tornavis/source/blender/imbuf/intern/rectop.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1278 lines
33 KiB
C++
Raw Normal View History

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
2002-10-12 13:37:38 +02:00
/** \file
* \ingroup imbuf
2011-02-27 21:23:21 +01:00
*/
#include <cstdlib>
2011-02-27 21:23:21 +01:00
#include "BLI_math_base.h"
#include "BLI_math_color.h"
#include "BLI_math_color_blend.h"
#include "BLI_math_vector.h"
#include "BLI_rect.h"
#include "BLI_utildefines.h"
2002-10-12 13:37:38 +02:00
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
2002-10-12 13:37:38 +02:00
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 12:05:07 +02:00
#include "IMB_colormanagement.h"
#include "MEM_guardedalloc.h"
#include <cstring>
void IMB_blend_color_byte(uchar dst[4],
const uchar src1[4],
const uchar src2[4],
IMB_BlendMode mode)
{
switch (mode) {
case IMB_BLEND_MIX:
blend_color_mix_byte(dst, src1, src2);
break;
case IMB_BLEND_ADD:
blend_color_add_byte(dst, src1, src2);
break;
case IMB_BLEND_SUB:
blend_color_sub_byte(dst, src1, src2);
break;
case IMB_BLEND_MUL:
blend_color_mul_byte(dst, src1, src2);
break;
case IMB_BLEND_LIGHTEN:
blend_color_lighten_byte(dst, src1, src2);
break;
case IMB_BLEND_DARKEN:
blend_color_darken_byte(dst, src1, src2);
break;
case IMB_BLEND_ERASE_ALPHA:
blend_color_erase_alpha_byte(dst, src1, src2);
break;
case IMB_BLEND_ADD_ALPHA:
blend_color_add_alpha_byte(dst, src1, src2);
break;
case IMB_BLEND_OVERLAY:
blend_color_overlay_byte(dst, src1, src2);
break;
case IMB_BLEND_HARDLIGHT:
blend_color_hardlight_byte(dst, src1, src2);
break;
case IMB_BLEND_COLORBURN:
blend_color_burn_byte(dst, src1, src2);
break;
case IMB_BLEND_LINEARBURN:
blend_color_linearburn_byte(dst, src1, src2);
break;
case IMB_BLEND_COLORDODGE:
blend_color_dodge_byte(dst, src1, src2);
break;
case IMB_BLEND_SCREEN:
blend_color_screen_byte(dst, src1, src2);
break;
case IMB_BLEND_SOFTLIGHT:
blend_color_softlight_byte(dst, src1, src2);
break;
case IMB_BLEND_PINLIGHT:
blend_color_pinlight_byte(dst, src1, src2);
break;
case IMB_BLEND_LINEARLIGHT:
blend_color_linearlight_byte(dst, src1, src2);
break;
case IMB_BLEND_VIVIDLIGHT:
blend_color_vividlight_byte(dst, src1, src2);
break;
case IMB_BLEND_DIFFERENCE:
blend_color_difference_byte(dst, src1, src2);
break;
case IMB_BLEND_EXCLUSION:
blend_color_exclusion_byte(dst, src1, src2);
break;
case IMB_BLEND_COLOR:
blend_color_color_byte(dst, src1, src2);
break;
case IMB_BLEND_HUE:
blend_color_hue_byte(dst, src1, src2);
break;
case IMB_BLEND_SATURATION:
blend_color_saturation_byte(dst, src1, src2);
break;
case IMB_BLEND_LUMINOSITY:
blend_color_luminosity_byte(dst, src1, src2);
break;
default:
dst[0] = src1[0];
dst[1] = src1[1];
dst[2] = src1[2];
dst[3] = src1[3];
break;
}
}
void IMB_blend_color_float(float dst[4],
