tornavis/source/blender/blenkernel/intern/material.c

989 lines
21 KiB
C
Raw Normal View History

2002-10-12 13:37:38 +02:00
/* material.c
*
2002-10-12 13:37:38 +02:00
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <string.h>
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
#include <math.h>
2002-10-12 13:37:38 +02:00
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
2002-10-12 13:37:38 +02:00
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meta_types.h"
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 16:42:51 +01:00
#include "DNA_node_types.h"
#include "DNA_object_types.h"
2002-10-12 13:37:38 +02:00
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
2002-10-12 13:37:38 +02:00
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
2002-10-12 13:37:38 +02:00
#include "BKE_bad_level_calls.h"
#include "BKE_blender.h"
#include "BKE_displist.h"
2002-10-12 13:37:38 +02:00
#include "BKE_global.h"
#include "BKE_icons.h"
2002-10-12 13:37:38 +02:00
#include "BKE_library.h"
#include "BKE_main.h"
2002-10-12 13:37:38 +02:00
#include "BKE_material.h"
#include "BKE_mesh.h"
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 16:42:51 +01:00
#include "BKE_node.h"
#include "BKE_utildefines.h"
2002-10-12 13:37:38 +02:00
#include "BPY_extern.h"
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
/* used in UI and render */
Material defmaterial;
/* called on startup, creator.c */
void init_def_material(void)
{
init_material(&defmaterial);
}
/* not material itself */
2002-10-12 13:37:38 +02:00
void free_material(Material *ma)
{
MTex *mtex;
int a;
2002-10-12 13:37:38 +02:00
BPY_free_scriptlink(&ma->scriptlink);
for(a=0; a<MAX_MTEX; a++) {
2002-10-12 13:37:38 +02:00
mtex= ma->mtex[a];
if(mtex && mtex->tex) mtex->tex->id.us--;
if(mtex) MEM_freeN(mtex);
}
if(ma->ramp_col) MEM_freeN(ma->ramp_col);
if(ma->ramp_spec) MEM_freeN(ma->ramp_spec);
BKE_icon_delete((struct ID*)ma);
ma->id.icon_id = 0;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 16:42:51 +01:00
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 14:06:05 +01:00
/* is no lib link block, but material extension */
if(ma->nodetree) {
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 16:42:51 +01:00
ntreeFreeTree(ma->nodetree);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 14:06:05 +01:00
MEM_freeN(ma->nodetree);
}
2002-10-12 13:37:38 +02:00
}
void init_material(Material *ma)
{
ma->lay= 1;
ma->r= ma->g= ma->b= ma->ref= 0.8;
ma->specr= ma->specg= ma->specb= 1.0;
ma->mirr= ma->mirg= ma->mirb= 1.0;
Another commit for raytracing, now with glass refraction & fresnel! Changelog: - enable refraction with button "Ray Transp" in Material buttons. - set "Angular Index" value for amount of refraction. - use the "Alpha" value to define transparency. - remember to set a higher "Depth" too... glass can bounce quite some more than expected. - for correct refraction, 3D models MUST have normals pointing in the right direction (consistently pointing outside). - refraction 'sees' the thickness of glass based on what you model. So make for realistic glass both sides of a surface. - I needed to do some rewriting for correct mirroring/refraction, especially to prevent specularity being blended away. Solved this with localizing shading results in the rendercore.c. Now specularity correctly is added, and reduces the 'mirror' value. - Localizing more parts of the render code is being planned. The old render heavily relies on struct Render and struct Osa to store globals. For scanline render no problem, but recursive raytracing dislikes that. - done test with gamma-corrected summation of colors during tracing, is commented out still. But this will give more balanced reflections. Now dark reflections that are reflected in a bright surface seem incorrect. - Introduced 'Fresnel' effect for Mirror and Transparency. This influences the amount of mirror/transparency based at viewing angle. Next to a new Fresnel slider, also a 'falloff' button has been added to define the way it spreads. - Fresnel also works for Ztransp rendering - created new Panel for Raytrace options I have to evaluate still where it all should be logically located. - material preview shows fake reflection and fake refraction as well.
