tornavis/source/blender/imbuf/intern/rectop.cc

1278 lines
33 KiB
C++

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup imbuf
*/
#include <cstdlib>
#include "BLI_math_base.h"
#include "BLI_math_color.h"
#include "BLI_math_color_blend.h"
#include "BLI_math_vector.h"
#include "BLI_rect.h"
#include "BLI_utildefines.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "IMB_colormanagement.h"
#include "MEM_guardedalloc.h"
#include <cstring>
void IMB_blend_color_byte(uchar dst[4],
const uchar src1[4],
const uchar src2[4],
IMB_BlendMode mode)
{
switch (mode) {
case IMB_BLEND_MIX:
blend_color_mix_byte(dst, src1, src2);
break;
case IMB_BLEND_ADD:
blend_color_add_byte(dst, src1, src2);
break;
case IMB_BLEND_SUB:
blend_color_sub_byte(dst, src1, src2);
break;
case IMB_BLEND_MUL:
blend_color_mul_byte(dst, src1, src2);
break;
case IMB_BLEND_LIGHTEN:
blend_color_lighten_byte(dst, src1, src2);
break;
case IMB_BLEND_DARKEN:
blend_color_darken_byte(dst, src1, src2);
break;
case IMB_BLEND_ERASE_ALPHA:
blend_color_erase_alpha_byte(dst, src1, src2);
break;
case IMB_BLEND_ADD_ALPHA:
blend_color_add_alpha_byte(dst, src1, src2);
break;
case IMB_BLEND_OVERLAY:
blend_color_overlay_byte(dst, src1, src2);
break;
case IMB_BLEND_HARDLIGHT:
blend_color_hardlight_byte(dst, src1, src2);
break;
case IMB_BLEND_COLORBURN:
blend_color_burn_byte(dst, src1, src2);
break;
case IMB_BLEND_LINEARBURN:
blend_color_linearburn_byte(dst, src1, src2);
break;
case IMB_BLEND_COLORDODGE:
blend_color_dodge_byte(dst, src1, src2);
break;
case IMB_BLEND_SCREEN:
blend_color_screen_byte(dst, src1, src2);
break;
case IMB_BLEND_SOFTLIGHT:
blend_color_softlight_byte(dst, src1, src2);
break;
case IMB_BLEND_PINLIGHT:
blend_color_pinlight_byte(dst, src1, src2);
break;
case IMB_BLEND_LINEARLIGHT:
blend_color_linearlight_byte(dst, src1, src2);
break;
case IMB_BLEND_VIVIDLIGHT:
blend_color_vividlight_byte(dst, src1, src2);
break;
case IMB_BLEND_DIFFERENCE:
blend_color_difference_byte(dst, src1, src2);
break;
case IMB_BLEND_EXCLUSION:
blend_color_exclusion_byte(dst, src1, src2);
break;
case IMB_BLEND_COLOR:
blend_color_color_byte(dst, src1, src2);
break;
case IMB_BLEND_HUE:
blend_color_hue_byte(dst, src1, src2);
break;
case IMB_BLEND_SATURATION:
blend_color_saturation_byte(dst, src1, src2);
break;
case IMB_BLEND_LUMINOSITY:
blend_color_luminosity_byte(dst, src1, src2);
break;
default:
dst[0] = src1[0];
dst[1] = src1[1];
dst[2] = src1[2];
dst[3] = src1[3];
break;
}
}
void IMB_blend_color_float(float dst[4],
const float src1[4],
const float src2[4],
IMB_BlendMode mode)
{
switch (mode) {
case IMB_BLEND_MIX:
blend_color_mix_float(dst, src1, src2);
break;
case IMB_BLEND_ADD:
blend_color_add_float(dst, src1, src2);
break;
case IMB_BLEND_SUB:
blend_color_sub_float(dst, src1, src2);
break;
case IMB_BLEND_MUL:
blend_color_mul_float(dst, src1, src2);
break;
case IMB_BLEND_LIGHTEN:
blend_color_lighten_float(dst, src1, src2);
break;
case IMB_BLEND_DARKEN:
blend_color_darken_float(dst, src1, src2);
break;
case IMB_BLEND_ERASE_ALPHA:
blend_color_erase_alpha_float(dst, src1, src2);
break;
case IMB_BLEND_ADD_ALPHA:
blend_color_add_alpha_float(dst, src1, src2);
