tornavis/source/blender/blenkernel/intern/mesh_mirror.c

514 lines
18 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include "BLI_math.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "BKE_deform.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_mesh.h"
#include "BKE_mesh_mirror.h"
#include "BKE_modifier.h"
#include "bmesh.h"
#include "bmesh_tools.h"
#include "MEM_guardedalloc.h"
#include "MOD_modifiertypes.h"
Mesh *BKE_mesh_mirror_bisect_on_mirror_plane_for_modifier(MirrorModifierData *mmd,
const Mesh *mesh,
int axis,
const float plane_co[3],
float plane_no[3])
{
bool do_bisect_flip_axis = ((axis == 0 && mmd->flag & MOD_MIR_BISECT_FLIP_AXIS_X) ||
(axis == 1 && mmd->flag & MOD_MIR_BISECT_FLIP_AXIS_Y) ||
(axis == 2 && mmd->flag & MOD_MIR_BISECT_FLIP_AXIS_Z));
const float bisect_distance = mmd->bisect_threshold;
Mesh *result;
BMesh *bm;
BMIter viter;
BMVert *v, *v_next;
bm = BKE_mesh_to_bmesh_ex(mesh,
&(struct BMeshCreateParams){0},
&(struct BMeshFromMeshParams){
.calc_face_normal = true,
.cd_mask_extra = {.vmask = CD_MASK_ORIGINDEX,
.emask = CD_MASK_ORIGINDEX,
.pmask = CD_MASK_ORIGINDEX},
});
/* Define bisecting plane (aka mirror plane). */
float plane[4];
if (!do_bisect_flip_axis) {
/* That reversed condition is a little weird, but for some reason that's how you keep
* the part of the mesh which is on the non-mirrored side when flip option is disabled.
* I think this is the expected behavior. */
negate_v3(plane_no);
}
plane_from_point_normal_v3(plane, plane_co, plane_no);
BM_mesh_bisect_plane(bm, plane, true, false, 0, 0, bisect_distance);
/* Plane definitions for vert killing. */
float plane_offset[4];
copy_v3_v3(plane_offset, plane);
plane_offset[3] = plane[3] - bisect_distance;
/* Delete verts across the mirror plane. */
BM_ITER_MESH_MUTABLE (v, v_next, &viter, bm, BM_VERTS_OF_MESH) {
if (plane_point_side_v3(plane_offset, v->co) > 0.0f) {
BM_vert_kill(bm, v);
}
}
result = BKE_mesh_from_bmesh_for_eval_nomain(bm, NULL, mesh);
BM_mesh_free(bm);
return result;
}
void BKE_mesh_mirror_apply_mirror_on_axis(struct Main *bmain,
Mesh *mesh,
const int axis,
const float dist)
{
BMesh *bm = BKE_mesh_to_bmesh_ex(mesh,
&(struct BMeshCreateParams){
.use_toolflags = 1,
},
&(struct BMeshFromMeshParams){
.calc_face_normal = true,
.cd_mask_extra =
{
.vmask = CD_MASK_SHAPEKEY,
},
});
BMO_op_callf(bm,
(BMO_FLAG_DEFAULTS & ~BMO_FLAG_RESPECT_HIDE),
"symmetrize input=%avef direction=%i dist=%f use_shapekey=%b",
axis,
dist,
true);
BM_mesh_bm_to_me(bmain,
bm,
mesh,
(&(struct BMeshToMeshParams){
.calc_object_remap = true,
}));
BM_mesh_free(bm);
}
/**
* \warning This should _not_ be used to modify original meshes since
* it doesn't handle shape-keys, use #BKE_mesh_mirror_apply_mirror_on_axis instead.