2003-12-16 15:12:01 +01:00
ma->spectra= 1.0;
ma->amb= 0.5;
ma->alpha= 1.0;
ma->spec= ma->hasize= 0.5;
2002-10-12 13:37:38 +02:00
ma->har= 50;
ma->starc= ma->ringc= 4;
ma->linec= 12;
ma->flarec= 1;
ma->flaresize= ma->subsize= 1.0;
ma->flareboost= 1;
ma->seed2= 6;
ma->friction= 0.5;
ma->refrac= 4.0;
ma->roughness= 0.5;
ma->param[0]= 0.5;
ma->param[1]= 0.1;
ma->param[2]= 0.5;
ma->param[3]= 0.1;
ma->rms= 0.1;
ma->darkness= 1.0;
ma->strand_sta= ma->strand_end= 1.0f;
Another commit for raytracing, now with glass refraction & fresnel! Changelog: - enable refraction with button "Ray Transp" in Material buttons. - set "Angular Index" value for amount of refraction. - use the "Alpha" value to define transparency. - remember to set a higher "Depth" too... glass can bounce quite some more than expected. - for correct refraction, 3D models MUST have normals pointing in the right direction (consistently pointing outside). - refraction 'sees' the thickness of glass based on what you model. So make for realistic glass both sides of a surface. - I needed to do some rewriting for correct mirroring/refraction, especially to prevent specularity being blended away. Solved this with localizing shading results in the rendercore.c. Now specularity correctly is added, and reduces the 'mirror' value. - Localizing more parts of the render code is being planned. The old render heavily relies on struct Render and struct Osa to store globals. For scanline render no problem, but recursive raytracing dislikes that. - done test with gamma-corrected summation of colors during tracing, is commented out still. But this will give more balanced reflections. Now dark reflections that are reflected in a bright surface seem incorrect. - Introduced 'Fresnel' effect for Mirror and Transparency. This influences the amount of mirror/transparency based at viewing angle. Next to a new Fresnel slider, also a 'falloff' button has been added to define the way it spreads. - Fresnel also works for Ztransp rendering - created new Panel for Raytrace options I have to evaluate still where it all should be logically located. - material preview shows fake reflection and fake refraction as well.
2003-12-16 15:12:01 +01:00
ma->ang= 1.0;
ma->ray_depth= 2;
ma->ray_depth_tra= 2;
ma->fresnel_mir= 0.0;
ma->fresnel_tra= 0.0;
ma->fresnel_tra_i= 1.25;
ma->fresnel_mir_i= 1.25;
2002-10-12 13:37:38 +02:00
ma->rampfac_col= 1.0;
ma->rampfac_spec= 1.0;
ma->pr_lamp= 3; /* two lamps, is bits */
ma->mode= MA_TRACEBLE|MA_SHADBUF|MA_SHADOW|MA_RADIO|MA_RAYBIAS|MA_TANGENT_STR;
2002-10-12 13:37:38 +02:00
}
Material *add_material(char *name)
{
Material *ma;
ma= alloc_libblock(&G.main->mat, ID_MA, name);
init_material(ma);
return ma;
}
Material *copy_material(Material *ma)
{
Material *man;
int a;
man= copy_libblock(ma);
id_us_plus((ID *)man->ipo);
for(a=0; a<MAX_MTEX; a++) {
2002-10-12 13:37:38 +02:00
if(ma->mtex[a]) {
man->mtex[a]= MEM_mallocN(sizeof(MTex), "copymaterial");
memcpy(man->mtex[a], ma->mtex[a], sizeof(MTex));
id_us_plus((ID *)man->mtex[a]->tex);
}
}
BPY_copy_scriptlink(&ma->scriptlink);
if(ma->ramp_col) man->ramp_col= MEM_dupallocN(ma->ramp_col);
if(ma->ramp_spec) man->ramp_spec= MEM_dupallocN(ma->ramp_spec);
2002-10-12 13:37:38 +02:00
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 16:42:51 +01:00
if(ma->nodetree) {
man->nodetree= ntreeCopyTree(ma->nodetree, 0); /* 0 == full new tree */
}
2002-10-12 13:37:38 +02:00
return man;
}
void make_local_material(Material *ma)
{
Object *ob;
Mesh *me;
Curve *cu;
MetaBall *mb;
Material *man;
int a, local=0, lib=0;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
2002-10-12 13:37:38 +02:00
if(ma->id.lib==0) return;
if(ma->id.us==1) {
ma->id.lib= 0;
ma->id.flag= LIB_LOCAL;
new_id(0, (ID *)ma, 0);
for(a=0; a<MAX_MTEX; a++) {
2002-10-12 13:37:38 +02:00
if(ma->mtex[a]) id_lib_extern((ID *)ma->mtex[a]->tex);
}
return;
}
/* test objects */
ob= G.main->object.first;
while(ob) {
if(ob->mat) {
for(a=0; a<ob->totcol; a++) {
if(ob->mat[a]==ma) {
if(ob->id.lib) lib= 1;
else local= 1;
}
}
}
ob= ob->id.next;
}
/* test meshes */
me= G.main->mesh.first;
while(me) {
if(me->mat) {
for(a=0; a<me->totcol; a++) {
if(me->mat[a]==ma) {
if(me->id.lib) lib= 1;
else local= 1;
}
}
}
me= me->id.next;
}
/* test curves */
cu= G.main->curve.first;
while(cu) {
if(cu->mat) {
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]==ma) {
if(cu->id.lib) lib= 1;
else local= 1;
}
}
}
cu= cu->id.next;
}
