tornavis/source/blender/editors/transform/transform_input.c

422 lines
11 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 14:34:04 +01:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
2011-02-27 21:29:51 +01:00
/** \file blender/editors/transform/transform_input.c
* \ingroup edtransform
*/
#include <stdlib.h>
#include <math.h>
#include "DNA_screen_types.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "WM_types.h"
#include "transform.h"
#include "MEM_guardedalloc.h"
/* ************************** INPUT FROM MOUSE *************************** */
static void InputVector(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
convertViewVec(t, output, mval[0] - mi->imval[0], mval[1] - mi->imval[1]);
}
static void InputSpring(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3])
{
double dx, dy;
float ratio;
dx = (mi->center[0] - mval[0]);
dy = (mi->center[1] - mval[1]);
ratio = hypot(dx, dy) / mi->factor;
output[0] = ratio;
}
static void InputSpringFlip(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputSpring(t, mi, mval, output);
/* flip scale */
/* values can become really big when zoomed in so use longs [#26598] */
2012-05-19 15:55:54 +02:00
if ((long long int)(mi->center[0] - mval[0]) * (long long int)(mi->center[0] - mi->imval[0]) +
2012-05-20 23:23:26 +02:00
(long long int)(mi->center[1] - mval[1]) * (long long int)(mi->center[1] - mi->imval[1]) < 0)
{
output[0] *= -1.0f;
2012-05-20 23:23:26 +02:00
}
}
static void InputSpringDelta(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputSpring(t, mi, mval, output);
output[0] -= 1.0f;
}
static void InputTrackBall(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3])
{
output[0] = (float)(mi->imval[1] - mval[1]);
output[1] = (float)(mval[0] - mi->imval[0]);
output[0] *= mi->factor;
output[1] *= mi->factor;
}
static void InputHorizontalRatio(TransInfo *t, MouseInput *UNUSED(mi), const double mval[2], float output[3])
{
const float pad = t->ar->winx / 10;
output[0] = (mval[0] - pad) / (t->ar->winx - 2 * pad);
}
static void InputHorizontalAbsolute(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
float vec[3];
InputVector(t, mi, mval, vec);
project_v3_v3v3(vec, vec, t->viewinv[0]);
output[0] = dot_v3v3(t->viewinv[0], vec) * 2.0f;
}
static void InputVerticalRatio(TransInfo *t, MouseInput *UNUSED(mi), const double mval[2], float output[3])
{
const float pad = t->ar->winy / 10;
output[0] = (mval[1] - pad) / (t->ar->winy - 2 * pad);
}
static void InputVerticalAbsolute(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
float vec[3];
InputVector(t, mi, mval, vec);
project_v3_v3v3(vec, vec, t->viewinv[1]);
output[0] = dot_v3v3(t->viewinv[1], vec) * 2.0f;
}
void setCustomPoints(TransInfo *UNUSED(t), MouseInput *mi, const int mval_start[2], const int mval_end[2])
{
int *data;
mi->data = MEM_reallocN(mi->data, sizeof(int) * 4);
data = mi->data;
data[0] = mval_start[0];
data[1] = mval_start[1];
data[2] = mval_end[0];
data[3] = mval_end[1];
}
static void InputCustomRatioFlip(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3])
{
double length;
double distance;
double dx, dy;
const int *data = mi->data;
if (data) {
int mdx, mdy;
dx = data[2] - data[0];
dy = data[3] - data[1];
length = hypot(dx, dy);
mdx = mval[0] - data[2];
mdy = mval[1] - data[3];
distance = (length != 0.0) ? (mdx * dx + mdy * dy) / length : 0.0;
output[0] = (length != 0.0) ? (double)(distance / length) : 0.0;
