += elemsize;
}
}
}
if (freek1) {
MEM_freeN(freek1);
}
if (freek2) {
MEM_freeN(freek2);
}
if (freek3) {
MEM_freeN(freek3);
}
if (freek4) {
MEM_freeN(freek4);
}
}
static float *get_weights_array(Object *ob, char *vgroup, WeightsArrayCache *cache)
{
MDeformVert *dvert = NULL;
BMEditMesh *em = NULL;
BMIter iter;
BMVert *eve;
int totvert = 0, defgrp_index = 0;
/* no vgroup string set? */
if (vgroup[0] == 0) {
return NULL;
}
/* gather dvert and totvert */
if (ob->type == OB_MESH) {
Mesh *me = ob->data;
dvert = me->dvert;
totvert = me->totvert;
if (me->edit_mesh && me->edit_mesh->bm->totvert == totvert) {
em = me->edit_mesh;
}
}
else if (ob->type == OB_LATTICE) {
Lattice *lt = ob->data;
dvert = lt->dvert;
totvert = lt->pntsu * lt->pntsv * lt->pntsw;
}
if (dvert == NULL) {
return NULL;
}
/* find the group (weak loop-in-loop) */
defgrp_index = BKE_object_defgroup_name_index(ob, vgroup);
if (defgrp_index != -1) {
float *weights;
if (cache) {
if (cache->defgroup_weights == NULL) {
int num_defgroup = BKE_object_defgroup_count(ob);
cache->defgroup_weights = MEM_callocN(sizeof(*cache->defgroup_weights) * num_defgroup,
"cached defgroup weights");
cache->num_defgroup_weights = num_defgroup;
}
if (cache->defgroup_weights[defgrp_index]) {
return cache->defgroup_weights[defgrp_index];
}
}
weights = MEM_mallocN(totvert * sizeof(float), "weights");
if (em) {
int i;
const int cd_dvert_offset = CustomData_get_offset(&em->bm->vdata, CD_MDEFORMVERT);
BM_ITER_MESH_INDEX (eve, &iter, em->bm, BM_VERTS_OF_MESH, i) {
dvert = BM_ELEM_CD_GET_VOID_P(eve, cd_dvert_offset);
weights[i] = BKE_defvert_find_weight(dvert, defgrp_index);
}
}
else {
for (int i = 0; i < totvert; i++, dvert++) {
weights[i] = BKE_defvert_find_weight(dvert, defgrp_index);
}
}
if (cache) {
cache->defgroup_weights[defgrp_index] = weights;
}
return weights;
}
return NULL;
}
static float **keyblock_get_per_block_weights(Object *ob, Key *key, WeightsArrayCache *cache)
{
KeyBlock *keyblock;
float **per_keyblock_weights;
int keyblock_index;
per_keyblock_weights = MEM_mallocN(sizeof(*per_keyblock_weights) * key->totkey,
"per keyblock weights");
for (keyblock = key->block.first, keyblock_index = 0; keyblock;
keyblock = keyblock->next, keyblock_index++) {
per_keyblock_weights[keyblock_index] = get_weights_array(ob, keyblock->vgroup, cache);
}
return per_keyblock_weights;
}
static void keyblock_free_per_block_weights(Key *key,
float **per_keyblock_weights,
WeightsArrayCache *cache)
{
int a;
if (cache) {
if (cache->num_defgroup_weights) {
for (a = 0; a < cache->num_defgroup_weights; a++) {
if (cache->defgroup_weights[a]) {
MEM_freeN(cache->defgroup_weights[a]);
}
}
MEM_freeN(cache->defgroup_weights);
}
cache->defgroup_weights = NULL;
}
else {
for (a = 0; a < key->totkey; a++) {
if (per_keyblock_weights[a]) {
MEM_freeN(per_keyblock_weights[a]);
}
}
}
MEM_freeN(per_keyblock_weights);
}
static void do_mesh_key(Object *ob, Key *key, char *out, const int tot)
{
KeyBlock *k[4], *actkb = BKE_keyblock_from_object(ob);
float t[4];
int flag = 0;
if (key->type == KEY_RELATIVE) {
WeightsArrayCache cache = {0, NULL};
float **per_keyblock_weights;
per_keyblock_weights = keyblock_get_per_block_weights(ob, key, &cache);
key_evaluate_relative(
0, tot, tot, (char *)out, key, actkb, per_keyblock_weights, KEY_MODE_DUMMY);
keyblock_free_per_block_weights(key, per_keyblock_weights, &cache);
}
else {
const float ctime_scaled = key->ctime / 100.0f;
flag = setkeys(ctime_scaled, &key->block, k, t, 0);
if (flag == 0) {
do_key(0, tot, tot, (char *)out, key, actkb, k, t, KEY_MODE_DUMMY);
}
else {
cp_key(0, tot, tot, (char *)out, key, actkb, k[2], NULL, KEY_MODE_DUMMY);
}
}
}
static void do_cu_key(
Curve *cu, Key *key, KeyBlock *actkb, KeyBlock **k, float *t, char *out, const int tot)
{
Nurb *nu;
int a, step;
for (a = 0, nu = cu->nurb.first; nu; nu = nu->next, a += step) {
if (nu->bp) {
step = KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
do_key(a, a + step, tot, out, key, actkb, k, t, KEY_MODE_BPOINT);
}
else if (nu->bezt) {
step = KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