*/
Mesh *BKE_mesh_mirror_apply_mirror_on_axis_for_modifier(MirrorModifierData *mmd,
Object *ob,
const Mesh *mesh,
const int axis,
const bool use_correct_order_on_merge)
{
const float tolerance_sq = mmd->tolerance * mmd->tolerance;
const bool do_vtargetmap = (mmd->flag & MOD_MIR_NO_MERGE) == 0;
int tot_vtargetmap = 0; /* total merge vertices */
const bool do_bisect = ((axis == 0 && mmd->flag & MOD_MIR_BISECT_AXIS_X) ||
(axis == 1 && mmd->flag & MOD_MIR_BISECT_AXIS_Y) ||
(axis == 2 && mmd->flag & MOD_MIR_BISECT_AXIS_Z));
Mesh *result;
MVert *mv, *mv_prev;
MEdge *me;
MLoop *ml;
MPoly *mp;
float mtx[4][4];
float plane_co[3], plane_no[3];
int i;
int a, totshape;
int *vtargetmap = NULL, *vtmap_a = NULL, *vtmap_b = NULL;
/* mtx is the mirror transformation */
unit_m4(mtx);
mtx[axis][axis] = -1.0f;
Object *mirror_ob = mmd->mirror_ob;
if (mirror_ob != NULL) {
float tmp[4][4];
float itmp[4][4];
/* tmp is a transform from coords relative to the object's own origin,
* to coords relative to the mirror object origin */
invert_m4_m4(tmp, mirror_ob->obmat);
mul_m4_m4m4(tmp, tmp, ob->obmat);
/* itmp is the reverse transform back to origin-relative coordinates */
invert_m4_m4(itmp, tmp);
/* combine matrices to get a single matrix that translates coordinates into
* mirror-object-relative space, does the mirror, and translates back to
* origin-relative space */
mul_m4_series(mtx, itmp, mtx, tmp);
if (do_bisect) {
copy_v3_v3(plane_co, itmp[3]);
copy_v3_v3(plane_no, itmp[axis]);
/* Account for non-uniform scale in `ob`, see: T87592. */
float ob_scale[3] = {
len_squared_v3(ob->obmat[0]),
len_squared_v3(ob->obmat[1]),
len_squared_v3(ob->obmat[2]),
};
/* Scale to avoid precision loss with extreme values. */
const float ob_scale_max = max_fff(UNPACK3(ob_scale));
if (LIKELY(ob_scale_max != 0.0f)) {
mul_v3_fl(ob_scale, 1.0f / ob_scale_max);
mul_v3_v3(plane_no, ob_scale);
}
}
}
else if (do_bisect) {
copy_v3_v3(plane_co, mtx[3]);
/* Need to negate here, since that axis is inverted (for mirror transform). */
negate_v3_v3(plane_no, mtx[axis]);
}
Mesh *mesh_bisect = NULL;
if (do_bisect) {
mesh_bisect = BKE_mesh_mirror_bisect_on_mirror_plane_for_modifier(
mmd, mesh, axis, plane_co, plane_no);
mesh = mesh_bisect;
}
const int maxVerts = mesh->totvert;
const int maxEdges = mesh->totedge;
const int maxLoops = mesh->totloop;
const int maxPolys = mesh->totpoly;
result = BKE_mesh_new_nomain_from_template(
mesh, maxVerts * 2, maxEdges * 2, 0, maxLoops * 2, maxPolys * 2);
/* Copy custom-data to original geometry. */
CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, maxVerts);
CustomData_copy_data(&mesh->edata, &result->edata, 0, 0, maxEdges);
CustomData_copy_data(&mesh->ldata, &result->ldata, 0, 0, maxLoops);
CustomData_copy_data(&mesh->pdata, &result->pdata, 0, 0, maxPolys);
/* Subsurf for eg won't have mesh data in the custom-data arrays.
* now add mvert/medge/mpoly layers. */
if (!CustomData_has_layer(&mesh->vdata, CD_MVERT)) {
memcpy(result->mvert, mesh->mvert, sizeof(*result->mvert) * mesh->totvert);
}
if (!CustomData_has_layer(&mesh->edata, CD_MEDGE)) {
memcpy(result->medge, mesh->medge, sizeof(*result->medge) * mesh->totedge);
}
if (!CustomData_has_layer(&mesh->pdata, CD_MPOLY)) {
memcpy(result->mloop, mesh->mloop, sizeof(*result->mloop) * mesh->totloop);
memcpy(result->mpoly, mesh->mpoly, sizeof(*result->mpoly) * mesh->totpoly);
}
/* Copy custom-data to new geometry,
* copy from its self because this data may have been created in the checks above. */
CustomData_copy_data(&result->vdata, &result->vdata, 0, maxVerts, maxVerts);
CustomData_copy_data(&result->edata, &result->edata, 0, maxEdges, maxEdges);
/* loops are copied later */
CustomData_copy_data(&result->pdata, &result->pdata, 0, maxPolys, maxPolys);
if (do_vtargetmap) {
/* second half is filled with -1 */
vtargetmap = MEM_malloc_arrayN(maxVerts, sizeof(int[2]), "MOD_mirror tarmap");
vtmap_a = vtargetmap;
vtmap_b = vtargetmap + maxVerts;
}
/* mirror vertex coordinates */
mv_prev = result->mvert;
mv = mv_prev + maxVerts;
for (i = 0; i < maxVerts; i++, mv++, mv_prev++) {
mul_m4_v3(mtx, mv->co);
if (do_vtargetmap) {
/* Compare location of the original and mirrored vertex,
* to see if they should be mapped for merging.
