tornavis/source/blender/blenkernel/BKE_attribute_math.hh

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

338 lines
9.6 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
#include "BLI_array.hh"
#include "BLI_color.hh"
#include "BLI_float2.hh"
#include "BLI_float3.hh"
#include "DNA_customdata_types.h"
#include "FN_cpp_type.hh"
namespace blender::attribute_math {
using fn::CPPType;
/**
* Utility function that simplifies calling a templated function based on a custom data type.
*/
template<typename Func>
inline void convert_to_static_type(const CustomDataType data_type, const Func &func)
{
switch (data_type) {
case CD_PROP_FLOAT:
func(float());
break;
case CD_PROP_FLOAT2:
func(float2());
break;
case CD_PROP_FLOAT3:
func(float3());
break;
case CD_PROP_INT32:
func(int());
break;
case CD_PROP_BOOL:
func(bool());
break;
case CD_PROP_COLOR:
Blenlib: Explicit Colors. Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:00:14 +02:00
func(ColorGeometry4f());
break;
default:
BLI_assert_unreachable();
break;
}
}
template<typename Func>
inline void convert_to_static_type(const fn::CPPType &cpp_type, const Func &func)
{
if (cpp_type.is<float>()) {
func(float());
}
else if (cpp_type.is<float2>()) {
func(float2());
}
else if (cpp_type.is<float3>()) {
func(float3());
}
else if (cpp_type.is<int>()) {
func(int());
}
else if (cpp_type.is<bool>()) {
func(bool());
}
Blenlib: Explicit Colors. Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:00:14 +02:00
else if (cpp_type.is<ColorGeometry4f>()) {
func(ColorGeometry4f());
}
else {
BLI_assert_unreachable();
}
}
/* -------------------------------------------------------------------- */
/** \name Mix three values of the same type.
*
* This is typically used to interpolate values within a triangle.
* \{ */
template<typename T> T mix3(const float3 &weights, const T &v0, const T &v1, const T &v2);
template<> inline bool mix3(const float3 &weights, const bool &v0, const bool &v1, const bool &v2)
{
return (weights.x * v0 + weights.y * v1 + weights.z * v2) >= 0.5f;
}
template<> inline int mix3(const float3 &weights, const int &v0, const int &v1, const int &v2)
{
return static_cast<int>(weights.x * v0 + weights.y * v1 + weights.z * v2);
}
template<>
inline float mix3(const float3 &weights, const float &v0, const float &v1, const float &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
inline float2 mix3(const float3 &weights, const float2 &v0, const float2 &v1, const float2 &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
inline float3 mix3(const float3 &weights, const float3 &v0, const float3 &v1, const float3 &v2)
{
return weights.x * v0 + weights.y * v1 + weights.z * v2;
}
template<>
Blenlib: Explicit Colors. Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:00:14 +02:00
inline ColorGeometry4f mix3(const float3 &weights,
const ColorGeometry4f &v0,
const ColorGeometry4f &v1,
const ColorGeometry4f &v2)
{
Blenlib: Explicit Colors. Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:00:14 +02:00
ColorGeometry4f result;
interp_v4_v4v4v4(result, v0, v1, v2, weights);
return result;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mix two values of the same type.
*
* This is just basic linear interpolation.
* \{ */
template<typename T> T mix2(const float factor, const T &a, const T &b);
template<> inline bool mix2(const float factor, const bool &a, const bool &b)
{
return ((1.0f - factor) * a + factor * b) >= 0.5f;
}
template<> inline int mix2(const float factor, const int &a, const int &b)
{
return static_cast<int>((1.0f - factor) * a + factor * b);
}
template<> inline float mix2(const float factor, const float &a, const float &b)
{
return (1.0f - factor) * a + factor * b;
}
template<> inline float2 mix2(const float factor, const float2 &a, const float2 &b)
{
return float2::interpolate(a, b, factor);
}
template<> inline float3 mix2(const float factor, const float3 &a, const float3 &b)
{
return float3::interpolate(a, b, factor);
}
Blenlib: Explicit Colors. Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:00:14 +02:00
template<>
inline ColorGeometry4f mix2(const float factor, const ColorGeometry4f &a, const ColorGeometry4f &b)
{
Blenlib: Explicit Colors. Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:00:14 +02:00
ColorGeometry4f result;
interp_v4_v4v4(result, a, b, factor);
return result;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mix a dynamic amount of values with weights for many elements.
*
* This section provides an abstraction for "mixers". The abstraction encapsulates details about
* how different types should be mixed. Usually #DefaultMixer<T> should be used to get a mixer for
* a specific type.
* \{ */
template<typename T> class SimpleMixer {
private:
MutableSpan<T> buffer_;
T default_value_;
Array<float> total_weights_;
public:
/**
* \param buffer: Span where the interpolated values should be stored.
* \param default_value: Output value for an element that has not been affected by a #mix_in.
*/
SimpleMixer(MutableSpan<T> buffer, T default_value = {})
: buffer_(buffer), default_value_(default_value), total_weights_(buffer.size(), 0.0f)
{
BLI_STATIC_ASSERT(std::is_trivial_v<T>, "");
memset(buffer_.data(), 0, sizeof(T) * buffer_.size());
}
/**
* Mix a #value into the element with the given #index.
*/
void mix_in(const int64_t index, const T &value, const float weight = 1.0f)
{
BLI_assert(weight >= 0.0f);
buffer_[index] += value * weight;
total_weights_[index] += weight;
}
/**
* Has to be called before the buffer provided in the constructor is used.