do_key(a, a + step, tot, out, key, actkb, k, t, KEY_MODE_BEZTRIPLE);
}
else {
step = 0;
}
}
}
static void do_rel_cu_key(Curve *cu, Key *key, KeyBlock *actkb, char *out, const int tot)
{
Nurb *nu;
int a, step;
for (a = 0, nu = cu->nurb.first; nu; nu = nu->next, a += step) {
if (nu->bp) {
step = KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
key_evaluate_relative(a, a + step, tot, out, key, actkb, NULL, KEY_MODE_BPOINT);
}
else if (nu->bezt) {
step = KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
key_evaluate_relative(a, a + step, tot, out, key, actkb, NULL, KEY_MODE_BEZTRIPLE);
}
else {
step = 0;
}
}
}
static void do_curve_key(Object *ob, Key *key, char *out, const int tot)
{
Curve *cu = ob->data;
KeyBlock *k[4], *actkb = BKE_keyblock_from_object(ob);
float t[4];
int flag = 0;
if (key->type == KEY_RELATIVE) {
do_rel_cu_key(cu, cu->key, actkb, out, tot);
}
else {
const float ctime_scaled = key->ctime / 100.0f;
flag = setkeys(ctime_scaled, &key->block, k, t, 0);
if (flag == 0) {
do_cu_key(cu, key, actkb, k, t, out, tot);
}
else {
cp_cu_key(cu, key, actkb, k[2], 0, tot, out, tot);
}
}
}
static void do_latt_key(Object *ob, Key *key, char *out, const int tot)
{
Lattice *lt = ob->data;
KeyBlock *k[4], *actkb = BKE_keyblock_from_object(ob);
float t[4];
int flag;
if (key->type == KEY_RELATIVE) {
float **per_keyblock_weights;
per_keyblock_weights = keyblock_get_per_block_weights(ob, key, NULL);
key_evaluate_relative(
0, tot, tot, (char *)out, key, actkb, per_keyblock_weights, KEY_MODE_DUMMY);
keyblock_free_per_block_weights(key, per_keyblock_weights, NULL);
}
else {
const float ctime_scaled = key->ctime / 100.0f;
flag = setkeys(ctime_scaled, &key->block, k, t, 0);
if (flag == 0) {
do_key(0, tot, tot, (char *)out, key, actkb, k, t, KEY_MODE_DUMMY);
}
else {
cp_key(0, tot, tot, (char *)out, key, actkb, k[2], NULL, KEY_MODE_DUMMY);
}
}
if (lt->flag & LT_OUTSIDE) {
outside_lattice(lt);
}
}
/* returns key coordinates (+ tilt) when key applied, NULL otherwise */
float *BKE_key_evaluate_object_ex(Object *ob, int *r_totelem, float *arr, size_t arr_size)
{
Key *key = BKE_key_from_object(ob);
KeyBlock *actkb = BKE_keyblock_from_object(ob);
char *out;
int tot = 0, size = 0;
if (key == NULL || BLI_listbase_is_empty(&key->block)) {
return NULL;
}
/* compute size of output array */
if (ob->type == OB_MESH) {
Mesh *me = ob->data;
tot = me->totvert;
size = tot * sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
}
else if (ob->type == OB_LATTICE) {
Lattice *lt = ob->data;
tot = lt->pntsu * lt->pntsv * lt->pntsw;
size = tot * sizeof(float[KEYELEM_FLOAT_LEN_COORD]);
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = ob->data;
tot = BKE_keyblock_curve_element_count(&cu->nurb);
size = tot * sizeof(float[KEYELEM_ELEM_SIZE_CURVE]);
}
/* if nothing to interpolate, cancel */
if (tot == 0 || size == 0) {
return NULL;
}
/* allocate array */
if (arr == NULL) {
out = MEM_callocN(size, "BKE_key_evaluate_object out");
}
else {
if (arr_size != size) {
return NULL;
}
out = (char *)arr;
}
if (ob->shapeflag & OB_SHAPE_LOCK) {
/* shape locked, copy the locked shape instead of blending */
KeyBlock *kb = BLI_findlink(&key->block, ob->shapenr - 1);
if (kb && (kb->flag & KEYBLOCK_MUTE)) {
kb = key->refkey;
}
if (kb == NULL) {
kb = key->block.first;
ob->shapenr = 1;
}
if (OB_TYPE_SUPPORT_VGROUP(ob->type)) {
float *weights = get_weights_array(ob, kb->vgroup, NULL);
cp_key(0, tot, tot, out, key, actkb, kb, weights, 0);
if (weights) {
MEM_freeN(weights);
}
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
cp_cu_key(ob->data, key, actkb, kb, 0, tot, out, tot);
}
}
else {
if (ob->type == OB_MESH) {
do_mesh_key(ob, key, out, tot);
}
else if (ob->type == OB_LATTICE) {
do_latt_key(ob, key, out, tot);
}
else if (ob->type == OB_CURVE) {
do_curve_key(ob, key, out, tot);
}
else if (ob->type == OB_SURF) {
do_curve_key(ob, key, out, tot);
}
}
if (r_totelem) {
*r_totelem = tot;
}
return (float *)out;
}
float *BKE_key_evaluate_object(Object *ob, int *r_totelem)
{
return BKE_key_evaluate_object_ex(ob, r_totelem, NULL, 0);
}
/**
* \param shape_index: The index to use or all (when -1).