*
* Always merge from the copied into the original vertices so it's possible to
* generate a 1:1 mapping by scanning vertices from the beginning of the array
* as is done in #BKE_editmesh_vert_coords_when_deformed. Without this,
* the coordinates returned will sometimes point to the copied vertex locations, see:
* T91444.
*
* However, such a change also affects non-versionable things like some modifiers binding, so
* we cannot enforce that behavior on existing modifiers, in which case we keep using the
* old, incorrect behavior of merging the source vertex into its copy.
*/
if (use_correct_order_on_merge) {
if (UNLIKELY(len_squared_v3v3(mv_prev->co, mv->co) < tolerance_sq)) {
*vtmap_b = i;
tot_vtargetmap++;
/* average location */
mid_v3_v3v3(mv->co, mv_prev->co, mv->co);
copy_v3_v3(mv_prev->co, mv->co);
}
else {
*vtmap_b = -1;
}
/* Fill here to avoid 2x loops. */
*vtmap_a = -1;
}
else {
if (UNLIKELY(len_squared_v3v3(mv_prev->co, mv->co) < tolerance_sq)) {
*vtmap_a = maxVerts + i;
tot_vtargetmap++;
/* average location */
mid_v3_v3v3(mv->co, mv_prev->co, mv->co);
copy_v3_v3(mv_prev->co, mv->co);
}
else {
*vtmap_a = -1;
}
/* Fill here to avoid 2x loops. */
*vtmap_b = -1;
}
vtmap_a++;
vtmap_b++;
}
}
/* handle shape keys */
totshape = CustomData_number_of_layers(&result->vdata, CD_SHAPEKEY);
for (a = 0; a < totshape; a++) {
float(*cos)[3] = CustomData_get_layer_n(&result->vdata, CD_SHAPEKEY, a);
for (i = maxVerts; i < result->totvert; i++) {
mul_m4_v3(mtx, cos[i]);
}
}
/* adjust mirrored edge vertex indices */
me = result->medge + maxEdges;
for (i = 0; i < maxEdges; i++, me++) {
me->v1 += maxVerts;
me->v2 += maxVerts;
}
/* adjust mirrored poly loopstart indices, and reverse loop order (normals) */
mp = result->mpoly + maxPolys;
ml = result->mloop;
for (i = 0; i < maxPolys; i++, mp++) {
MLoop *ml2;
int j, e;
/* reverse the loop, but we keep the first vertex in the face the same,
* to ensure that quads are split the same way as on the other side */
CustomData_copy_data(
&result->ldata, &result->ldata, mp->loopstart, mp->loopstart + maxLoops, 1);
for (j = 1; j < mp->totloop; j++) {
CustomData_copy_data(&result->ldata,
&result->ldata,
mp->loopstart + j,
mp->loopstart + maxLoops + mp->totloop - j,
1);
}
ml2 = ml + mp->loopstart + maxLoops;
e = ml2[0].e;
for (j = 0; j < mp->totloop - 1; j++) {
ml2[j].e = ml2[j + 1].e;
}
ml2[mp->totloop - 1].e = e;
mp->loopstart += maxLoops;
}
/* adjust mirrored loop vertex and edge indices */
ml = result->mloop + maxLoops;
for (i = 0; i < maxLoops; i++, ml++) {
ml->v += maxVerts;
ml->e += maxEdges;
}
/* handle uvs,
* let tessface recalc handle updating the MTFace data */
if (mmd->flag & (MOD_MIR_MIRROR_U | MOD_MIR_MIRROR_V) ||
(is_zero_v2(mmd->uv_offset_copy) == false)) {
const bool do_mirr_u = (mmd->flag & MOD_MIR_MIRROR_U) != 0;
const bool do_mirr_v = (mmd->flag & MOD_MIR_MIRROR_V) != 0;
/* If set, flip around center of each tile. */
const bool do_mirr_udim = (mmd->flag & MOD_MIR_MIRROR_UDIM) != 0;
const int totuv = CustomData_number_of_layers(&result->ldata, CD_MLOOPUV);
for (a = 0; a < totuv; a++) {
MLoopUV *dmloopuv = CustomData_get_layer_n(&result->ldata, CD_MLOOPUV, a);
int j = maxLoops;
dmloopuv += j; /* second set of loops only */
for (; j-- > 0; dmloopuv++) {
if (do_mirr_u) {
float u = dmloopuv->uv[0];
if (do_mirr_udim) {