/* test mballs */
mb= G.main->mball.first;
while(mb) {
if(mb->mat) {
for(a=0; a<mb->totcol; a++) {
if(mb->mat[a]==ma) {
if(mb->id.lib) lib= 1;
else local= 1;
}
}
}
mb= mb->id.next;
}
if(local && lib==0) {
ma->id.lib= 0;
ma->id.flag= LIB_LOCAL;
for(a=0; a<MAX_MTEX; a++) {
2002-10-12 13:37:38 +02:00
if(ma->mtex[a]) id_lib_extern((ID *)ma->mtex[a]->tex);
}
new_id(0, (ID *)ma, 0);
}
else if(local && lib) {
2002-10-12 13:37:38 +02:00
man= copy_material(ma);
man->id.us= 0;
/* do objects */
ob= G.main->object.first;
while(ob) {
if(ob->mat) {
for(a=0; a<ob->totcol; a++) {
if(ob->mat[a]==ma) {
if(ob->id.lib==0) {
ob->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
ob= ob->id.next;
}
/* do meshes */
me= G.main->mesh.first;
while(me) {
if(me->mat) {
for(a=0; a<me->totcol; a++) {
if(me->mat[a]==ma) {
if(me->id.lib==0) {
me->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
me= me->id.next;
}
/* do curves */
cu= G.main->curve.first;
while(cu) {
if(cu->mat) {
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]==ma) {
if(cu->id.lib==0) {
cu->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
cu= cu->id.next;
}
/* do mballs */
mb= G.main->mball.first;
while(mb) {
if(mb->mat) {
for(a=0; a<mb->totcol; a++) {
if(mb->mat[a]==ma) {
if(mb->id.lib==0) {
mb->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
mb= mb->id.next;
}
}
}
Material ***give_matarar(Object *ob)
{
Mesh *me;
Curve *cu;
MetaBall *mb;
if(ob->type==OB_MESH) {
me= ob->data;
return &(me->mat);
}
else if ELEM3(ob->type, OB_CURVE, OB_FONT, OB_SURF) {
cu= ob->data;
return &(cu->mat);
}
else if(ob->type==OB_MBALL) {
mb= ob->data;
return &(mb->mat);
}
return 0;
}
short *give_totcolp(Object *ob)
{
Mesh *me;
Curve *cu;
MetaBall *mb;
if(ob->type==OB_MESH) {
me= ob->data;
return &(me->totcol);
}
else if ELEM3(ob->type, OB_CURVE, OB_FONT, OB_SURF) {
cu= ob->data;
return &(cu->totcol);
}
else if(ob->type==OB_MBALL) {
mb= ob->data;
return &(mb->totcol);
}
return 0;
}
Material *give_current_material(Object *ob, int act)
{
Material ***matarar, *ma;
if(ob==0) return 0;
if(ob->totcol==0) return 0;
if(act>ob->totcol) act= ob->totcol;
else if(act==0) act= 1;
if( BTST(ob->colbits, act-1) ) { /* in object */
2002-10-12 13:37:38 +02:00
ma= ob->mat[act-1];
}
else { /* in data */
2002-10-12 13:37:38 +02:00
matarar= give_matarar(ob);
if(matarar && *matarar) ma= (*matarar)[act-1];
else ma= 0;
}
return ma;
}
ID *material_from(Object *ob, int act)
{
if(ob==0) return 0;
if(ob->totcol==0) return ob->data;
if(act==0) act= 1;
if( BTST(ob->colbits, act-1) ) return (ID *)ob;
else return ob->data;
}
/* GS reads the memory pointed at in a specific ordering. There are,
* however two definitions for it. I have jotted them down here, both,
* but I think the first one is actually used. The thing is that
* big-endian systems might read this the wrong way round. OTOH, we
* constructed the IDs that are read out with this macro explicitly as
* well. I expect we'll sort it out soon... */
/* from blendef: */
#define GS(a) (*((short *)(a)))
/* from misc_util: flip the bytes from x */
/* #define GS(x) (((unsigned char *)(x))[0] << 8 | ((unsigned char *)(x))[1]) */
void test_object_materials(ID *id)
{
/* make the ob mat-array same size as 'ob->data' mat-array */
2002-10-12 13:37:38 +02:00
Object *ob;
Mesh *me;
Curve *cu;
MetaBall *mb;
Material **newmatar;
int totcol=0;
if(id==0) return;
if( GS(id->name)==ID_ME ) {
me= (Mesh *)id;
totcol= me->totcol;
}
else if( GS(id->name)==ID_CU ) {
cu= (Curve *)id;
totcol= cu->totcol;
}
else if( GS(id->name)==ID_MB ) {
mb= (MetaBall *)id;
totcol= mb->totcol;
}
else return;
ob= G.main->object.first;
while(ob) {
if(ob->data==id) {
if(totcol==0) {
if(ob->totcol) {
MEM_freeN(ob->mat);
ob->mat= 0;
}
}
else if(ob->totcol<totcol) {
newmatar= MEM_callocN(sizeof(void *)*totcol, "newmatar");
if(ob->totcol) {
memcpy(newmatar, ob->mat, sizeof(void *)*ob->totcol);
MEM_freeN(ob->mat);
}
ob->mat= newmatar;
}
ob->totcol= totcol;
if(ob->totcol && ob->actcol==0) ob->actcol= 1;
if(ob->actcol>ob->totcol) ob->actcol= ob->totcol;
}
ob= ob->id.next;
}
}
void assign_material(Object *ob, Material *ma, int act)
{
Material *mao, **matar, ***matarar;
short *totcolp;
if(act>MAXMAT) return;
if(act<1) act= 1;
/* test arraylens */
totcolp= give_totcolp(ob);
matarar= give_matarar(ob);
if(totcolp==0 || matarar==0) return;
if( act > *totcolp) {
matar= MEM_callocN(sizeof(void *)*act, "matarray1");
if( *totcolp) {
memcpy(matar, *matarar, sizeof(void *)*( *totcolp ));