*/
int BKE_keyblock_element_count_from_shape(const Key *key, const int shape_index)
{
int result = 0;
int index = 0;
for (const KeyBlock *kb = key->block.first; kb; kb = kb->next, index++) {
if (ELEM(shape_index, -1, index)) {
result += kb->totelem;
}
}
return result;
}
int BKE_keyblock_element_count(const Key *key)
{
return BKE_keyblock_element_count_from_shape(key, -1);
}
/**
* \param shape_index: The index to use or all (when -1).
*/
size_t BKE_keyblock_element_calc_size_from_shape(const Key *key, const int shape_index)
{
return (size_t)BKE_keyblock_element_count_from_shape(key, shape_index) * key->elemsize;
}
size_t BKE_keyblock_element_calc_size(const Key *key)
{
return BKE_keyblock_element_calc_size_from_shape(key, -1);
}
/* -------------------------------------------------------------------- */
/** \name Key-Block Data Access
*
* Utilities for getting/setting key data as a single array,
* use #BKE_keyblock_element_calc_size to allocate the size of the data needed.
* \{ */
/**
* \param shape_index: The index to use or all (when -1).
*/
void BKE_keyblock_data_get_from_shape(const Key *key, float (*arr)[3], const int shape_index)
{
uint8_t *elements = (uint8_t *)arr;
int index = 0;
for (const KeyBlock *kb = key->block.first; kb; kb = kb->next, index++) {
if (ELEM(shape_index, -1, index)) {
const int block_elem_len = kb->totelem * key->elemsize;
memcpy(elements, kb->data, block_elem_len);
elements += block_elem_len;
}
}
}
void BKE_keyblock_data_get(const Key *key, float (*arr)[3])
{
BKE_keyblock_data_get_from_shape(key, arr, -1);
}
/**
* Set the data to all key-blocks (or shape_index if != -1).
*/
void BKE_keyblock_data_set_with_mat4(Key *key,
const int shape_index,
const float (*coords)[3],
const float mat[4][4])
{
if (key->elemsize != sizeof(float[3])) {
BLI_assert_msg(0, "Invalid elemsize");
return;
}
const float(*elements)[3] = coords;
int index = 0;
for (KeyBlock *kb = key->block.first; kb; kb = kb->next, index++) {
if (ELEM(shape_index, -1, index)) {
const int block_elem_len = kb->totelem;
float(*block_data)[3] = (float(*)[3])kb->data;
for (int data_offset = 0; data_offset < block_elem_len; ++data_offset) {
const float *src_data = (const float *)(elements + data_offset);
float *dst_data = (float *)(block_data + data_offset);
mul_v3_m4v3(dst_data, mat, src_data);
}
elements += block_elem_len;
}
}
}
/**
* Set the data for all key-blocks (or shape_index if != -1),
* transforming by \a mat.
*/
void BKE_keyblock_curve_data_set_with_mat4(
Key *key, const ListBase *nurb, const int shape_index, const void *data, const float mat[4][4])
{
const uint8_t *elements = data;
int index = 0;
for (KeyBlock *kb = key->block.first; kb; kb = kb->next, index++) {
if (ELEM(shape_index, -1, index)) {
const int block_elem_size = kb->totelem * key->elemsize;
BKE_keyblock_curve_data_transform(nurb, mat, elements, kb->data);
elements += block_elem_size;
}
}
}
/**
* Set the data for all key-blocks (or shape_index if != -1).