dmloopuv->uv[0] = ceilf(u) - fmodf(u, 1.0f) + mmd->uv_offset[0];
}
else {
dmloopuv->uv[0] = 1.0f - u + mmd->uv_offset[0];
}
}
if (do_mirr_v) {
float v = dmloopuv->uv[1];
if (do_mirr_udim) {
dmloopuv->uv[1] = ceilf(v) - fmodf(v, 1.0f) + mmd->uv_offset[1];
}
else {
dmloopuv->uv[1] = 1.0f - v + mmd->uv_offset[1];
}
}
dmloopuv->uv[0] += mmd->uv_offset_copy[0];
dmloopuv->uv[1] += mmd->uv_offset_copy[1];
}
}
}
/* handle custom split normals */
if (ob->type == OB_MESH && (((Mesh *)ob->data)->flag & ME_AUTOSMOOTH) &&
CustomData_has_layer(&result->ldata, CD_CUSTOMLOOPNORMAL)) {
const int totloop = result->totloop;
const int totpoly = result->totpoly;
float(*loop_normals)[3] = MEM_calloc_arrayN((size_t)totloop, sizeof(*loop_normals), __func__);
CustomData *ldata = &result->ldata;
short(*clnors)[2] = CustomData_get_layer(ldata, CD_CUSTOMLOOPNORMAL);
MLoopNorSpaceArray lnors_spacearr = {NULL};
float(*poly_normals)[3] = MEM_mallocN(sizeof(*poly_normals) * totpoly, __func__);
/* The transform matrix of a normal must be
* the transpose of inverse of transform matrix of the geometry... */
float mtx_nor[4][4];
invert_m4_m4(mtx_nor, mtx);
transpose_m4(mtx_nor);
/* calculate custom normals into loop_normals, then mirror first half into second half */
BKE_mesh_calc_normals_poly_and_vertex(result->mvert,
result->totvert,
result->mloop,
totloop,
result->mpoly,
totpoly,
poly_normals,
NULL);
BKE_mesh_normals_loop_split(result->mvert,
result->totvert,
result->medge,
result->totedge,
result->mloop,
loop_normals,
totloop,
result->mpoly,
poly_normals,
totpoly,
true,
mesh->smoothresh,
&lnors_spacearr,
clnors,
NULL);
/* mirroring has to account for loops being reversed in polys in second half */
mp = result->mpoly;
for (i = 0; i < maxPolys; i++, mp++) {
MPoly *mpmirror = result->mpoly + maxPolys + i;
int j;
for (j = mp->loopstart; j < mp->loopstart + mp->totloop; j++) {
int mirrorj = mpmirror->loopstart;
if (j > mp->loopstart) {
mirrorj += mpmirror->totloop - (j - mp->loopstart);
}
copy_v3_v3(loop_normals[mirrorj], loop_normals[j]);
mul_m4_v3(mtx_nor, loop_normals[mirrorj]);
BKE_lnor_space_custom_normal_to_data(
lnors_spacearr.lspacearr[mirrorj], loop_normals[mirrorj], clnors[mirrorj]);
}
}
MEM_freeN(poly_normals);
MEM_freeN(loop_normals);
BKE_lnor_spacearr_free(&lnors_spacearr);
}
/* handle vgroup stuff */
if ((mmd->flag & MOD_MIR_VGROUP) && CustomData_has_layer(&result->vdata, CD_MDEFORMVERT)) {
MDeformVert *dvert = (MDeformVert *)CustomData_get_layer(&result->vdata, CD_MDEFORMVERT) +
maxVerts;
int *flip_map = NULL, flip_map_len = 0;
flip_map = BKE_object_defgroup_flip_map(ob, &flip_map_len, false);
if (flip_map) {
for (i = 0; i < maxVerts; dvert++, i++) {
/* merged vertices get both groups, others get flipped */
if (do_vtargetmap && (vtargetmap[i] != -1)) {
BKE_defvert_flip_merged(dvert, flip_map, flip_map_len);
}
else {
BKE_defvert_flip(dvert, flip_map, flip_map_len);
}
}
MEM_freeN(flip_map);
}
}
if (do_vtargetmap) {
/* slow - so only call if one or more merge verts are found,
* users may leave this on and not realize there is nothing to merge - campbell */
if (tot_vtargetmap) {
result = BKE_mesh_merge_verts(
result, vtargetmap, tot_vtargetmap, MESH_MERGE_VERTS_DUMP_IF_MAPPED);
}
MEM_freeN(vtargetmap);
}
if (mesh_bisect != NULL) {
BKE_id_free(NULL, mesh_bisect);
}
return result;
}