MEM_freeN(*matarar);
}
*matarar= matar;
*totcolp= act;
}
if(act > ob->totcol) {
matar= MEM_callocN(sizeof(void *)*act, "matarray2");
if( ob->totcol) {
memcpy(matar, ob->mat, sizeof(void *)*( ob->totcol ));
MEM_freeN(ob->mat);
}
ob->mat= matar;
ob->totcol= act;
}
/* do it */
2002-10-12 13:37:38 +02:00
if( BTST(ob->colbits, act-1) ) { /* in object */
2002-10-12 13:37:38 +02:00
mao= ob->mat[act-1];
if(mao) mao->id.us--;
ob->mat[act-1]= ma;
}
else { /* in data */
2002-10-12 13:37:38 +02:00
mao= (*matarar)[act-1];
if(mao) mao->id.us--;
(*matarar)[act-1]= ma;
}
id_us_plus((ID *)ma);
test_object_materials(ob->data);
}
void new_material_to_objectdata(Object *ob)
{
Material *ma;
if(ob==0) return;
if(ob->totcol>=MAXMAT) return;
ma= give_current_material(ob, ob->actcol);
if(ma==0) {
ma= add_material("Material");
ma->id.us= 0;
}
if(ob->actcol) {
if( BTST(ob->colbits, ob->actcol-1) ) {
ob->colbits= BSET(ob->colbits, ob->totcol);
}
}
assign_material(ob, ma, ob->totcol+1);
ob->actcol= ob->totcol;
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
static void do_init_render_material(Material *ma, int osa, float *amb)
2002-10-12 13:37:38 +02:00
{
MTex *mtex;
int a, needuv=0;
if(ma->flarec==0) ma->flarec= 1;
/* add all texcoflags from mtex */
2002-10-12 13:37:38 +02:00
ma->texco= 0;
ma->mapto= 0;
for(a=0; a<MAX_MTEX; a++) {
/* separate tex switching */
if(ma->septex & (1<<a)) continue;
2002-10-12 13:37:38 +02:00
mtex= ma->mtex[a];
if(mtex && mtex->tex) {
ma->texco |= mtex->texco;
ma->mapto |= mtex->mapto;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
if(osa) {
2002-10-12 13:37:38 +02:00
if ELEM3(mtex->tex->type, TEX_IMAGE, TEX_PLUGIN, TEX_ENVMAP) ma->texco |= TEXCO_OSA;
}
if(ma->texco & (TEXCO_ORCO|TEXCO_REFL|TEXCO_NORM|TEXCO_STRAND|TEXCO_STRESS)) needuv= 1;
else if(ma->texco & (TEXCO_GLOB|TEXCO_UV|TEXCO_OBJECT|TEXCO_SPEED)) needuv= 1;
else if(ma->texco & (TEXCO_LAVECTOR|TEXCO_VIEW|TEXCO_STICKY)) needuv= 1;
2002-10-12 13:37:38 +02:00
}
}
So, for the platform managers to check: - the link order for Blender has changed, the libradiosity.a has to be moved after the librender.a (obviously for a new dependency!). Check blender/source/Makefile - there's a new file: blender/source/radiosity/intern/source/radrender.c Here's what the new code does: Using the core routines of the Radiosity tool, each renderface with 'emit material' and each renderface with 'radio material flag' set will be used to itterate to a global illumination solution. Per face with high energy (emit) little images are rendered (hemicubes) which makes up lookup tables to 'shoot' its energy to other faces. In the end this energy - color - then is directly added to the pixel colors while rendering, Gouraud shaded. Since it's done with renderfaces, it works for all primitives in Blender. What is doesn't do yet: - take into account textured color of faces. Currently it uses the material RGB color for filtering distributed energy. - do some smart pre-subdividing. I don't know yet if this is useful... Right now it means that you'll have to balance the models yourself, to deliver small faces where you want a high accuracy for shadowing. - unified render (is at my todo list) User notes: - per Material you want to have included in radiosity render: set the 'radio' flag. For newly added Materials it is ON by default now. - the Ambient slider in Material controls the amount of radiosity color. - for enabling radiosity rendering, set the F10 "Radio" button. - the Radiosity buttons now only show the relevant radiosity rendering options. Pressing "collect meshes" will show all buttons again. - for meshes, the faces who use Radio material always call the 'autosmooth' routine, this to make sure sharp angles (like corners in a room) do not have shared vertices. For some smooth models (like the raptor example) you might increase the standard smoothing angle from 30 to 45 degree. Technical notes: - I had to expand the renderface and rendervertices for it... shame on me! Faces have one pointer extra, render vertices four floats... - The size of the hemicubes is now based at the boundbox of the entire scene (0.002 of it). This should be more reliable... to be done - I fixed a bug in radiosity render, where sometimes backfaces where lit In general: I'd like everyone to play a bit with this system. It's not easy to get good results with it. A simple "hit and go" isn't there... maybe some good suggestions?