*/
void BKE_keyblock_data_set(Key *key, const int shape_index, const void *data)
{
const uint8_t *elements = data;
int index = 0;
for (KeyBlock *kb = key->block.first; kb; kb = kb->next, index++) {
if (ELEM(shape_index, -1, index)) {
const int block_elem_size = kb->totelem * key->elemsize;
memcpy(kb->data, elements, block_elem_size);
elements += block_elem_size;
}
}
}
/** \} */
bool BKE_key_idtype_support(const short id_type)
{
switch (id_type) {
case ID_ME:
case ID_CU:
case ID_LT:
return true;
default:
return false;
}
}
Key **BKE_key_from_id_p(ID *id)
{
switch (GS(id->name)) {
case ID_ME: {
Mesh *me = (Mesh *)id;
return &me->key;
}
case ID_CU: {
Curve *cu = (Curve *)id;
if (cu->vfont == NULL) {
return &cu->key;
}
break;
}
case ID_LT: {
Lattice *lt = (Lattice *)id;
return &lt->key;
}
default:
break;
}
return NULL;
}
Key *BKE_key_from_id(ID *id)
{
Key **key_p;
key_p = BKE_key_from_id_p(id);
if (key_p) {
return *key_p;
}
return NULL;
}
Key **BKE_key_from_object_p(const Object *ob)
{
if (ob == NULL || ob->data == NULL) {
return NULL;
}
return BKE_key_from_id_p(ob->data);
}
Key *BKE_key_from_object(const Object *ob)
{
Key **key_p;
key_p = BKE_key_from_object_p(ob);
if (key_p) {
return *key_p;
}
return NULL;
}
KeyBlock *BKE_keyblock_add(Key *key, const char *name)
{
KeyBlock *kb;
float curpos = -0.1;
int tot;
kb = key->block.last;
if (kb) {
curpos = kb->pos;
}
kb = MEM_callocN(sizeof(KeyBlock), "Keyblock");
BLI_addtail(&key->block, kb);
kb->type = KEY_LINEAR;
tot = BLI_listbase_count(&key->block);
if (name) {
BLI_strncpy(kb->name, name, sizeof(kb->name));
}
else {
if (tot == 1) {
BLI_strncpy(kb->name, DATA_("Basis"), sizeof(kb->name));
}
else {
BLI_snprintf(kb->name, sizeof(kb->name), DATA_("Key %d"), tot - 1);
}
}
BLI_uniquename(&key->block, kb, DATA_("Key"), '.', offsetof(KeyBlock, name), sizeof(kb->name));
kb->uid = key->uidgen++;
key->totkey++;
if (key->totkey == 1) {
key->refkey = kb;
}
kb->slidermin = 0.0f;
kb->slidermax = 1.0f;
/**
* \note caller may want to set this to current time, but don't do it here since we need to sort
* which could cause problems in some cases, see #BKE_keyblock_add_ctime */
kb->pos = curpos + 0.1f; /* only used for absolute shape keys */
return kb;
}
/**
* \note sorting is a problematic side effect in some cases,
* better only do this explicitly by having its own function,
*
* \param key: The key datablock to add to.
* \param name: Optional name for the new keyblock.
* \param do_force: always use ctime even for relative keys.
*/
KeyBlock *BKE_keyblock_add_ctime(Key *key, const char *name, const bool do_force)
{
KeyBlock *kb = BKE_keyblock_add(key, name);
const float cpos = key->ctime / 100.0f;
/* In case of absolute keys, there is no point in adding more than one key with the same pos.
* Hence only set new keybloc pos to current time if none previous one already use it.
* Now at least people just adding absolute keys without touching to ctime
* won't have to systematically use retiming func (and have ordering issues, too). See T39897.
*/
if (!do_force && (key->type != KEY_RELATIVE)) {
KeyBlock *it_kb;
for (it_kb = key->block.first; it_kb; it_kb = it_kb->next) {
/* Use epsilon to avoid floating point precision issues.