break;
case IMB_BLEND_OVERLAY:
blend_color_overlay_float(dst, src1, src2);
break;
case IMB_BLEND_HARDLIGHT:
blend_color_hardlight_float(dst, src1, src2);
break;
case IMB_BLEND_COLORBURN:
blend_color_burn_float(dst, src1, src2);
break;
case IMB_BLEND_LINEARBURN:
blend_color_linearburn_float(dst, src1, src2);
break;
case IMB_BLEND_COLORDODGE:
blend_color_dodge_float(dst, src1, src2);
break;
case IMB_BLEND_SCREEN:
blend_color_screen_float(dst, src1, src2);
break;
case IMB_BLEND_SOFTLIGHT:
blend_color_softlight_float(dst, src1, src2);
break;
case IMB_BLEND_PINLIGHT:
blend_color_pinlight_float(dst, src1, src2);
break;
case IMB_BLEND_LINEARLIGHT:
blend_color_linearlight_float(dst, src1, src2);
break;
case IMB_BLEND_VIVIDLIGHT:
blend_color_vividlight_float(dst, src1, src2);
break;
case IMB_BLEND_DIFFERENCE:
blend_color_difference_float(dst, src1, src2);
break;
case IMB_BLEND_EXCLUSION:
blend_color_exclusion_float(dst, src1, src2);
break;
case IMB_BLEND_COLOR:
blend_color_color_float(dst, src1, src2);
break;
case IMB_BLEND_HUE:
blend_color_hue_float(dst, src1, src2);
break;
case IMB_BLEND_SATURATION:
blend_color_saturation_float(dst, src1, src2);
break;
case IMB_BLEND_LUMINOSITY:
blend_color_luminosity_float(dst, src1, src2);
break;
default:
dst[0] = src1[0];
dst[1] = src1[1];
dst[2] = src1[2];
dst[3] = src1[3];
break;
}
}
/* -------------------------------------------------------------------- */
/** \name Crop
* \{ */
static void rect_crop_4bytes(void **buf_p, const int size_src[2], const rcti *crop)
{
if (*buf_p == nullptr) {
return;
}
const int size_dst[2] = {
BLI_rcti_size_x(crop) + 1,
BLI_rcti_size_y(crop) + 1,
};
uint *src = static_cast<uint *>(*buf_p);
uint *dst = src + crop->ymin * size_src[0] + crop->xmin;
for (int y = 0; y < size_dst[1]; y++, src += size_dst[0], dst += size_src[0]) {
memmove(src, dst, sizeof(uint) * size_dst[0]);
}
*buf_p = MEM_reallocN(*buf_p, sizeof(uint) * size_dst[0] * size_dst[1]);
}
static void rect_crop_16bytes(void **buf_p, const int size_src[2], const rcti *crop)
{
if (*buf_p == nullptr) {
return;
}
const int size_dst[2] = {
BLI_rcti_size_x(crop) + 1,
BLI_rcti_size_y(crop) + 1,
};
uint(*src)[4] = static_cast<uint(*)[4]>(*buf_p);
uint(*dst)[4] = src + crop->ymin * size_src[0] + crop->xmin;
for (int y = 0; y < size_dst[1]; y++, src += size_dst[0], dst += size_src[0]) {
memmove(src, dst, sizeof(uint[4]) * size_dst[0]);
}
*buf_p = (void *)MEM_reallocN(*buf_p, sizeof(uint[4]) * size_dst[0] * size_dst[1]);
}
void IMB_rect_crop(ImBuf *ibuf, const rcti *crop)
{
const int size_src[2] = {
ibuf->x,
ibuf->y,
};
const int size_dst[2] = {
BLI_rcti_size_x(crop) + 1,
BLI_rcti_size_y(crop) + 1,
};
BLI_assert(size_dst[0] > 0 && size_dst[1] > 0);
BLI_assert(crop->xmin >= 0 && crop->ymin >= 0);
BLI_assert(crop->xmax < ibuf->x && crop->ymax < ibuf->y);
if ((size_dst[0] == ibuf->x) && (size_dst[1] == ibuf->y)) {
return;
}
/* TODO(sergey: Validate ownership. */
rect_crop_4bytes((void **)&ibuf->byte_buffer.data, size_src, crop);
rect_crop_16bytes((void **)&ibuf->float_buffer.data, size_src, crop);
ibuf->x = size_dst[0];
ibuf->y = size_dst[1];
}
/**
* Re-allocate buffers at a new size.