2003-08-31 22:33:46 +02:00
if(ma->mode & MA_RADIO) needuv= 1;
if(ma->mode & (MA_VERTEXCOL|MA_VERTEXCOLP|MA_FACETEXTURE)) {
2002-10-12 13:37:38 +02:00
needuv= 1;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
if(osa) ma->texco |= TEXCO_OSA; /* for texfaces */
2002-10-12 13:37:38 +02:00
}
if(needuv) ma->texco |= NEED_UV;
// since the raytracer doesnt recalc O structs for each ray, we have to preset them all
if(ma->mode & (MA_RAYMIRROR|MA_RAYTRANSP|MA_SHADOW_TRA)) {
ma->texco |= NEED_UV|TEXCO_ORCO|TEXCO_REFL|TEXCO_NORM;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
if(osa) ma->texco |= TEXCO_OSA;
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
ma->ambr= ma->amb*amb[0];
ma->ambg= ma->amb*amb[1];
ma->ambb= ma->amb*amb[2];
2002-10-12 13:37:38 +02:00
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
/* will become or-ed result of all node modes */
ma->mode_l= ma->mode;
2002-10-12 13:37:38 +02:00
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
void init_render_material(Material *mat, int osa, float *amb)
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 14:06:05 +01:00
{
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
do_init_render_material(mat, osa, amb);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 14:06:05 +01:00
if(mat->nodetree && mat->use_nodes) {
bNode *node;
for(node=mat->nodetree->nodes.first; node; node= node->next) {
if(node->id && GS(node->id->name)==ID_MA) {
Material *ma= (Material *)node->id;
if(ma!=mat) {
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
do_init_render_material(ma, osa, amb);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 14:06:05 +01:00
mat->texco |= ma->texco;
mat->mode_l |= ma->mode_l;
}
}
}
/* parses the geom nodes */
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
mat->texco |= ntreeShaderGetTexco(mat->nodetree, osa);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 14:06:05 +01:00
ntreeBeginExecTree(mat->nodetree); /* has internal flag to detect it only does it once */
}
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
void init_render_materials(int osa, float *amb)
2002-10-12 13:37:38 +02:00
{
Material *ma;
/* two steps, first initialize, then or the flags for layers */
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 14:06:05 +01:00
for(ma= G.main->mat.first; ma; ma= ma->id.next)
if(ma->id.us)
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
init_render_material(ma, osa, amb);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 14:06:05 +01:00
}
/* only needed for nodes now */
void end_render_material(Material *mat)
{
if(mat && mat->nodetree && mat->use_nodes)
ntreeEndExecTree(mat->nodetree); /* has internal flag to detect it only does it once */
}
void end_render_materials(void)
{
Material *ma;
for(ma= G.main->mat.first; ma; ma= ma->id.next)
if(ma->id.us)
end_render_material(ma);
2002-10-12 13:37:38 +02:00
}
/* ****************** */
char colname_array[125][20]= {
"Black","DarkRed","HalveRed","Red","Red",
"DarkGreen","DarkOlive","Brown","Chocolate","OrangeRed",
"HalveGreen","GreenOlive","DryOlive","Goldenrod","DarkOrange",
"LightGreen","Chartreuse","YellowGreen","Yellow","Gold",
"Green","LawnGreen","GreenYellow","LightOlive","Yellow",
"DarkBlue","DarkPurple","HotPink","VioletPink","RedPink",
"SlateGray","DarkGrey","PalePurple","IndianRed","Tomato",
"SeaGreen","PaleGreen","GreenKhaki","LightBrown","LightSalmon",
"SpringGreen","PaleGreen","MediumOlive","YellowBrown","LightGold",
"LightGreen","LightGreen","LightGreen","GreenYellow","PaleYellow",
"HalveBlue","DarkSky","HalveMagenta","VioletRed","DeepPink",
"SteelBlue","SkyBlue","Orchid","LightHotPink","HotPink",
"SeaGreen","SlateGray","MediumGrey","Burlywood","LightPink",
"SpringGreen","Aquamarine","PaleGreen","Khaki","PaleOrange",
"SpringGreen","SeaGreen","PaleGreen","PaleWhite","YellowWhite",
"LightBlue","Purple","MediumOrchid","Magenta","Magenta",
"RoyalBlue","SlateBlue","MediumOrchid","Orchid","Magenta",
"DeepSkyBlue","LightSteelBlue","LightSkyBlue","Violet","LightPink",
"Cyaan","DarkTurquoise","SkyBlue","Grey","Snow",
"Mint","Mint","Aquamarine","MintCream","Ivory",
"Blue","Blue","DarkMagenta","DarkOrchid","Magenta",
"SkyBlue","RoyalBlue","LightSlateBlue","MediumOrchid","Magenta",
"DodgerBlue","SteelBlue","MediumPurple","PalePurple","Plum",
"DeepSkyBlue","PaleBlue","LightSkyBlue","PalePurple","Thistle",
"Cyan","ColdBlue","PaleTurquoise","GhostWhite","White"
};
void automatname(Material *ma)
{
int nr, r, g, b;
float ref;
if(ma==0) return;
if(ma->mode & MA_SHLESS) ref= 1.0;
else ref= ma->ref;
r= (int)(4.99*(ref*ma->r));
g= (int)(4.99*(ref*ma->g));
b= (int)(4.99*(ref*ma->b));
nr= r + 5*g + 25*b;
if(nr>124) nr= 124;
new_id(&G.main->mat, (ID *)ma, colname_array[nr]);
}
void delete_material_index()
{
Material *mao, ***matarar;
Object *ob, *obt;
Curve *cu;
Nurb *nu;
short *totcolp;
int a, actcol;
if(G.obedit) {
error("Unable to perform function in EditMode");
return;
}
ob= ((G.scene->basact)? (G.scene->basact->object) : 0) ;
if(ob==0 || ob->totcol==0) return;
/* take a mesh/curve/mball as starting point, remove 1 index,
* AND with all objects that share the ob->data
2002-10-12 13:37:38 +02:00
*
* after that check indices in mesh/curve/mball!!!