* 1e-3 because the position is stored as frame * 1e-2. */
if (compare_ff(it_kb->pos, cpos, 1e-3f)) {
return kb;
}
}
}
if (do_force || (key->type != KEY_RELATIVE)) {
kb->pos = cpos;
BKE_key_sort(key);
}
return kb;
}
/* Only the active key-block. */
KeyBlock *BKE_keyblock_from_object(Object *ob)
{
Key *key = BKE_key_from_object(ob);
if (key) {
KeyBlock *kb = BLI_findlink(&key->block, ob->shapenr - 1);
return kb;
}
return NULL;
}
KeyBlock *BKE_keyblock_from_object_reference(Object *ob)
{
Key *key = BKE_key_from_object(ob);
if (key) {
return key->refkey;
}
return NULL;
}
/* get the appropriate KeyBlock given an index */
KeyBlock *BKE_keyblock_from_key(Key *key, int index)
{
if (key) {
KeyBlock *kb = key->block.first;
for (int i = 1; i < key->totkey; i++) {
kb = kb->next;
if (index == i) {
return kb;
}
}
}
return NULL;
}
/* get the appropriate KeyBlock given a name to search for */
KeyBlock *BKE_keyblock_find_name(Key *key, const char name[])
{
return BLI_findstring(&key->block, name, offsetof(KeyBlock, name));
}
/**
* \brief copy shape-key attributes, but not key data.or name/uid
*/
void BKE_keyblock_copy_settings(KeyBlock *kb_dst, const KeyBlock *kb_src)
{
kb_dst->pos = kb_src->pos;
kb_dst->curval = kb_src->curval;
kb_dst->type = kb_src->type;
kb_dst->relative = kb_src->relative;
BLI_strncpy(kb_dst->vgroup, kb_src->vgroup, sizeof(kb_dst->vgroup));
kb_dst->slidermin = kb_src->slidermin;
kb_dst->slidermax = kb_src->slidermax;
}
/* Get RNA-Path for 'value' setting of the given ShapeKey
* NOTE: the user needs to free the returned string once they're finish with it
*/
char *BKE_keyblock_curval_rnapath_get(Key *key, KeyBlock *kb)
{
PointerRNA ptr;
PropertyRNA *prop;
/* sanity checks */
if (ELEM(NULL, key, kb)) {
return NULL;
}
/* create the RNA pointer */
RNA_pointer_create(&key->id, &RNA_ShapeKey, kb, &ptr);
/* get pointer to the property too */
prop = RNA_struct_find_property(&ptr, "value");
/* return the path */
return RNA_path_from_ID_to_property(&ptr, prop);
}
/* conversion functions */
/************************* Lattice ************************/
void BKE_keyblock_update_from_lattice(Lattice *lt, KeyBlock *kb)
{
BPoint *bp;
float(*fp)[3];
int a, tot;
BLI_assert(kb->totelem == lt->pntsu * lt->pntsv * lt->pntsw);
tot = kb->totelem;
if (tot == 0) {
return;
}
bp = lt->def;
fp = kb->data;
for (a = 0; a < kb->totelem; a++, fp++, bp++) {
copy_v3_v3(*fp, bp->vec);
}
}
void BKE_keyblock_convert_from_lattice(Lattice *lt, KeyBlock *kb)
{
int tot;
tot = lt->pntsu * lt->pntsv * lt->pntsw;
if (tot == 0) {
return;
}
MEM_SAFE_FREE(kb->data);
kb->data = MEM_mallocN(lt->key->elemsize * tot, __func__);
kb->totelem = tot;
BKE_keyblock_update_from_lattice(lt, kb);
}
void BKE_keyblock_convert_to_lattice(KeyBlock *kb, Lattice *lt)
{
BPoint *bp;
const float(*fp)[3];
int a, tot;
bp = lt->def;
fp = kb->data;
tot = lt->pntsu * lt->pntsv * lt->pntsw;
tot = min_ii(kb->totelem, tot);
for (a = 0; a < tot; a++, fp++, bp++) {
copy_v3_v3(bp->vec, *fp);
}
}
/************************* Curve ************************/
int BKE_keyblock_curve_element_count(const ListBase *nurb)
{
const Nurb *nu;
int tot = 0;
nu = nurb->first;
while (nu) {
if (nu->bezt) {
tot += KEYELEM_ELEM_LEN_BEZTRIPLE * nu->pntsu;
}
else if (nu->bp) {
tot += KEYELEM_ELEM_LEN_BPOINT * nu->pntsu * nu->pntsv;
}
nu = nu->next;
}
return tot;
}
void BKE_keyblock_update_from_curve(Curve *UNUSED(cu), KeyBlock *kb, ListBase *nurb)
{
Nurb *nu;
BezTriple *bezt;
BPoint *bp;
float *fp;
int a, tot;
/* count */
BLI_assert(BKE_keyblock_curve_element_count(nurb) == kb->totelem);
tot = kb->totelem;