}
}
static void InputCustomRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputCustomRatioFlip(t, mi, mval, output);
output[0] = -output[0];
}
struct InputAngle_Data {
double angle;
double mval_prev[2];
};
static void InputAngle(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3])
{
struct InputAngle_Data *data = mi->data;
double dx2 = mval[0] - mi->center[0];
double dy2 = mval[1] - mi->center[1];
2012-06-11 00:13:17 +02:00
double B = sqrt(dx2 * dx2 + dy2 * dy2);
double dx1 = data->mval_prev[0] - mi->center[0];
double dy1 = data->mval_prev[1] - mi->center[1];
2012-06-11 00:13:17 +02:00
double A = sqrt(dx1 * dx1 + dy1 * dy1);
double dx3 = mval[0] - data->mval_prev[0];
double dy3 = mval[1] - data->mval_prev[1];
2014-04-25 03:19:21 +02:00
/* use doubles here, to make sure a "1.0" (no rotation) doesn't become 9.999999e-01, which gives 0.02 for acos */
2012-05-09 11:24:15 +02:00
double deler = (((dx1 * dx1 + dy1 * dy1) +
(dx2 * dx2 + dy2 * dy2) -
(dx3 * dx3 + dy3 * dy3)) / (2.0 * ((A * B) ? (A * B) : 1.0)));
2013-02-02 05:58:03 +01:00
/* ((A * B) ? (A * B) : 1.0) this takes care of potential divide by zero errors */
float dphi;
dphi = saacos((float)deler);
2012-06-11 00:13:17 +02:00
if ((dx1 * dy2 - dx2 * dy1) > 0.0) dphi = -dphi;
/* If the angle is zero, because of lack of precision close to the 1.0 value in acos
* approximate the angle with the opposite side of the normalized triangle
* This is a good approximation here since the smallest acos value seems to be around
* 0.02 degree and lower values don't even have a 0.01% error compared to the approximation
*/
if (dphi == 0) {
double dx, dy;
dx2 /= A;
dy2 /= A;
dx1 /= B;
dy1 /= B;
dx = dx1 - dx2;
dy = dy1 - dy2;
2012-06-11 00:13:17 +02:00
dphi = sqrt(dx * dx + dy * dy);
if ((dx1 * dy2 - dx2 * dy1) > 0.0) dphi = -dphi;
}
data->angle += ((double)dphi) * (mi->precision ? mi->precision_factor : 1.0f);
data->mval_prev[0] = mval[0];
data->mval_prev[1] = mval[1];
output[0] = data->angle;
}
static void InputAngleSpring(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
float toutput[3];
InputAngle(t, mi, mval, output);
InputSpring(t, mi, mval, toutput);
output[1] = toutput[0];
}
void initMouseInput(TransInfo *UNUSED(t), MouseInput *mi, const float center[2], const int mval[2])
{
mi->factor = 0;
mi->precision = 0;
mi->center[0] = center[0];
mi->center[1] = center[1];
mi->imval[0] = mval[0];
mi->imval[1] = mval[1];
mi->post = NULL;
}
static void calcSpringFactor(MouseInput *mi)
{
2012-05-09 11:24:15 +02:00
mi->factor = sqrtf(((float)(mi->center[1] - mi->imval[1])) * ((float)(mi->center[1] - mi->imval[1])) +
((float)(mi->center[0] - mi->imval[0])) * ((float)(mi->center[0] - mi->imval[0])));
if (mi->factor == 0.0f) {
2012-06-11 00:13:17 +02:00
mi->factor = 1.0f; /* prevent Inf */
2012-05-09 11:24:15 +02:00
}
}
void initMouseInputMode(TransInfo *t, MouseInput *mi, MouseInputMode mode)
{
/* incase we allocate a new value */
void *mi_data_prev = mi->data;
mi->use_virtual_mval = true;
mi->precision_factor = 1.0f / 10.0f;
switch (mode) {
2012-06-11 00:13:17 +02:00
case INPUT_VECTOR:
mi->apply = InputVector;
t->helpline = HLP_NONE;
break;
case INPUT_SPRING:
calcSpringFactor(mi);
mi->apply = InputSpring;
t->helpline = HLP_SPRING;
break;
case INPUT_SPRING_FLIP:
calcSpringFactor(mi);
mi->apply = InputSpringFlip;
t->helpline = HLP_SPRING;
break;
case INPUT_SPRING_DELTA:
calcSpringFactor(mi);
mi->apply = InputSpringDelta;
t->helpline = HLP_SPRING;
break;
2012-06-11 00:13:17 +02:00
case INPUT_ANGLE:
case INPUT_ANGLE_SPRING:
{
struct InputAngle_Data *data;
mi->use_virtual_mval = false;
mi->precision_factor = 1.0f / 30.0f;
data = MEM_callocN(sizeof(struct InputAngle_Data), "angle accumulator");
data->mval_prev[0] = mi->imval[0];
data->mval_prev[1] = mi->imval[1];
mi->data = data;
if (mode == INPUT_ANGLE) {
mi->apply = InputAngle;
}
else {
mi->apply = InputAngleSpring;
}
t->helpline = HLP_ANGLE;
break;
}
2012-06-11 00:13:17 +02:00
case INPUT_TRACKBALL:
mi->precision_factor = 1.0f / 30.0f;
2012-06-11 00:13:17 +02:00
/* factor has to become setting or so */
mi->factor = 0.01f;
mi->apply = InputTrackBall;
t->helpline = HLP_TRACKBALL;
break;
case INPUT_HORIZONTAL_RATIO:
mi->factor = (float)(mi->center[0] - mi->imval[0]);
mi->apply = InputHorizontalRatio;
t->helpline = HLP_HARROW;
break;
case INPUT_HORIZONTAL_ABSOLUTE:
mi->apply = InputHorizontalAbsolute;
t->helpline = HLP_HARROW;
break;
case INPUT_VERTICAL_RATIO:
mi->apply = InputVerticalRatio;
t->helpline = HLP_VARROW;
break;
case INPUT_VERTICAL_ABSOLUTE:
mi->apply = InputVerticalAbsolute;
t->helpline = HLP_VARROW;
break;
case INPUT_CUSTOM_RATIO:
mi->apply = InputCustomRatio;
t->helpline = HLP_NONE;
break;
case INPUT_CUSTOM_RATIO_FLIP:
mi->apply = InputCustomRatioFlip;
t->helpline = HLP_NONE;
break;
2012-06-11 00:13:17 +02:00
case INPUT_NONE:
default:
mi->apply = NULL;
break;
}
/* if we've allocated new data, free the old data
* less hassle then checking before every alloc above */
if (mi_data_prev && (mi_data_prev != mi->data)) {
MEM_freeN(mi_data_prev);
}
/* bootstrap mouse input with initial values */
applyMouseInput(t, mi, mi->imval, t->values);
}
void setInputPostFct(MouseInput *mi, void (*post)(struct TransInfo *t, float values[3]))
{
mi->post = post;
}
void applyMouseInput(TransInfo *t, MouseInput *mi, const int mval[2], float output[3])
{
double mval_db[2];
if (mi->use_virtual_mval) {
/* update accumulator */
double mval_delta[2];
mval_delta[0] = (mval[0] - mi->imval[0]) - mi->virtual_mval.prev[0];
mval_delta[1] = (mval[1] - mi->imval[1]) - mi->virtual_mval.prev[1];
mi->virtual_mval.prev[0] += mval_delta[0];
mi->virtual_mval.prev[1] += mval_delta[1];
if (mi->precision) {
mval_delta[0] *= mi->precision_factor;
mval_delta[1] *= mi->precision_factor;
}
mi->virtual_mval.accum[0] += mval_delta[0];
mi->virtual_mval.accum[1] += mval_delta[1];
mval_db[0] = mi->imval[0] + mi->virtual_mval.accum[0];
mval_db[1] = mi->imval[1] + mi->virtual_mval.accum[1];
}
else {
mval_db[0] = mval[0];
mval_db[1] = mval[1];
}
if (mi->apply != NULL) {
mi->apply(t, mi, mval_db, output);
}
if (mi->post) {
mi->post(t, output);
}
}
eRedrawFlag handleMouseInput(TransInfo *t, MouseInput *mi, const wmEvent *event)
{
eRedrawFlag redraw = TREDRAW_NOTHING;
switch (event->type) {
2012-06-11 00:13:17 +02:00
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
if (event->val == KM_PRESS) {
t->modifiers |= MOD_PRECISION;
/* shift is modifier for higher precision transforn */
2012-06-11 00:13:17 +02:00
mi->precision = 1;
redraw = TREDRAW_HARD;
2012-06-11 00:13:17 +02:00
}
2012-12-14 05:38:52 +01:00
else if (event->val == KM_RELEASE) {
2012-06-11 00:13:17 +02:00
t->modifiers &= ~MOD_PRECISION;
mi->precision = 0;
redraw = TREDRAW_HARD;
2012-06-11 00:13:17 +02:00
}
break;
}
return redraw;
}