2002-10-12 13:37:38 +02:00
*/
totcolp= give_totcolp(ob);
matarar= give_matarar(ob);
/* we delete the actcol */
2002-10-12 13:37:38 +02:00
if(ob->totcol) {
mao= (*matarar)[ob->actcol-1];
if(mao) mao->id.us--;
}
for(a=ob->actcol; a<ob->totcol; a++) {
(*matarar)[a-1]= (*matarar)[a];
}
(*totcolp)--;
if(*totcolp==0) {
MEM_freeN(*matarar);
*matarar= 0;
}
actcol= ob->actcol;
obt= G.main->object.first;
while(obt) {
if(obt->data==ob->data) {
/* WATCH IT: do not use actcol from ob or from obt (can become zero) */
2002-10-12 13:37:38 +02:00
mao= obt->mat[actcol-1];
if(mao) mao->id.us--;
for(a=actcol; a<obt->totcol; a++) obt->mat[a-1]= obt->mat[a];
obt->totcol--;
if(obt->actcol > obt->totcol) obt->actcol= obt->totcol;
if(obt->totcol==0) {
MEM_freeN(obt->mat);
obt->mat= 0;
}
}
obt= obt->id.next;
}
/* check indices from mesh */
2002-10-12 13:37:38 +02:00
if(ob->type==OB_MESH) {
Mesh *me= get_mesh(ob);
mesh_delete_material_index(me, actcol-1);
Result of 2 weeks of quiet coding work in Greece :) Aim was to get a total refresh of the animation system. This is needed because; - we need to upgrade it with 21st century features - current code is spaghetti/hack combo, and hides good design - it should become lag-free with using dependency graphs A full log, with complete code API/structure/design explanation will follow, that's a load of work... so here below the list with hot changes; - The entire object update system (matrices, geometry) is now centralized. Calls to where_is_object and makeDispList are forbidden, instead we tag objects 'changed' and let the depgraph code sort it out - Removed all old "Ika" code - Depgraph is aware of all relationships, including meta balls, constraints, bevelcurve, and so on. - Made depgraph aware of relation types and layers, to do smart flushing of 'changed' events. Nothing gets calculated too often! - Transform uses depgraph to detect changes - On frame-advance, depgraph flushes animated changes Armatures; Almost all armature related code has been fully built from scratch. It now reveils the original design much better, with a very clean implementation, lag free without even calculating each Bone more than once. Result is quite a speedup yes! Important to note is; 1) Armature is data containing the 'rest position' 2) Pose is the changes of rest position, and always on object level. That way more Objects can use same Pose. Also constraints are in Pose 3) Actions only contain the Ipos to change values in Poses. - Bones draw unrotated now - Drawing bones speedup enormously (10-20 times) - Bone selecting in EditMode, selection state is saved for PoseMode, and vice-versa - Undo in editmode - Bone renaming does vertexgroups, constraints, posechannels, actions, for all users of Armature in entire file - Added Bone renaming in NKey panel - Nkey PoseMode shows eulers now - EditMode and PoseMode now have 'active' bone too (last clicked) - Parenting in EditMode' CTRL+P, ALT+P, with nice options! - Pose is added in Outliner now, with showing that constraints are in the Pose, not Armature - Disconnected IK solving from constraints. It's a separate phase now, on top of the full Pose calculations - Pose itself has a dependency graph too, so evaluation order is lag free. TODO NOW; - Rotating in Posemode has incorrect inverse transform (Martin will fix) - Python Bone/Armature/Pose API disabled... needs full recode too (wait for my doc!) - Game engine will need upgrade too - Depgraph code needs revision, cleanup, can be much faster! (But, compliments for Jean-Luc, it works like a charm!) - IK changed, it now doesnt use previous position to advance to next position anymore. That system looks nice (no flips) but is not well suited for NLA and background render. TODO LATER; We now can do loadsa new nifty features as well; like: - Kill PoseMode (can be option for armatures itself) - Make B-Bones (Bezier, Bspline, like for spines) - Move all silly button level edit to 3d window (like CTRL+I = add IK) - Much better & informative drawing - Fix action/nla editors - Put all ipos in Actions (object, mesh key, lamp color) - Add hooks - Null bones - Much more advanced constraints... Bugfixes; - OGL render (view3d header) had wrong first frame on anim render - Ipo 'recording' mode had wrong playback speed - Vertex-key mode now sticks to show 'active key', until frame change -Ton-