const float src1[4],
const float src2[4],
IMB_BlendMode mode)
{
switch (mode) {
case IMB_BLEND_MIX:
blend_color_mix_float(dst, src1, src2);
break;
case IMB_BLEND_ADD:
blend_color_add_float(dst, src1, src2);
break;
case IMB_BLEND_SUB:
blend_color_sub_float(dst, src1, src2);
break;
case IMB_BLEND_MUL:
blend_color_mul_float(dst, src1, src2);
break;
case IMB_BLEND_LIGHTEN:
blend_color_lighten_float(dst, src1, src2);
break;
case IMB_BLEND_DARKEN:
blend_color_darken_float(dst, src1, src2);
break;
case IMB_BLEND_ERASE_ALPHA:
blend_color_erase_alpha_float(dst, src1, src2);
break;
case IMB_BLEND_ADD_ALPHA:
blend_color_add_alpha_float(dst, src1, src2);
break;
case IMB_BLEND_OVERLAY:
blend_color_overlay_float(dst, src1, src2);
break;
case IMB_BLEND_HARDLIGHT:
blend_color_hardlight_float(dst, src1, src2);
break;
case IMB_BLEND_COLORBURN:
blend_color_burn_float(dst, src1, src2);
break;
case IMB_BLEND_LINEARBURN:
blend_color_linearburn_float(dst, src1, src2);
break;
case IMB_BLEND_COLORDODGE:
blend_color_dodge_float(dst, src1, src2);
break;
case IMB_BLEND_SCREEN:
blend_color_screen_float(dst, src1, src2);
break;
case IMB_BLEND_SOFTLIGHT:
blend_color_softlight_float(dst, src1, src2);
break;
case IMB_BLEND_PINLIGHT:
blend_color_pinlight_float(dst, src1, src2);
break;
case IMB_BLEND_LINEARLIGHT:
blend_color_linearlight_float(dst, src1, src2);
break;
case IMB_BLEND_VIVIDLIGHT:
blend_color_vividlight_float(dst, src1, src2);
break;
case IMB_BLEND_DIFFERENCE:
blend_color_difference_float(dst, src1, src2);
break;
case IMB_BLEND_EXCLUSION:
blend_color_exclusion_float(dst, src1, src2);
break;
case IMB_BLEND_COLOR:
blend_color_color_float(dst, src1, src2);
break;
case IMB_BLEND_HUE:
blend_color_hue_float(dst, src1, src2);
break;
case IMB_BLEND_SATURATION:
blend_color_saturation_float(dst, src1, src2);
break;
case IMB_BLEND_LUMINOSITY:
blend_color_luminosity_float(dst, src1, src2);
break;
default:
2012-05-08 13:48:19 +02:00
dst[0] = src1[0];
dst[1] = src1[1];
dst[2] = src1[2];
dst[3] = src1[3];
break;
}
}
/* -------------------------------------------------------------------- */
/** \name Crop
* \{ */
static void rect_crop_4bytes(void **buf_p, const int size_src[2], const rcti *crop)
{
if (*buf_p == nullptr) {
return;
}
const int size_dst[2] = {
BLI_rcti_size_x(crop) + 1,
BLI_rcti_size_y(crop) + 1,
};
uint *src = static_cast<uint *>(*buf_p);
uint *dst = src + crop->ymin * size_src[0] + crop->xmin;
for (int y = 0; y < size_dst[1]; y++, src += size_dst[0], dst += size_src[0]) {
memmove(src, dst, sizeof(uint) * size_dst[0]);
}
*buf_p = MEM_reallocN(*buf_p, sizeof(uint) * size_dst[0] * size_dst[1]);
}
static void rect_crop_16bytes(void **buf_p, const int size_src[2], const rcti *crop)
{
if (*buf_p == nullptr) {
return;
}
const int size_dst[2] = {
BLI_rcti_size_x(crop) + 1,