*/
static void rect_realloc_4bytes(void **buf_p, const uint size[2])
{
if (*buf_p == nullptr) {
return;
}
MEM_freeN(*buf_p);
*buf_p = MEM_mallocN(sizeof(uint) * size[0] * size[1], __func__);
}
static void rect_realloc_16bytes(void **buf_p, const uint size[2])
{
if (*buf_p == nullptr) {
return;
}
MEM_freeN(*buf_p);
*buf_p = MEM_mallocN(sizeof(uint[4]) * size[0] * size[1], __func__);
}
void IMB_rect_size_set(ImBuf *ibuf, const uint size[2])
{
BLI_assert(size[0] > 0 && size[1] > 0);
if ((size[0] == ibuf->x) && (size[1] == ibuf->y)) {
return;
}
/* TODO(sergey: Validate ownership. */
rect_realloc_4bytes((void **)&ibuf->byte_buffer.data, size);
rect_realloc_16bytes((void **)&ibuf->float_buffer.data, size);
ibuf->x = size[0];
ibuf->y = size[1];
}
/** \} */
/* clipping */
void IMB_rectclip(ImBuf *dbuf,
const ImBuf *sbuf,
int *destx,
int *desty,
int *srcx,
int *srcy,
int *width,
int *height)
{
int tmp;
if (dbuf == nullptr) {
return;
}
if (*destx < 0) {
*srcx -= *destx;
*width += *destx;
*destx = 0;
}
if (*srcx < 0) {
*destx -= *srcx;
*width += *srcx;
*srcx = 0;
}
if (*desty < 0) {
*srcy -= *desty;
*height += *desty;
*desty = 0;
}
if (*srcy < 0) {
*desty -= *srcy;
*height += *srcy;
*srcy = 0;
}
tmp = dbuf->x - *destx;
if (*width > tmp) {
*width = tmp;
}
tmp = dbuf->y - *desty;
if (*height > tmp) {
*height = tmp;
}
if (sbuf) {
tmp = sbuf->x - *srcx;
if (*width > tmp) {
*width = tmp;
}
tmp = sbuf->y - *srcy;
if (*height > tmp) {
*height = tmp;
}
}
if ((*height <= 0) || (*width <= 0)) {
*width = 0;
*height = 0;
}
}
static void imb_rectclip3(ImBuf *dbuf,
const ImBuf *obuf,
const ImBuf *sbuf,
int *destx,
int *desty,
int *origx,
int *origy,
int *srcx,
int *srcy,
int *width,
int *height)
{
int tmp;
if (dbuf == nullptr) {
return;
}
if (*destx < 0) {
*srcx -= *destx;
*origx -= *destx;
*width += *destx;
*destx = 0;
}
if (*origx < 0) {
*destx -= *origx;
*srcx -= *origx;
*width += *origx;
*origx = 0;
}
if (*srcx < 0) {
*destx -= *srcx;
*origx -= *srcx;
*width += *srcx;
*srcx = 0;
}
if (*desty < 0) {
*srcy -= *desty;
*origy -= *desty;
*height += *desty;
*desty = 0;
}
if (*origy < 0) {
*desty -= *origy;
*srcy -= *origy;
*height += *origy;
*origy = 0;
}
if (*srcy < 0) {
*desty -= *srcy;
*origy -= *srcy;
*height += *srcy;
*srcy = 0;
}
tmp = dbuf->x - *destx;
if (*width > tmp) {
*width = tmp;
}
tmp = dbuf->y - *desty;
if (*height > tmp) {
*height = tmp;
}
if (obuf) {
tmp = obuf->x - *origx;
if (*width > tmp) {
*width = tmp;
}
tmp = obuf->y - *origy;
if (*height > tmp) {
*height = tmp;
}
}
if (sbuf) {
tmp = sbuf->x - *srcx;
if (*width > tmp) {
*width = tmp;
}
tmp = sbuf->y - *srcy;
if (*height > tmp) {
*height = tmp;
}
}
if ((*height <= 0) || (*width <= 0)) {
*width = 0;
*height = 0;
}
}
/* copy and blend */
void IMB_rectcpy(ImBuf *dbuf,
const ImBuf *sbuf,
int destx,
int desty,
int srcx,
int srcy,
int width,
int height)
{
IMB_rectblend(dbuf,
dbuf,
sbuf,
nullptr,
nullptr,
nullptr,
0,
destx,
desty,
destx,
desty,
srcx,
srcy,
width,
height,
IMB_BLEND_COPY,
false);
}
using IMB_blend_func = void (*)(uchar *dst, const uchar *src1, const uchar *src2);
