tornavis/source/blender/blenkernel/BKE_node_tree_update.hh

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

94 lines
3.6 KiB
C++
Raw Normal View History

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
#pragma once
/** \file
* \ingroup bke
*/
struct ID;
struct ImageUser;
struct Main;
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
struct bNode;
struct bNodeLink;
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
struct bNodeSocket;
struct bNodeTree;
/**
* Tag tree as changed without providing any more information about what has changed exactly.
* The update process has to assume that everything may have changed.
*
2022-01-06 03:54:52 +01:00
* Using one of the methods below to tag the tree after changes is preferred when possible.
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
*/
void BKE_ntree_update_tag_all(bNodeTree *ntree);
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
/**
* More specialized tag functions that may result in a more efficient update.
*/
void BKE_ntree_update_tag_node_property(bNodeTree *ntree, bNode *node);
void BKE_ntree_update_tag_node_new(bNodeTree *ntree, bNode *node);
void BKE_ntree_update_tag_node_removed(bNodeTree *ntree);
void BKE_ntree_update_tag_node_mute(bNodeTree *ntree, bNode *node);
void BKE_ntree_update_tag_node_internal_link(bNodeTree *ntree, bNode *node);
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
void BKE_ntree_update_tag_socket_property(bNodeTree *ntree, bNodeSocket *socket);
void BKE_ntree_update_tag_socket_new(bNodeTree *ntree, bNodeSocket *socket);
void BKE_ntree_update_tag_socket_type(bNodeTree *ntree, bNodeSocket *socket);
void BKE_ntree_update_tag_socket_availability(bNodeTree *ntree, bNodeSocket *socket);
void BKE_ntree_update_tag_socket_removed(bNodeTree *ntree);
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
void BKE_ntree_update_tag_link_changed(bNodeTree *ntree);
void BKE_ntree_update_tag_link_removed(bNodeTree *ntree);
void BKE_ntree_update_tag_link_added(bNodeTree *ntree, bNodeLink *link);
void BKE_ntree_update_tag_link_mute(bNodeTree *ntree, bNodeLink *link);
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
/** Used when the a new output node becomes active and therefore changes the output. */
void BKE_ntree_update_tag_active_output_changed(bNodeTree *ntree);
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
/** Used after file loading when run-time data on the tree has not been initialized yet. */
void BKE_ntree_update_tag_missing_runtime_data(bNodeTree *ntree);
/** Used when change parent node. */
void BKE_ntree_update_tag_parent_change(bNodeTree *ntree, bNode *node);
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
/** Used when an id data block changed that might be used by nodes that need to be updated. */
void BKE_ntree_update_tag_id_changed(Main *bmain, ID *id);
/** Used when an image user is updated that is used by any part of the node tree. */
void BKE_ntree_update_tag_image_user_changed(bNodeTree *ntree, ImageUser *iuser);
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
struct NodeTreeUpdateExtraParams {
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
/**
* Data passed into the callbacks.
*/
void *user_data;
/**
* Called for every tree that has been changed during the update. This can be used to send
* notifiers to trigger redraws or depsgraph updates.
*/
void (*tree_changed_fn)(ID *, bNodeTree *, void *user_data);
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
/**
* Called for every tree whose output value may have changed based on the provided update tags.
* This can be used to tag the depsgraph if necessary.
*/
void (*tree_output_changed_fn)(ID *, bNodeTree *, void *user_data);
};
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
/**
* Updates #bmain based on changes to node trees.
*/
void BKE_ntree_update_main(Main *bmain, NodeTreeUpdateExtraParams *params);
Nodes: refactor node tree update handling Goals of this refactor: * More unified approach to updating everything that needs to be updated after a change in a node tree. * The updates should happen in the correct order and quadratic or worse algorithms should be avoided. * Improve detection of changes to the output to avoid tagging the depsgraph when it's not necessary. * Move towards a more declarative style of defining nodes by having a more centralized update procedure. The refactor consists of two main parts: * Node tree tagging and update refactor. * Generally, when changes are done to a node tree, it is tagged dirty until a global update function is called that updates everything in the correct order. * The tagging is more fine-grained compared to before, to allow for more precise depsgraph update tagging. * Depsgraph changes. * The shading specific depsgraph node for node trees as been removed. * Instead, there is a new `NTREE_OUTPUT` depsgrap node, which is only tagged when the output of the node tree changed (e.g. the Group Output or Material Output node). * The copy-on-write relation from node trees to the data block they are embedded in is now non-flushing. This avoids e.g. triggering a material update after the shader node tree changed in unrelated ways. Instead the material has a flushing relation to the new `NTREE_OUTPUT` node now. * The depsgraph no longer reports data block changes through to cycles through `Depsgraph.updates` when only the node tree changed in ways that do not affect the output. Avoiding unnecessary updates seems to work well for geometry nodes and cycles. The situation is a bit worse when there are drivers on the node tree, but that could potentially be improved separately in the future. Avoiding updates in eevee and the compositor is more tricky, but also less urgent. * Eevee updates are triggered by calling `DRW_notify_view_update` in `ED_render_view3d_update` indirectly from `DEG_editors_update`. * Compositor updates are triggered by `ED_node_composite_job` in `node_area_refresh`. This is triggered by calling `ED_area_tag_refresh` in `node_area_listener`. Removing updates always has the risk of breaking some dependency that no one was aware of. It's not unlikely that this will happen here as well. Adding back missing updates should be quite a bit easier than getting rid of unnecessary updates though. Differential Revision: https://developer.blender.org/D13246
2021-12-21 15:18:56 +01:00
/**
* Same as #BKE_ntree_update_main, but will first only look at the provided tree and only looks
* at #bmain when something relevant for other data-blocks changed. This avoids scanning #bmain in
* many cases.
*
* If #bmain is null, only the provided tree is updated. This should only be used in very rare
* cases because it may result it incorrectly synced data in DNA.
*
* If #tree is null, this is the same as calling #BKE_ntree_update_main.
*/
void BKE_ntree_update_main_tree(Main *bmain, bNodeTree *ntree, NodeTreeUpdateExtraParams *params);