if (tot == 0) {
return;
}
fp = kb->data;
for (nu = nurb->first; nu; nu = nu->next) {
if (nu->bezt) {
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
for (int i = 0; i < 3; i++) {
copy_v3_v3(&fp[i * 3], bezt->vec[i]);
}
fp[9] = bezt->tilt;
fp[10] = bezt->radius;
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++) {
copy_v3_v3(fp, bp->vec);
fp[3] = bp->tilt;
fp[4] = bp->radius;
fp += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
void BKE_keyblock_curve_data_transform(const ListBase *nurb,
const float mat[4][4],
const void *src_data,
void *dst_data)
{
const float *src = src_data;
float *dst = dst_data;
for (Nurb *nu = nurb->first; nu; nu = nu->next) {
if (nu->bezt) {
for (int a = nu->pntsu; a; a--) {
for (int i = 0; i < 3; i++) {
mul_v3_m4v3(&dst[i * 3], mat, &src[i * 3]);
}
dst[9] = src[9];
dst[10] = src[10];
src += KEYELEM_FLOAT_LEN_BEZTRIPLE;
dst += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (int a = nu->pntsu * nu->pntsv; a; a--) {
mul_v3_m4v3(dst, mat, src);
dst[3] = src[3];
dst[4] = src[4];
src += KEYELEM_FLOAT_LEN_BPOINT;
dst += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
void BKE_keyblock_convert_from_curve(Curve *cu, KeyBlock *kb, ListBase *nurb)
{
int tot;
/* count */
tot = BKE_keyblock_curve_element_count(nurb);
if (tot == 0) {
return;
}
MEM_SAFE_FREE(kb->data);
kb->data = MEM_mallocN(cu->key->elemsize * tot, __func__);
kb->totelem = tot;
BKE_keyblock_update_from_curve(cu, kb, nurb);
}
void BKE_keyblock_convert_to_curve(KeyBlock *kb, Curve *UNUSED(cu), ListBase *nurb)
{
Nurb *nu;
BezTriple *bezt;
BPoint *bp;
const float *fp;
int a, tot;
tot = BKE_keyblock_curve_element_count(nurb);
tot = min_ii(kb->totelem, tot);
fp = kb->data;
for (nu = nurb->first; nu && tot > 0; nu = nu->next) {
if (nu->bezt) {
for (a = nu->pntsu, bezt = nu->bezt; a && (tot -= KEYELEM_ELEM_LEN_BEZTRIPLE) >= 0;
a--, bezt++) {
for (int i = 0; i < 3; i++) {
copy_v3_v3(bezt->vec[i], &fp[i * 3]);
}
bezt->tilt = fp[9];
bezt->radius = fp[10];
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a && (tot -= KEYELEM_ELEM_LEN_BPOINT) >= 0;
a--, bp++) {
copy_v3_v3(bp->vec, fp);
bp->tilt = fp[3];
bp->radius = fp[4];
fp += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
/************************* Mesh ************************/
void BKE_keyblock_update_from_mesh(Mesh *me, KeyBlock *kb)
{
MVert *mvert;
float(*fp)[3];
int a, tot;
BLI_assert(me->totvert == kb->totelem);
tot = me->totvert;
if (tot == 0) {
return;
}
mvert = me->mvert;
fp = kb->data;
for (a = 0; a < tot; a++, fp++, mvert++) {
copy_v3_v3(*fp, mvert->co);
}
}
void BKE_keyblock_convert_from_mesh(Mesh *me, Key *key, KeyBlock *kb)
{
const int len = me->totvert;
if (me->totvert == 0) {
return;
}
MEM_SAFE_FREE(kb->data);
kb->data = MEM_malloc_arrayN((size_t)len, (size_t)key->elemsize, __func__);
kb->totelem = len;
BKE_keyblock_update_from_mesh(me, kb);
}
void BKE_keyblock_convert_to_mesh(KeyBlock *kb, Mesh *me)
{
MVert *mvert;
const float(*fp)[3];
int a, tot;
mvert = me->mvert;
fp = kb->data;
tot = min_ii(kb->totelem, me->totvert);
for (a = 0; a < tot; a++, fp++, mvert++) {
copy_v3_v3(mvert->co, *fp);
}
}
/**
* Computes normals (vertices, polygons and/or loops ones) of given mesh for given shape key.
*
* \param kb: the KeyBlock to use to compute normals.
* \param mesh: the Mesh to apply key-block to.
* \param r_vertnors: if non-NULL, an array of vectors, same length as number of vertices.
* \param r_polynors: if non-NULL, an array of vectors, same length as number of polygons.
* \param r_loopnors: if non-NULL, an array of vectors, same length as number of loops.