using IMB_blend_func_float = void (*)(float *dst, const float *src1, const float *src2);
void IMB_rectblend(ImBuf *dbuf,
const ImBuf *obuf,
const ImBuf *sbuf,
ushort *dmask,
const ushort *curvemask,
const ushort *texmask,
float mask_max,
int destx,
int desty,
int origx,
int origy,
int srcx,
int srcy,
int width,
int height,
IMB_BlendMode mode,
bool accumulate)
{
uint *drect = nullptr, *orect = nullptr, *srect = nullptr, *dr, *outr, *sr;
float *drectf = nullptr, *orectf = nullptr, *srectf = nullptr, *drf, *orf, *srf;
const ushort *cmaskrect = curvemask, *cmr;
ushort *dmaskrect = dmask, *dmr;
const ushort *texmaskrect = texmask, *tmr;
int srcskip, destskip, origskip, x;
IMB_blend_func func = nullptr;
IMB_blend_func_float func_float = nullptr;
if (dbuf == nullptr || obuf == nullptr) {
return;
}
imb_rectclip3(dbuf, obuf, sbuf, &destx, &desty, &origx, &origy, &srcx, &srcy, &width, &height);
if (width == 0 || height == 0) {
return;
}
if (sbuf && sbuf->channels != 4) {
return;
}
if (dbuf->channels != 4) {
return;
}
const bool do_char = (sbuf && sbuf->byte_buffer.data && dbuf->byte_buffer.data &&
obuf->byte_buffer.data);
const bool do_float = (sbuf && sbuf->float_buffer.data && dbuf->float_buffer.data &&
obuf->float_buffer.data);
if (do_char) {
drect = (uint *)dbuf->byte_buffer.data + size_t(desty) * dbuf->x + destx;
orect = (uint *)obuf->byte_buffer.data + size_t(origy) * obuf->x + origx;
}
if (do_float) {
drectf = dbuf->float_buffer.data + (size_t(desty) * dbuf->x + destx) * 4;
orectf = obuf->float_buffer.data + (size_t(origy) * obuf->x + origx) * 4;
}
if (dmaskrect) {
dmaskrect += size_t(origy) * obuf->x + origx;
}
destskip = dbuf->x;
origskip = obuf->x;
if (sbuf) {
if (do_char) {
srect = (uint *)sbuf->byte_buffer.data + size_t(srcy) * sbuf->x + srcx;
}
if (do_float) {
srectf = sbuf->float_buffer.data + (size_t(srcy) * sbuf->x + srcx) * 4;
}
srcskip = sbuf->x;
if (cmaskrect) {
cmaskrect += size_t(srcy) * sbuf->x + srcx;
}
if (texmaskrect) {
texmaskrect += size_t(srcy) * sbuf->x + srcx;
}
}
else {
srect = drect;
srectf = drectf;
srcskip = destskip;
}
if (mode == IMB_BLEND_COPY) {
/* copy */
for (; height > 0; height--) {
if (do_char) {
memcpy(drect, srect, width * sizeof(int));
drect += destskip;
srect += srcskip;
}
if (do_float) {
memcpy(drectf, srectf, sizeof(float[4]) * width);
drectf += destskip * 4;
srectf += srcskip * 4;
}
}
}
else if (mode == IMB_BLEND_COPY_RGB) {
/* copy rgb only */
for (; height > 0; height--) {
if (do_char) {
dr = drect;
sr = srect;
for (x = width; x > 0; x--, dr++, sr++) {
((char *)dr)[0] = ((char *)sr)[0];
((char *)dr)[1] = ((char *)sr)[1];
((char *)dr)[2] = ((char *)sr)[2];
}
drect += destskip;
srect += srcskip;
}
if (do_float) {
drf = drectf;
srf = srectf;
for (x = width; x > 0; x--, drf += 4, srf += 4) {
float map_alpha = (srf[3] == 0.0f) ? drf[3] : drf[3] / srf[3];
drf[0] = srf[0] * map_alpha;
drf[1] = srf[1] * map_alpha;
drf[2] = srf[2] * map_alpha;
}
drectf += destskip * 4;
srectf += srcskip * 4;
}
}
}
else if (mode == IMB_BLEND_COPY_ALPHA) {
/* copy alpha only */
for (; height > 0; height--) {
if (do_char) {
dr = drect;
sr = srect;
for (x = width; x > 0; x--, dr++, sr++) {