BLI_rcti_size_y(crop) + 1,
};
uint(*src)[4] = static_cast<uint(*)[4]>(*buf_p);
uint(*dst)[4] = src + crop->ymin * size_src[0] + crop->xmin;
for (int y = 0; y < size_dst[1]; y++, src += size_dst[0], dst += size_src[0]) {
memmove(src, dst, sizeof(uint[4]) * size_dst[0]);
}
*buf_p = (void *)MEM_reallocN(*buf_p, sizeof(uint[4]) * size_dst[0] * size_dst[1]);
}
void IMB_rect_crop(ImBuf *ibuf, const rcti *crop)
{
const int size_src[2] = {
ibuf->x,
ibuf->y,
};
const int size_dst[2] = {
BLI_rcti_size_x(crop) + 1,
BLI_rcti_size_y(crop) + 1,
};
2019-10-02 22:58:43 +02:00
BLI_assert(size_dst[0] > 0 && size_dst[1] > 0);
BLI_assert(crop->xmin >= 0 && crop->ymin >= 0);
BLI_assert(crop->xmax < ibuf->x && crop->ymax < ibuf->y);
if ((size_dst[0] == ibuf->x) && (size_dst[1] == ibuf->y)) {
return;
}
/* TODO(sergey: Validate ownership. */
rect_crop_4bytes((void **)&ibuf->byte_buffer.data, size_src, crop);
rect_crop_16bytes((void **)&ibuf->float_buffer.data, size_src, crop);
ibuf->x = size_dst[0];
ibuf->y = size_dst[1];
}
/**
2019-12-11 00:56:14 +01:00
* Re-allocate buffers at a new size.
*/
static void rect_realloc_4bytes(void **buf_p, const uint size[2])
{
if (*buf_p == nullptr) {
return;
}
MEM_freeN(*buf_p);
*buf_p = MEM_mallocN(sizeof(uint) * size[0] * size[1], __func__);
}
static void rect_realloc_16bytes(void **buf_p, const uint size[2])
{
if (*buf_p == nullptr) {
return;
}
MEM_freeN(*buf_p);
*buf_p = MEM_mallocN(sizeof(uint[4]) * size[0] * size[1], __func__);
}
void IMB_rect_size_set(ImBuf *ibuf, const uint size[2])
{
2019-10-02 22:58:43 +02:00
BLI_assert(size[0] > 0 && size[1] > 0);
if ((size[0] == ibuf->x) && (size[1] == ibuf->y)) {
return;
}
/* TODO(sergey: Validate ownership. */
rect_realloc_4bytes((void **)&ibuf->byte_buffer.data, size);
rect_realloc_16bytes((void **)&ibuf->float_buffer.data, size);
ibuf->x = size[0];
ibuf->y = size[1];
}
/** \} */
/* clipping */
void IMB_rectclip(ImBuf *dbuf,
const ImBuf *sbuf,
int *destx,
2012-05-08 13:48:19 +02:00
int *desty,
int *srcx,
int *srcy,
int *width,
int *height)
{
int tmp;
if (dbuf == nullptr) {
return;
2019-04-23 03:01:30 +02:00
}
if (*destx < 0) {
*srcx -= *destx;
*width += *destx;
*destx = 0;
}
if (*srcx < 0) {
*destx -= *srcx;
2009-12-08 09:44:18 +01:00
*width += *srcx;
*srcx = 0;
}
if (*desty < 0) {
*srcy -= *desty;
*height += *desty;
*desty = 0;
}
if (*srcy < 0) {
*desty -= *srcy;
2009-12-08 09:44:18 +01:00
*height += *srcy;
*srcy = 0;
}
tmp = dbuf->x - *destx;
2019-04-23 03:01:30 +02:00
if (*width > tmp) {
*width = tmp;
2019-04-23 03:01:30 +02:00
}
tmp = dbuf->y - *desty;
2019-04-23 03:01:30 +02:00
if (*height > tmp) {
*height = tmp;
2019-04-23 03:01:30 +02:00
}
if (sbuf) {
tmp = sbuf->x - *srcx;
2019-04-23 03:01:30 +02:00
if (*width > tmp) {
*width = tmp;
2019-04-23 03:01:30 +02:00
}