*/
void BKE_keyblock_mesh_calc_normals(struct KeyBlock *kb,
struct Mesh *mesh,
float (*r_vertnors)[3],
float (*r_polynors)[3],
float (*r_loopnors)[3])
{
/* We use a temp, shallow copy of mesh to work. */
Mesh me;
bool free_polynors = false;
if (r_vertnors == NULL && r_polynors == NULL && r_loopnors == NULL) {
return;
}
me = *mesh;
me.mvert = MEM_dupallocN(mesh->mvert);
CustomData_reset(&me.vdata);
CustomData_reset(&me.edata);
CustomData_reset(&me.pdata);
CustomData_reset(&me.ldata);
CustomData_reset(&me.fdata);
BKE_keyblock_convert_to_mesh(kb, &me);
if (r_polynors == NULL && r_loopnors != NULL) {
r_polynors = MEM_mallocN(sizeof(float[3]) * me.totpoly, __func__);
free_polynors = true;
}
BKE_mesh_calc_normals_poly_and_vertex(
me.mvert, me.totvert, me.mloop, me.totloop, me.mpoly, me.totpoly, r_polynors, r_vertnors);
if (r_loopnors) {
short(*clnors)[2] = CustomData_get_layer(&mesh->ldata, CD_CUSTOMLOOPNORMAL); /* May be NULL. */
BKE_mesh_normals_loop_split(me.mvert,
me.totvert,
me.medge,
me.totedge,
me.mloop,
r_loopnors,
me.totloop,
me.mpoly,
r_polynors,
me.totpoly,
(me.flag & ME_AUTOSMOOTH) != 0,
me.smoothresh,
NULL,
clnors,
NULL);
}
CustomData_free(&me.vdata, me.totvert);
CustomData_free(&me.edata, me.totedge);
CustomData_free(&me.pdata, me.totpoly);
CustomData_free(&me.ldata, me.totloop);
CustomData_free(&me.fdata, me.totface);
MEM_freeN(me.mvert);
if (free_polynors) {
MEM_freeN(r_polynors);
}
}
/************************* raw coords ************************/
void BKE_keyblock_update_from_vertcos(Object *ob, KeyBlock *kb, const float (*vertCos)[3])
{
const float(*co)[3] = vertCos;
float *fp = kb->data;
int tot, a;
#ifndef NDEBUG
if (ob->type == OB_LATTICE) {
Lattice *lt = ob->data;
BLI_assert((lt->pntsu * lt->pntsv * lt->pntsw) == kb->totelem);
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = ob->data;
BLI_assert(BKE_keyblock_curve_element_count(&cu->nurb) == kb->totelem);
}
else if (ob->type == OB_MESH) {
Mesh *me = ob->data;
BLI_assert(me->totvert == kb->totelem);
}
else {
BLI_assert(0 == kb->totelem);
}
#endif
tot = kb->totelem;
if (tot == 0) {
return;
}
/* Copy coords to key-block. */
if (ELEM(ob->type, OB_MESH, OB_LATTICE)) {
for (a = 0; a < tot; a++, fp += 3, co++) {
copy_v3_v3(fp, *co);
}
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = (Curve *)ob->data;
Nurb *nu;
BezTriple *bezt;
BPoint *bp;
for (nu = cu->nurb.first; nu; nu = nu->next) {
if (nu->bezt) {
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
for (int i = 0; i < 3; i++, co++) {
copy_v3_v3(&fp[i * 3], *co);
}
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++, co++) {
copy_v3_v3(fp, *co);
fp += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
}
void BKE_keyblock_convert_from_vertcos(Object *ob, KeyBlock *kb, const float (*vertCos)[3])
{
int tot = 0, elemsize;
MEM_SAFE_FREE(kb->data);
/* Count of vertex coords in array */
if (ob->type == OB_MESH) {
Mesh *me = (Mesh *)ob->data;
tot = me->totvert;
elemsize = me->key->elemsize;
}
else if (ob->type == OB_LATTICE) {
Lattice *lt = (Lattice *)ob->data;
tot = lt->pntsu * lt->pntsv * lt->pntsw;
elemsize = lt->key->elemsize;
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = (Curve *)ob->data;
elemsize = cu->key->elemsize;
tot = BKE_keyblock_curve_element_count(&cu->nurb);
}
if (tot == 0) {
return;
}
kb->data = MEM_mallocN(tot * elemsize, __func__);
/* Copy coords to key-block. */
BKE_keyblock_update_from_vertcos(ob, kb, vertCos);
}
float (*BKE_keyblock_convert_to_vertcos(Object *ob, KeyBlock *kb))[3]
{
float(*vertCos)[3], (*co)[3];
const float *fp = kb->data;
int tot = 0, a;
/* Count of vertex coords in array */
if (ob->type == OB_MESH) {
Mesh *me = (Mesh *)ob->data;
tot = me->totvert;
}
else if (ob->type == OB_LATTICE) {
Lattice *lt = (Lattice *)ob->data;
tot = lt->pntsu * lt->pntsv * lt->pntsw;
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = (Curve *)ob->data;
tot = BKE_nurbList_verts_count(&cu->nurb);
}
if (tot == 0) {
return NULL;
}
co = vertCos = MEM_mallocN(tot * sizeof(*vertCos), __func__);
/* Copy coords to array */
if (ELEM(ob->type, OB_MESH, OB_LATTICE)) {
for (a = 0; a < tot; a++, fp += 3, co++) {