2005-07-03 19:35:38 +02:00
freedisplist(&ob->disp);
2002-10-12 13:37:38 +02:00
}
else if ELEM(ob->type, OB_CURVE, OB_SURF) {
cu= ob->data;
nu= cu->nurb.first;
while(nu) {
if(nu->mat_nr && nu->mat_nr>=actcol-1) {
nu->mat_nr--;
if (ob->type == OB_CURVE) nu->charidx--;
}
2002-10-12 13:37:38 +02:00
nu= nu->next;
}
Result of 2 weeks of quiet coding work in Greece :) Aim was to get a total refresh of the animation system. This is needed because; - we need to upgrade it with 21st century features - current code is spaghetti/hack combo, and hides good design - it should become lag-free with using dependency graphs A full log, with complete code API/structure/design explanation will follow, that's a load of work... so here below the list with hot changes; - The entire object update system (matrices, geometry) is now centralized. Calls to where_is_object and makeDispList are forbidden, instead we tag objects 'changed' and let the depgraph code sort it out - Removed all old "Ika" code - Depgraph is aware of all relationships, including meta balls, constraints, bevelcurve, and so on. - Made depgraph aware of relation types and layers, to do smart flushing of 'changed' events. Nothing gets calculated too often! - Transform uses depgraph to detect changes - On frame-advance, depgraph flushes animated changes Armatures; Almost all armature related code has been fully built from scratch. It now reveils the original design much better, with a very clean implementation, lag free without even calculating each Bone more than once. Result is quite a speedup yes! Important to note is; 1) Armature is data containing the 'rest position' 2) Pose is the changes of rest position, and always on object level. That way more Objects can use same Pose. Also constraints are in Pose 3) Actions only contain the Ipos to change values in Poses. - Bones draw unrotated now - Drawing bones speedup enormously (10-20 times) - Bone selecting in EditMode, selection state is saved for PoseMode, and vice-versa - Undo in editmode - Bone renaming does vertexgroups, constraints, posechannels, actions, for all users of Armature in entire file - Added Bone renaming in NKey panel - Nkey PoseMode shows eulers now - EditMode and PoseMode now have 'active' bone too (last clicked) - Parenting in EditMode' CTRL+P, ALT+P, with nice options! - Pose is added in Outliner now, with showing that constraints are in the Pose, not Armature - Disconnected IK solving from constraints. It's a separate phase now, on top of the full Pose calculations - Pose itself has a dependency graph too, so evaluation order is lag free. TODO NOW; - Rotating in Posemode has incorrect inverse transform (Martin will fix) - Python Bone/Armature/Pose API disabled... needs full recode too (wait for my doc!) - Game engine will need upgrade too - Depgraph code needs revision, cleanup, can be much faster! (But, compliments for Jean-Luc, it works like a charm!) - IK changed, it now doesnt use previous position to advance to next position anymore. That system looks nice (no flips) but is not well suited for NLA and background render. TODO LATER; We now can do loadsa new nifty features as well; like: - Kill PoseMode (can be option for armatures itself) - Make B-Bones (Bezier, Bspline, like for spines) - Move all silly button level edit to 3d window (like CTRL+I = add IK) - Much better & informative drawing - Fix action/nla editors - Put all ipos in Actions (object, mesh key, lamp color) - Add hooks - Null bones - Much more advanced constraints... Bugfixes; - OGL render (view3d header) had wrong first frame on anim render - Ipo 'recording' mode had wrong playback speed - Vertex-key mode now sticks to show 'active key', until frame change -Ton-