((char *)dr)[3] = ((char *)sr)[3];
}
drect += destskip;
srect += srcskip;
}
if (do_float) {
drf = drectf;
srf = srectf;
for (x = width; x > 0; x--, drf += 4, srf += 4) {
drf[3] = srf[3];
}
drectf += destskip * 4;
srectf += srcskip * 4;
}
}
}
else {
switch (mode) {
case IMB_BLEND_MIX:
case IMB_BLEND_INTERPOLATE:
func = blend_color_mix_byte;
func_float = blend_color_mix_float;
break;
case IMB_BLEND_ADD:
func = blend_color_add_byte;
func_float = blend_color_add_float;
break;
case IMB_BLEND_SUB:
func = blend_color_sub_byte;
func_float = blend_color_sub_float;
break;
case IMB_BLEND_MUL:
func = blend_color_mul_byte;
func_float = blend_color_mul_float;
break;
case IMB_BLEND_LIGHTEN:
func = blend_color_lighten_byte;
func_float = blend_color_lighten_float;
break;
case IMB_BLEND_DARKEN:
func = blend_color_darken_byte;
func_float = blend_color_darken_float;
break;
case IMB_BLEND_ERASE_ALPHA:
func = blend_color_erase_alpha_byte;
func_float = blend_color_erase_alpha_float;
break;
case IMB_BLEND_ADD_ALPHA:
func = blend_color_add_alpha_byte;
func_float = blend_color_add_alpha_float;
break;
case IMB_BLEND_OVERLAY:
func = blend_color_overlay_byte;
func_float = blend_color_overlay_float;
break;
case IMB_BLEND_HARDLIGHT:
func = blend_color_hardlight_byte;
func_float = blend_color_hardlight_float;
break;
case IMB_BLEND_COLORBURN:
func = blend_color_burn_byte;
func_float = blend_color_burn_float;
break;
case IMB_BLEND_LINEARBURN:
func = blend_color_linearburn_byte;
func_float = blend_color_linearburn_float;
break;
case IMB_BLEND_COLORDODGE:
func = blend_color_dodge_byte;
func_float = blend_color_dodge_float;
break;
case IMB_BLEND_SCREEN:
func = blend_color_screen_byte;
func_float = blend_color_screen_float;
break;
case IMB_BLEND_SOFTLIGHT:
func = blend_color_softlight_byte;
func_float = blend_color_softlight_float;
break;
case IMB_BLEND_PINLIGHT:
func = blend_color_pinlight_byte;
func_float = blend_color_pinlight_float;
break;
case IMB_BLEND_LINEARLIGHT:
func = blend_color_linearlight_byte;
func_float = blend_color_linearlight_float;
break;
case IMB_BLEND_VIVIDLIGHT:
func = blend_color_vividlight_byte;
func_float = blend_color_vividlight_float;
break;
case IMB_BLEND_DIFFERENCE:
func = blend_color_difference_byte;
func_float = blend_color_difference_float;
break;
case IMB_BLEND_EXCLUSION:
func = blend_color_exclusion_byte;
func_float = blend_color_exclusion_float;
break;
case IMB_BLEND_COLOR:
func = blend_color_color_byte;
func_float = blend_color_color_float;
break;
case IMB_BLEND_HUE:
func = blend_color_hue_byte;
func_float = blend_color_hue_float;
break;
case IMB_BLEND_SATURATION:
func = blend_color_saturation_byte;
func_float = blend_color_saturation_float;
break;
case IMB_BLEND_LUMINOSITY:
func = blend_color_luminosity_byte;
func_float = blend_color_luminosity_float;
break;
default:
break;
}
/* blend */
for (; height > 0; height--) {
if (do_char) {
dr = drect;
outr = orect;
sr = srect;
if (cmaskrect) {
/* mask accumulation for painting */
cmr = cmaskrect;
tmr = texmaskrect;
/* destination mask present, do max alpha masking */
if (dmaskrect) {
dmr = dmaskrect;