copy_v3_v3(*co, fp);
}
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = (Curve *)ob->data;
Nurb *nu;
BezTriple *bezt;
BPoint *bp;
for (nu = cu->nurb.first; nu; nu = nu->next) {
if (nu->bezt) {
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
for (int i = 0; i < 3; i++, co++) {
copy_v3_v3(*co, &fp[i * 3]);
}
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++, co++) {
copy_v3_v3(*co, fp);
fp += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
return vertCos;
}
/************************* raw coord offsets ************************/
void BKE_keyblock_update_from_offset(Object *ob, KeyBlock *kb, const float (*ofs)[3])
{
int a;
float *fp = kb->data;
if (ELEM(ob->type, OB_MESH, OB_LATTICE)) {
for (a = 0; a < kb->totelem; a++, fp += 3, ofs++) {
add_v3_v3(fp, *ofs);
}
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF)) {
Curve *cu = (Curve *)ob->data;
Nurb *nu;
BezTriple *bezt;
BPoint *bp;
for (nu = cu->nurb.first; nu; nu = nu->next) {
if (nu->bezt) {
for (a = nu->pntsu, bezt = nu->bezt; a; a--, bezt++) {
for (int i = 0; i < 3; i++, ofs++) {
add_v3_v3(&fp[i * 3], *ofs);
}
fp += KEYELEM_FLOAT_LEN_BEZTRIPLE;
}
}
else {
for (a = nu->pntsu * nu->pntsv, bp = nu->bp; a; a--, bp++, ofs++) {
add_v3_v3(fp, *ofs);
fp += KEYELEM_FLOAT_LEN_BPOINT;
}
}
}
}
}
/* ==========================================================*/
/**
* Move shape key from org_index to new_index. Safe, clamps index to valid range,
* updates reference keys, the object's active shape index,
* the 'frame' value in case of absolute keys, etc.
* Note indices are expected in real values (not 'fake' shapenr +1 ones).
*
* \param org_index: if < 0, current object's active shape will be used as skey to move.
* \return true if something was done, else false.
*/
bool BKE_keyblock_move(Object *ob, int org_index, int new_index)
{
Key *key = BKE_key_from_object(ob);
KeyBlock *kb;
const int act_index = ob->shapenr - 1;
const int totkey = key->totkey;
int i;
bool rev, in_range = false;
if (org_index < 0) {
org_index = act_index;
}
CLAMP(new_index, 0, key->totkey - 1);
CLAMP(org_index, 0, key->totkey - 1);
if (new_index == org_index) {
return false;
}
rev = ((new_index - org_index) < 0) ? true : false;
/* We swap 'org' element with its previous/next neighbor (depending on direction of the move)
* repeatedly, until we reach final position.
* This allows us to only loop on the list once! */
for (kb = (rev ? key->block.last : key->block.first), i = (rev ? totkey - 1 : 0); kb;
kb = (rev ? kb->prev : kb->next), rev ? i-- : i++) {
if (i == org_index) {
in_range = true; /* Start list items swapping... */
}
else if (i == new_index) {
in_range = false; /* End list items swapping. */
}
if (in_range) {
KeyBlock *other_kb = rev ? kb->prev : kb->next;
/* Swap with previous/next list item. */
BLI_listbase_swaplinks(&key->block, kb, other_kb);
/* Swap absolute positions. */
SWAP(float, kb->pos, other_kb->pos);
kb = other_kb;
}
/* Adjust relative indices, this has to be done on the whole list! */
if (kb->relative == org_index) {
kb->relative = new_index;
}
else if (kb->relative < org_index && kb->relative >= new_index) {
/* remove after, insert before this index */
kb->relative++;
}
else if (kb->relative > org_index && kb->relative <= new_index) {
/* remove before, insert after this index */
kb->relative--;
}
}
/* Need to update active shape number if it's affected,
* same principle as for relative indices above. */
if (org_index == act_index) {
ob->shapenr = new_index + 1;
}
else if (act_index < org_index && act_index >= new_index) {
ob->shapenr++;
}
else if (act_index > org_index && act_index <= new_index) {
ob->shapenr--;
}
/* First key is always refkey, matches interface and BKE_key_sort */
key->refkey = key->block.first;
return true;
}
/**
* Check if given key-block (as index) is used as basis by others in given key.
*/
bool BKE_keyblock_is_basis(Key *key, const int index)
{
KeyBlock *kb;
int i;
if (key->type == KEY_RELATIVE) {
for (i = 0, kb = key->block.first; kb; i++, kb = kb->next) {
if ((i != index) && (kb->relative == index)) {
return true;
}
}
}
return false;
}