tmp = sbuf->y - *srcy;
2019-04-23 03:01:30 +02:00
if (*height > tmp) {
*height = tmp;
2019-04-23 03:01:30 +02:00
}
}
if ((*height <= 0) || (*width <= 0)) {
*width = 0;
*height = 0;
}
}
static void imb_rectclip3(ImBuf *dbuf,
const ImBuf *obuf,
const ImBuf *sbuf,
int *destx,
int *desty,
int *origx,
int *origy,
int *srcx,
int *srcy,
int *width,
int *height)
{
int tmp;
if (dbuf == nullptr) {
return;
2019-04-23 03:01:30 +02:00
}
if (*destx < 0) {
*srcx -= *destx;
*origx -= *destx;
*width += *destx;
*destx = 0;
}
if (*origx < 0) {
*destx -= *origx;
*srcx -= *origx;
*width += *origx;
*origx = 0;
}
if (*srcx < 0) {
*destx -= *srcx;
*origx -= *srcx;
*width += *srcx;
*srcx = 0;
}
if (*desty < 0) {
*srcy -= *desty;
*origy -= *desty;
*height += *desty;
*desty = 0;
}
if (*origy < 0) {
*desty -= *origy;
*srcy -= *origy;
*height += *origy;
*origy = 0;
}
if (*srcy < 0) {
*desty -= *srcy;
*origy -= *srcy;
*height += *srcy;
*srcy = 0;
}
tmp = dbuf->x - *destx;
2019-04-23 03:01:30 +02:00
if (*width > tmp) {
*width = tmp;
2019-04-23 03:01:30 +02:00
}
tmp = dbuf->y - *desty;
2019-04-23 03:01:30 +02:00
if (*height > tmp) {
*height = tmp;
2019-04-23 03:01:30 +02:00
}
if (obuf) {
tmp = obuf->x - *origx;
2019-04-23 03:01:30 +02:00
if (*width > tmp) {
*width = tmp;
2019-04-23 03:01:30 +02:00
}
tmp = obuf->y - *origy;
2019-04-23 03:01:30 +02:00
if (*height > tmp) {
*height = tmp;
2019-04-23 03:01:30 +02:00
}
}
if (sbuf) {
tmp = sbuf->x - *srcx;
2019-04-23 03:01:30 +02:00
if (*width > tmp) {
*width = tmp;
2019-04-23 03:01:30 +02:00
}
tmp = sbuf->y - *srcy;
2019-04-23 03:01:30 +02:00
if (*height > tmp) {
*height = tmp;
2019-04-23 03:01:30 +02:00
}
}
if ((*height <= 0) || (*width <= 0)) {
*width = 0;
*height = 0;
}
}
/* copy and blend */
void IMB_rectcpy(ImBuf *dbuf,
const ImBuf *sbuf,
int destx,
int desty,
int srcx,
int srcy,
int width,
int height)
2002-10-12 13:37:38 +02:00
{
IMB_rectblend(dbuf,
dbuf,
sbuf,
nullptr,
nullptr,
nullptr,
0,
destx,
desty,
destx,
desty,
srcx,
srcy,
width,
height,
IMB_BLEND_COPY,
false);
}
using IMB_blend_func = void (*)(uchar *dst, const uchar *src1, const uchar *src2);
using IMB_blend_func_float = void (*)(float *dst, const float *src1, const float *src2);
void IMB_rectblend(ImBuf *dbuf,
const ImBuf *obuf,
const ImBuf *sbuf,
ushort *dmask,
const ushort *curvemask,
const ushort *texmask,
float mask_max,
int destx,
int desty,
int origx,
int origy,
int srcx,
int srcy,
int width,
int height,
IMB_BlendMode mode,
bool accumulate)
{
uint *drect = nullptr, *orect = nullptr, *srect = nullptr, *dr, *outr, *sr;
float *drectf = nullptr, *orectf = nullptr, *srectf = nullptr, *drf, *orf, *srf;
const ushort *cmaskrect = curvemask, *cmr;
ushort *dmaskrect = dmask, *dmr;
const ushort *texmaskrect = texmask, *tmr;
int srcskip, destskip, origskip, x;
IMB_blend_func func = nullptr;