for (x = width; x > 0; x--, dr++, outr++, sr++, dmr++, cmr++) {
uchar *src = (uchar *)sr;
float mask_lim = mask_max * (*cmr);
if (texmaskrect) {
mask_lim *= ((*tmr++) / 65535.0f);
}
if (src[3] && mask_lim) {
float mask;
if (accumulate) {
mask = *dmr + mask_lim;
}
else {
mask = *dmr + mask_lim - (*dmr * (*cmr / 65535.0f));
}
mask = min_ff(mask, 65535.0);
if (mask > *dmr) {
uchar mask_src[4];
*dmr = mask;
mask_src[0] = src[0];
mask_src[1] = src[1];
mask_src[2] = src[2];
if (mode == IMB_BLEND_INTERPOLATE) {
mask_src[3] = src[3];
blend_color_interpolate_byte(
(uchar *)dr, (uchar *)outr, mask_src, mask / 65535.0f);
}
else {
mask_src[3] = divide_round_i(src[3] * mask, 65535);
func((uchar *)dr, (uchar *)outr, mask_src);
}
}
}
}
dmaskrect += origskip;
}
/* No destination mask buffer, do regular blend with mask-texture if present. */
else {
for (x = width; x > 0; x--, dr++, outr++, sr++, cmr++) {
uchar *src = (uchar *)sr;
float mask = float(mask_max) * float(*cmr);
if (texmaskrect) {
mask *= (float(*tmr++) / 65535.0f);
}
mask = min_ff(mask, 65535.0);
if (src[3] && (mask > 0.0f)) {
uchar mask_src[4];
mask_src[0] = src[0];
mask_src[1] = src[1];
mask_src[2] = src[2];
if (mode == IMB_BLEND_INTERPOLATE) {
mask_src[3] = src[3];
blend_color_interpolate_byte(
(uchar *)dr, (uchar *)outr, mask_src, mask / 65535.0f);
}
else {
mask_src[3] = divide_round_i(src[3] * mask, 65535);
func((uchar *)dr, (uchar *)outr, mask_src);
}
}
}
}
cmaskrect += srcskip;
if (texmaskrect) {
texmaskrect += srcskip;
}
}
else {
/* regular blending */
for (x = width; x > 0; x--, dr++, outr++, sr++) {
if (((uchar *)sr)[3]) {
func((uchar *)dr, (uchar *)outr, (uchar *)sr);
}
}
}
drect += destskip;
orect += origskip;
srect += srcskip;
}
if (do_float) {
drf = drectf;
orf = orectf;
srf = srectf;
if (cmaskrect) {
/* mask accumulation for painting */
cmr = cmaskrect;
tmr = texmaskrect;
/* destination mask present, do max alpha masking */
if (dmaskrect) {
dmr = dmaskrect;
for (x = width; x > 0; x--, drf += 4, orf += 4, srf += 4, dmr++, cmr++) {
float mask_lim = mask_max * (*cmr);
if (texmaskrect) {
mask_lim *= ((*tmr++) / 65535.0f);
}
if (srf[3] && mask_lim) {
float mask;
if (accumulate) {
mask = min_ff(*dmr + mask_lim, 65535.0);
}
else {
mask = *dmr + mask_lim - (*dmr * (*cmr / 65535.0f));
}
mask = min_ff(mask, 65535.0);
if (mask > *dmr) {
*dmr = mask;
if (mode == IMB_BLEND_INTERPOLATE) {
blend_color_interpolate_float(drf, orf, srf, mask / 65535.0f);
}
else {
float mask_srf[4];
mul_v4_v4fl(mask_srf, srf, mask / 65535.0f);
func_float(drf, orf, mask_srf);
}
}
}
}
dmaskrect += origskip;
}
/* No destination mask buffer, do regular blend with mask-texture if present. */
else {
for (x = width; x > 0; x--, drf += 4, orf += 4, srf += 4, cmr++) {
float mask = float(mask_max) * float(*cmr);
if (texmaskrect) {
mask *= (float(*tmr++) / 65535.0f);
}
mask = min_ff(mask, 65535.0);
if (srf[3] && (mask > 0.0f)) {
if (mode == IMB_BLEND_INTERPOLATE) {
blend_color_interpolate_float(drf, orf, srf, mask / 65535.0f);
}
else {
float mask_srf[4];
mul_v4_v4fl(mask_srf, srf, mask / 65535.0f);
func_float(drf, orf, mask_srf);
}
}
}
}