2005-07-03 19:35:38 +02:00
freedisplist(&ob->disp);
2002-10-12 13:37:38 +02:00
}
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
/* r g b = current value, col = new value, fac==0 is no change */
/* if g==NULL, it only does r channel */
void ramp_blend(int type, float *r, float *g, float *b, float fac, float *col)
{
float tmp, facm= 1.0-fac;
switch (type) {
case MA_RAMP_BLEND:
*r = facm*(*r) + fac*col[0];
if(g) {
*g = facm*(*g) + fac*col[1];
*b = facm*(*b) + fac*col[2];
}
break;
case MA_RAMP_ADD:
*r += fac*col[0];
if(g) {
*g += fac*col[1];
*b += fac*col[2];
}
break;
case MA_RAMP_MULT:
*r *= (facm + fac*col[0]);
if(g) {
*g *= (facm + fac*col[1]);
*b *= (facm + fac*col[2]);
}
break;
case MA_RAMP_SCREEN:
*r = 1.0 - (facm + fac*(1.0 - col[0])) * (1.0 - *r);
if(g) {
*g = 1.0 - (facm + fac*(1.0 - col[1])) * (1.0 - *g);
*b = 1.0 - (facm + fac*(1.0 - col[2])) * (1.0 - *b);
}
break;
case MA_RAMP_OVERLAY:
if(*r < 0.5f)
*r *= (facm + 2.0f*fac*col[0]);
else
*r = 1.0 - (facm + 2.0f*fac*(1.0 - col[0])) * (1.0 - *r);
if(g) {
if(*g < 0.5f)
*g *= (facm + 2.0f*fac*col[1]);
else
*g = 1.0 - (facm + 2.0f*fac*(1.0 - col[1])) * (1.0 - *g);
if(*b < 0.5f)
*b *= (facm + 2.0f*fac*col[2]);
else
*b = 1.0 - (facm + 2.0f*fac*(1.0 - col[2])) * (1.0 - *b);
}
break;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
case MA_RAMP_SUB:
*r -= fac*col[0];
if(g) {
*g -= fac*col[1];
*b -= fac*col[2];
}
break;
case MA_RAMP_DIV:
if(col[0]!=0.0)
*r = facm*(*r) + fac*(*r)/col[0];
if(g) {
if(col[1]!=0.0)
*g = facm*(*g) + fac*(*g)/col[1];
if(col[2]!=0.0)
*b = facm*(*b) + fac*(*b)/col[2];
}
break;
case MA_RAMP_DIFF:
*r = facm*(*r) + fac*fabs(*r-col[0]);
if(g) {
*g = facm*(*g) + fac*fabs(*g-col[1]);
*b = facm*(*b) + fac*fabs(*b-col[2]);
}
break;
case MA_RAMP_DARK:
tmp= fac*col[0];
if(tmp < *r) *r= tmp;
if(g) {
tmp= fac*col[1];
if(tmp < *g) *g= tmp;
tmp= fac*col[2];
if(tmp < *b) *b= tmp;
}
break;
case MA_RAMP_LIGHT:
tmp= fac*col[0];
if(tmp > *r) *r= tmp;
if(g) {
tmp= fac*col[1];
if(tmp > *g) *g= tmp;
tmp= fac*col[2];
if(tmp > *b) *b= tmp;
}
break;
case MA_RAMP_DODGE:
tmp = 1.0 - fac*col[0];
if(tmp == 0.0)
*r = 1.0;
else if ((*r = (*r) / tmp)> 1.0)
*r = 1.0;
if(g) {
tmp = 1.0 - fac*col[1];
if(tmp == 0.0)
*g = 1.0;
else if ((*g = (*g) / tmp) > 1.0)
*g = 1.0;
tmp = 1.0 - fac*col[2];
if(tmp == 0.0)
*b = 1.0;
else if ((*b = (*b) / tmp) > 1.0)
*b = 1.0;
}
break;
case MA_RAMP_BURN:
tmp = facm + fac*col[0];
if(tmp == 0.0)
*r = 0.0;
else if (( (*r) = (1.0 - (1.0 - (*r)) / tmp )) < 0.0 )
*r = 0.0;
if(g) {
tmp = facm + fac*col[1];
if(tmp == 0.0)
*g = 0.0;
else if (( (*g) = (1.0 - (1.0 - (*g)) / tmp )) < 0.0 )
*g = 0.0;
tmp = facm + fac*col[2];
if(tmp == 0.0)
*b = 0.0;
else if (( (*b) = (1.0 - (1.0 - (*b)) / tmp )) < 0.0 )
*b = 0.0;
}
break;
case MA_RAMP_HUE:
if(g){
float rH,rS,rV;
float colH,colS,colV;
float tmpr,tmpg,tmpb;
rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV);
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
hsv_to_rgb( colH , rS, rV, &tmpr, &tmpg, &tmpb);
*r = facm*(*r) + fac*tmpr;
*g = facm*(*g) + fac*tmpg;
*b = facm*(*b) + fac*tmpb;
}
break;
case MA_RAMP_SAT:
if(g){
float rH,rS,rV;
float colH,colS,colV;
rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV);
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
hsv_to_rgb( rH, (facm*rS +fac*colS), rV, r, g, b);
}
break;
case MA_RAMP_VAL:
if(g){
float rH,rS,rV;
float colH,colS,colV;
rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV);
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
hsv_to_rgb( rH, rS, (facm*rV +fac*colV), r, g, b);
}
break;
case MA_RAMP_COLOR:
if(g){
float rH,rS,rV;
float colH,colS,colV;
float tmpr,tmpg,tmpb;
rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV);
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
hsv_to_rgb( colH, colS, rV, &tmpr, &tmpg, &tmpb);
*r = facm*(*r) + fac*tmpr;
*g = facm*(*g) + fac*tmpg;
*b = facm*(*b) + fac*tmpb;
}
break;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 23:05:47 +01:00
}
}