IMB_blend_func_float func_float = nullptr;
if (dbuf == nullptr || obuf == nullptr) {
return;
2019-04-23 03:01:30 +02:00
}
imb_rectclip3(dbuf, obuf, sbuf, &destx, &desty, &origx, &origy, &srcx, &srcy, &width, &height);
2019-04-23 03:01:30 +02:00
if (width == 0 || height == 0) {
2012-05-08 13:48:19 +02:00
return;
2019-04-23 03:01:30 +02:00
}
if (sbuf && sbuf->channels != 4) {
2012-05-08 13:48:19 +02:00
return;
2019-04-23 03:01:30 +02:00
}
if (dbuf->channels != 4) {
return;
2019-04-23 03:01:30 +02:00
}
const bool do_char = (sbuf && sbuf->byte_buffer.data && dbuf->byte_buffer.data &&
obuf->byte_buffer.data);
const bool do_float = (sbuf && sbuf->float_buffer.data && dbuf->float_buffer.data &&
obuf->float_buffer.data);
if (do_char) {
drect = (uint *)dbuf->byte_buffer.data + size_t(desty) * dbuf->x + destx;
orect = (uint *)obuf->byte_buffer.data + size_t(origy) * obuf->x + origx;
}
if (do_float) {
drectf = dbuf->float_buffer.data + (size_t(desty) * dbuf->x + destx) * 4;
orectf = obuf->float_buffer.data + (size_t(origy) * obuf->x + origx) * 4;
}
2019-04-23 03:01:30 +02:00
if (dmaskrect) {
dmaskrect += size_t(origy) * obuf->x + origx;
2019-04-23 03:01:30 +02:00
}
destskip = dbuf->x;
origskip = obuf->x;
if (sbuf) {
2019-04-23 03:01:30 +02:00
if (do_char) {
srect = (uint *)sbuf->byte_buffer.data + size_t(srcy) * sbuf->x + srcx;
2019-04-23 03:01:30 +02:00
}
if (do_float) {
srectf = sbuf->float_buffer.data + (size_t(srcy) * sbuf->x + srcx) * 4;
2019-04-23 03:01:30 +02:00
}
srcskip = sbuf->x;
2019-04-23 03:01:30 +02:00
if (cmaskrect) {
cmaskrect += size_t(srcy) * sbuf->x + srcx;
2019-04-23 03:01:30 +02:00
}
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
texmaskrect += size_t(srcy) * sbuf->x + srcx;
2019-04-23 03:01:30 +02:00
}
}
else {
2002-10-12 13:37:38 +02:00
srect = drect;
srectf = drectf;
srcskip = destskip;
}
if (mode == IMB_BLEND_COPY) {
/* copy */
2012-05-08 13:48:19 +02:00
for (; height > 0; height--) {
if (do_char) {
2012-04-29 17:47:02 +02:00
memcpy(drect, srect, width * sizeof(int));
drect += destskip;
srect += srcskip;
}
if (do_float) {
memcpy(drectf, srectf, sizeof(float[4]) * width);
2012-05-08 13:48:19 +02:00
drectf += destskip * 4;
srectf += srcskip * 4;
}
}
}
else if (mode == IMB_BLEND_COPY_RGB) {
/* copy rgb only */
2012-05-08 13:48:19 +02:00
for (; height > 0; height--) {
if (do_char) {
dr = drect;
sr = srect;
2012-05-08 13:48:19 +02:00
for (x = width; x > 0; x--, dr++, sr++) {
((char *)dr)[0] = ((char *)sr)[0];
((char *)dr)[1] = ((char *)sr)[1];
((char *)dr)[2] = ((char *)sr)[2];
}
drect += destskip;
srect += srcskip;
}
if (do_float) {
drf = drectf;
srf = srectf;
2012-05-08 13:48:19 +02:00
for (x = width; x > 0; x--, drf += 4, srf += 4) {
2014-01-12 12:27:55 +01:00
float map_alpha = (srf[3] == 0.0f) ? drf[3] : drf[3] / srf[3];