cmaskrect += srcskip;
if (texmaskrect) {
texmaskrect += srcskip;
}
}
else {
/* regular blending */
for (x = width; x > 0; x--, drf += 4, orf += 4, srf += 4) {
if (srf[3] != 0) {
func_float(drf, orf, srf);
}
}
}
drectf += destskip * 4;
orectf += origskip * 4;
srectf += srcskip * 4;
}
}
}
}
struct RectBlendThreadData {
ImBuf *dbuf;
const ImBuf *obuf, *sbuf;
ushort *dmask;
const ushort *curvemask, *texmask;
float mask_max;
int destx, desty, origx, origy;
int srcx, srcy, width;
IMB_BlendMode mode;
bool accumulate;
};
static void rectblend_thread_do(void *data_v, int scanline)
{
const int num_scanlines = 1;
RectBlendThreadData *data = (RectBlendThreadData *)data_v;
IMB_rectblend(data->dbuf,
data->obuf,
data->sbuf,
data->dmask,
data->curvemask,
data->texmask,
data->mask_max,
data->destx,
data->desty + scanline,
data->origx,
data->origy + scanline,
data->srcx,
data->srcy + scanline,
data->width,
num_scanlines,
data->mode,
data->accumulate);
}
void IMB_rectblend_threaded(ImBuf *dbuf,
const ImBuf *obuf,
const ImBuf *sbuf,
ushort *dmask,
const ushort *curvemask,
const ushort *texmask,
float mask_max,
int destx,
int desty,
int origx,
int origy,
int srcx,
int srcy,
int width,
int height,
IMB_BlendMode mode,
bool accumulate)
{
if (size_t(width) * height < 64 * 64) {
IMB_rectblend(dbuf,
obuf,
sbuf,
dmask,
curvemask,
texmask,
mask_max,
destx,
desty,
origx,
origy,
srcx,
srcy,
width,
height,
mode,
accumulate);
}
else {
RectBlendThreadData data;
data.dbuf = dbuf;
data.obuf = obuf;
data.sbuf = sbuf;
data.dmask = dmask;
data.curvemask = curvemask;
data.texmask = texmask;
data.mask_max = mask_max;
data.destx = destx;
data.desty = desty;
data.origx = origx;
data.origy = origy;
data.srcx = srcx;
data.srcy = srcy;
data.width = width;
data.mode = mode;
data.accumulate = accumulate;
IMB_processor_apply_threaded_scanlines(height, rectblend_thread_do, &data);
}
}
void IMB_rectfill(ImBuf *drect, const float col[4])
{
int num;
if (drect->byte_buffer.data) {
uint *rrect = (uint *)drect->byte_buffer.data;
char ccol[4];
ccol[0] = int(col[0] * 255);
ccol[1] = int(col[1] * 255);
ccol[2] = int(col[2] * 255);
ccol[3] = int(col[3] * 255);
num = drect->x * drect->y;
for (; num > 0; num--) {
*rrect++ = *((uint *)ccol);
}
}
if (drect->float_buffer.data) {
float *rrectf = drect->float_buffer.data;
num = drect->x * drect->y;
for (; num > 0; num--) {
*rrectf++ = col[0];
*rrectf++ = col[1];
*rrectf++ = col[2];
*rrectf++ = col[3];
}
}
}
void IMB_rectfill_area_replace(
const ImBuf *ibuf, const float col[4], int x1, int y1, int x2, int y2)
{
/* Sanity checks. */
BLI_assert(ibuf->channels == 4);
if (ibuf->channels != 4) {
return;
}
int width = ibuf->x;
int height = ibuf->y;
CLAMP(x1, 0, width);
CLAMP(x2, 0, width);
CLAMP(y1, 0, height);
CLAMP(y2, 0, height);
if (x1 > x2) {
SWAP(int, x1, x2);
}
if (y1 > y2) {
SWAP(int, y1, y2);
}
if (x1 == x2 || y1 == y2) {
return;
}
uchar col_char[4] = {
uchar(col[0] * 255), uchar(col[1] * 255), uchar(col[2] * 255), uchar(col[3] * 255)};
for (int y = y1; y < y2; y++) {
for (int x = x1; x < x2; x++) {
size_t offset = size_t(ibuf->x) * y * 4 + 4 * x;
if (ibuf->byte_buffer.data) {