*/
void finalize()
{
for (const int64_t i : buffer_.index_range()) {
const float weight = total_weights_[i];
if (weight > 0.0f) {
buffer_[i] *= 1.0f / weight;
}
else {
buffer_[i] = default_value_;
}
}
}
};
/**
* This mixer accumulates values in a type that is different from the one that is mixed.
* Some types cannot encode the floating point weights in their values (e.g. int and bool).
*/
template<typename T, typename AccumulationT, T (*ConvertToT)(const AccumulationT &value)>
class SimpleMixerWithAccumulationType {
private:
struct Item {
/* Store both values together, because they are accessed together. */
AccumulationT value = {0};
float weight = 0.0f;
};
MutableSpan<T> buffer_;
T default_value_;
Array<Item> accumulation_buffer_;
public:
SimpleMixerWithAccumulationType(MutableSpan<T> buffer, T default_value = {})
: buffer_(buffer), default_value_(default_value), accumulation_buffer_(buffer.size())
{
}
void mix_in(const int64_t index, const T &value, const float weight = 1.0f)
{
const AccumulationT converted_value = static_cast<AccumulationT>(value);
Item &item = accumulation_buffer_[index];
item.value += converted_value * weight;
item.weight += weight;
}
void finalize()
{
for (const int64_t i : buffer_.index_range()) {
const Item &item = accumulation_buffer_[i];
if (item.weight > 0.0f) {
const float weight_inv = 1.0f / item.weight;
const T converted_value = ConvertToT(item.value * weight_inv);
buffer_[i] = converted_value;
}
else {
buffer_[i] = default_value_;
}
}
}
};
Blenlib: Explicit Colors. Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:00:14 +02:00
class ColorGeometryMixer {
private:
Blenlib: Explicit Colors. Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:00:14 +02:00
MutableSpan<ColorGeometry4f> buffer_;
ColorGeometry4f default_color_;
Array<float> total_weights_;
public:
Blenlib: Explicit Colors. Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:00:14 +02:00
ColorGeometryMixer(MutableSpan<ColorGeometry4f> buffer,
ColorGeometry4f default_color = ColorGeometry4f(0.0f, 0.0f, 0.0f, 1.0f));
void mix_in(const int64_t index, const ColorGeometry4f &color, const float weight = 1.0f);
void finalize();
};
template<typename T> struct DefaultMixerStruct {
/* Use void by default. This can be check for in `if constexpr` statements. */
using type = void;
};
template<> struct DefaultMixerStruct<float> {
using type = SimpleMixer<float>;
};
template<> struct DefaultMixerStruct<float2> {
using type = SimpleMixer<float2>;
};
template<> struct DefaultMixerStruct<float3> {
using type = SimpleMixer<float3>;
};
Blenlib: Explicit Colors. Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:00:14 +02:00
template<> struct DefaultMixerStruct<ColorGeometry4f> {
/* Use a special mixer for colors. ColorGeometry4f can't be added/multiplied, because this is not
* something one should usually do with colors. */
Blenlib: Explicit Colors. Colors are often thought of as being 4 values that make up that can make any color. But that is of course too limited. In C we didn’t spend time to annotate what we meant when using colors. Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to enforce annotating structures during compilation and can adds conversions between them using function overloading and explicit constructors. The storage structs can hold 4 channels (r, g, b and a). Usage: Convert a theme byte color to a linearrgb premultiplied. ``` ColorTheme4b theme_color; ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color = BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha(); ``` The API is structured to make most use of inlining. Most notable are space conversions done via `BLI_color_convert_to*` functions. - Conversions between spaces (theme <=> scene linear) should always be done by invoking the `BLI_color_convert_to*` methods. - Encoding colors (compressing to store colors inside a less precision storage) should be done by invoking the `encode` and `decode` methods. - Changing alpha association should be done by invoking `premultiply_alpha` or `unpremultiply_alpha` methods. # Encoding. Color encoding is used to store colors with less precision as in using `uint8_t` in stead of `float`. This encoding is supported for `eSpace::SceneLinear`. To make this clear to the developer the `eSpace::SceneLinearByteEncoded` space is added. # Precision Colors can be stored using `uint8_t` or `float` colors. The conversion between the two precisions are available as methods. (`to_4b` and `to_4f`). # Alpha conversion Alpha conversion is only supported in SceneLinear space. Extending: - This file can be extended with `ColorHex/Hsl/Hsv` for different representations of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>` - Add non RGB spaces/storages ColorXyz. Reviewed By: JacquesLucke, brecht Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:00:14 +02:00
using type = ColorGeometryMixer;
};
template<> struct DefaultMixerStruct<int> {
static int double_to_int(const double &value)
{
return static_cast<int>(value);
}
/* Store interpolated ints in a double temporarily, so that weights are handled correctly. It
* uses double instead of float so that it is accurate for all 32 bit integers. */
using type = SimpleMixerWithAccumulationType<int, double, double_to_int>;
};
template<> struct DefaultMixerStruct<bool> {
static bool float_to_bool(const float &value)
{
return value >= 0.5f;
}
2021-02-09 21:57:52 +01:00
/* Store interpolated booleans in a float temporary.
* Otherwise information provided by weights is easily rounded away. */
using type = SimpleMixerWithAccumulationType<bool, float, float_to_bool>;
};
/* Utility to get a good default mixer for a given type. This is `void` when there is no default
* mixer for the given type. */
template<typename T> using DefaultMixer = typename DefaultMixerStruct<T>::type;
/** \} */
} // namespace blender::attribute_math