uchar *rrect = ibuf->byte_buffer.data + offset;
memcpy(rrect, col_char, sizeof(uchar[4]));
}
if (ibuf->float_buffer.data) {
float *rrectf = ibuf->float_buffer.data + offset;
memcpy(rrectf, col, sizeof(float[4]));
}
}
}
}
void buf_rectfill_area(uchar *rect,
float *rectf,
int width,
int height,
const float col[4],
ColorManagedDisplay *display,
int x1,
int y1,
int x2,
int y2)
{
int i, j;
float a; /* alpha */
float ai; /* alpha inverted */
float aich; /* alpha, inverted, ai/255.0 - Convert char to float at the same time */
if ((!rect && !rectf) || (!col) || col[3] == 0.0f) {
return;
}
/* sanity checks for coords */
CLAMP(x1, 0, width);
CLAMP(x2, 0, width);
CLAMP(y1, 0, height);
CLAMP(y2, 0, height);
if (x1 > x2) {
SWAP(int, x1, x2);
}
if (y1 > y2) {
SWAP(int, y1, y2);
}
if (x1 == x2 || y1 == y2) {
return;
}
a = col[3];
ai = 1 - a;
aich = ai / 255.0f;
if (rect) {
uchar *pixel;
uchar chr = 0, chg = 0, chb = 0;
float fr = 0, fg = 0, fb = 0;
const int alphaint = unit_float_to_uchar_clamp(a);
if (a == 1.0f) {
chr = unit_float_to_uchar_clamp(col[0]);
chg = unit_float_to_uchar_clamp(col[1]);
chb = unit_float_to_uchar_clamp(col[2]);
}
else {
fr = col[0] * a;
fg = col[1] * a;
fb = col[2] * a;
}
for (j = 0; j < y2 - y1; j++) {
for (i = 0; i < x2 - x1; i++) {
pixel = rect + 4 * (((y1 + j) * width) + (x1 + i));
if (pixel >= rect && pixel < rect + (4 * (width * height))) {
if (a == 1.0f) {
pixel[0] = chr;
pixel[1] = chg;
pixel[2] = chb;
pixel[3] = 255;
}
else {
int alphatest;
pixel[0] = char((fr + (float(pixel[0]) * aich)) * 255.0f);
pixel[1] = char((fg + (float(pixel[1]) * aich)) * 255.0f);
pixel[2] = char((fb + (float(pixel[2]) * aich)) * 255.0f);
pixel[3] = char((alphatest = (int(pixel[3]) + alphaint)) < 255 ? alphatest : 255);
}
}
}
}
}
if (rectf) {
float col_conv[4];
float *pixel;
if (display) {
copy_v4_v4(col_conv, col);
IMB_colormanagement_display_to_scene_linear_v3(col_conv, display);
}
else {
srgb_to_linearrgb_v4(col_conv, col);
}
for (j = 0; j < y2 - y1; j++) {
for (i = 0; i < x2 - x1; i++) {
pixel = rectf + 4 * (((y1 + j) * width) + (x1 + i));
if (a == 1.0f) {
pixel[0] = col_conv[0];
pixel[1] = col_conv[1];
pixel[2] = col_conv[2];
pixel[3] = 1.0f;
}
else {
float alphatest;
pixel[0] = (col_conv[0] * a) + (pixel[0] * ai);
pixel[1] = (col_conv[1] * a) + (pixel[1] * ai);
pixel[2] = (col_conv[2] * a) + (pixel[2] * ai);
pixel[3] = (alphatest = (pixel[3] + a)) < 1.0f ? alphatest : 1.0f;
}
}
}
}
}
void IMB_rectfill_area(
ImBuf *ibuf, const float col[4], int x1, int y1, int x2, int y2, ColorManagedDisplay *display)
{
if (!ibuf) {
return;
}
buf_rectfill_area(ibuf->byte_buffer.data,
ibuf->float_buffer.data,
ibuf->x,
ibuf->y,
col,
display,
x1,
y1,
x2,
y2);
}
void IMB_rectfill_alpha(ImBuf *ibuf, const float value)
{
int i;
if (ibuf->float_buffer.data && (ibuf->channels == 4)) {
float *fbuf = ibuf->float_buffer.data + 3;
for (i = ibuf->x * ibuf->y; i > 0; i--, fbuf += 4) {
*fbuf = value;
}
}
if (ibuf->byte_buffer.data) {
const uchar cvalue = value * 255;
uchar *cbuf = ibuf->byte_buffer.data + 3;
for (i = ibuf->x * ibuf->y; i > 0; i--, cbuf += 4) {
*cbuf = cvalue;
}
}
}