drf[0] = srf[0] * map_alpha;
drf[1] = srf[1] * map_alpha;
drf[2] = srf[2] * map_alpha;
}
2012-05-08 13:48:19 +02:00
drectf += destskip * 4;
srectf += srcskip * 4;
}
}
}
else if (mode == IMB_BLEND_COPY_ALPHA) {
/* copy alpha only */
2012-05-08 13:48:19 +02:00
for (; height > 0; height--) {
if (do_char) {
dr = drect;
sr = srect;
2019-04-23 03:01:30 +02:00
for (x = width; x > 0; x--, dr++, sr++) {
2012-05-08 13:48:19 +02:00
((char *)dr)[3] = ((char *)sr)[3];
2019-04-23 03:01:30 +02:00
}
drect += destskip;
srect += srcskip;
}
if (do_float) {
drf = drectf;
srf = srectf;
2019-04-23 03:01:30 +02:00
for (x = width; x > 0; x--, drf += 4, srf += 4) {
2012-05-08 13:48:19 +02:00
drf[3] = srf[3];
2019-04-23 03:01:30 +02:00
}
2012-05-08 13:48:19 +02:00
drectf += destskip * 4;
srectf += srcskip * 4;
2002-10-12 13:37:38 +02:00
}
}
}
else {
switch (mode) {
case IMB_BLEND_MIX:
case IMB_BLEND_INTERPOLATE:
func = blend_color_mix_byte;
func_float = blend_color_mix_float;
break;
case IMB_BLEND_ADD:
func = blend_color_add_byte;
func_float = blend_color_add_float;
break;
case IMB_BLEND_SUB:
func = blend_color_sub_byte;
func_float = blend_color_sub_float;
break;
case IMB_BLEND_MUL:
func = blend_color_mul_byte;
func_float = blend_color_mul_float;
break;
case IMB_BLEND_LIGHTEN:
func = blend_color_lighten_byte;
func_float = blend_color_lighten_float;
break;
case IMB_BLEND_DARKEN:
func = blend_color_darken_byte;
func_float = blend_color_darken_float;
break;
case IMB_BLEND_ERASE_ALPHA:
func = blend_color_erase_alpha_byte;
func_float = blend_color_erase_alpha_float;
break;
case IMB_BLEND_ADD_ALPHA:
func = blend_color_add_alpha_byte;
func_float = blend_color_add_alpha_float;
break;
case IMB_BLEND_OVERLAY:
func = blend_color_overlay_byte;
func_float = blend_color_overlay_float;
break;
case IMB_BLEND_HARDLIGHT:
func = blend_color_hardlight_byte;
func_float = blend_color_hardlight_float;
break;
case IMB_BLEND_COLORBURN:
func = blend_color_burn_byte;
func_float = blend_color_burn_float;
break;
case IMB_BLEND_LINEARBURN:
func = blend_color_linearburn_byte;
func_float = blend_color_linearburn_float;
break;
case IMB_BLEND_COLORDODGE:
func = blend_color_dodge_byte;
func_float = blend_color_dodge_float;
break;
case IMB_BLEND_SCREEN:
func = blend_color_screen_byte;
func_float = blend_color_screen_float;
break;
case IMB_BLEND_SOFTLIGHT:
func = blend_color_softlight_byte;
func_float = blend_color_softlight_float;
break;
case IMB_BLEND_PINLIGHT:
func = blend_color_pinlight_byte;
func_float = blend_color_pinlight_float;
break;
case IMB_BLEND_LINEARLIGHT:
func = blend_color_linearlight_byte;
func_float = blend_color_linearlight_float;
break;
case IMB_BLEND_VIVIDLIGHT:
func = blend_color_vividlight_byte;
func_float = blend_color_vividlight_float;
break;
case IMB_BLEND_DIFFERENCE:
func = blend_color_difference_byte;
func_float = blend_color_difference_float;
break;
case IMB_BLEND_EXCLUSION:
func = blend_color_exclusion_byte;
func_float = blend_color_exclusion_float;
break;
case IMB_BLEND_COLOR:
func = blend_color_color_byte;
func_float = blend_color_color_float;
break;
case IMB_BLEND_HUE:
func = blend_color_hue_byte;
func_float = blend_color_hue_float;
break;
case IMB_BLEND_SATURATION:
func = blend_color_saturation_byte;
func_float = blend_color_saturation_float;
break;
case IMB_BLEND_LUMINOSITY:
func = blend_color_luminosity_byte;
func_float = blend_color_luminosity_float;
break;
default:
break;
}
/* blend */
2012-05-08 13:48:19 +02:00
for (; height > 0; height--) {
if (do_char) {
dr = drect;
outr = orect;
sr = srect;
if (cmaskrect) {
/* mask accumulation for painting */
cmr = cmaskrect;
tmr = texmaskrect;
/* destination mask present, do max alpha masking */
if (dmaskrect) {
dmr = dmaskrect;
for (x = width; x > 0; x--, dr++, outr++, sr++, dmr++, cmr++) {
uchar *src = (uchar *)sr;
float mask_lim = mask_max * (*cmr);
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
mask_lim *= ((*tmr++) / 65535.0f);
2019-04-23 03:01:30 +02:00
}
if (src[3] && mask_lim) {
float mask;
2019-04-23 03:01:30 +02:00
if (accumulate) {
mask = *dmr + mask_lim;
2019-04-23 03:01:30 +02:00
}
else {
mask = *dmr + mask_lim - (*dmr * (*cmr / 65535.0f));
2019-04-23 03:01:30 +02:00
}
mask = min_ff(mask, 65535.0);
if (mask > *dmr) {
uchar mask_src[4];
*dmr = mask;
mask_src[0] = src[0];
mask_src[1] = src[1];
mask_src[2] = src[2];
if (mode == IMB_BLEND_INTERPOLATE) {
mask_src[3] = src[3];
blend_color_interpolate_byte(
(uchar *)dr, (uchar *)outr, mask_src, mask / 65535.0f);
}
else {
mask_src[3] = divide_round_i(src[3] * mask, 65535);
func((uchar *)dr, (uchar *)outr, mask_src);
}
}
}
}
dmaskrect += origskip;
}
/* No destination mask buffer, do regular blend with mask-texture if present. */
else {
for (x = width; x > 0; x--, dr++, outr++, sr++, cmr++) {
uchar *src = (uchar *)sr;
float mask = float(mask_max) * float(*cmr);
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
mask *= (float(*tmr++) / 65535.0f);
2019-04-23 03:01:30 +02:00
}
mask = min_ff(mask, 65535.0);
if (src[3] && (mask > 0.0f)) {
uchar mask_src[4];
mask_src[0] = src[0];
mask_src[1] = src[1];
mask_src[2] = src[2];
if (mode == IMB_BLEND_INTERPOLATE) {
mask_src[3] = src[3];
blend_color_interpolate_byte(
(uchar *)dr, (uchar *)outr, mask_src, mask / 65535.0f);
}
else {
mask_src[3] = divide_round_i(src[3] * mask, 65535);
func((uchar *)dr, (uchar *)outr, mask_src);
}
}
}
}
cmaskrect += srcskip;
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
texmaskrect += srcskip;
2019-04-23 03:01:30 +02:00
}
}
else {
/* regular blending */
for (x = width; x > 0; x--, dr++, outr++, sr++) {
if (((uchar *)sr)[3]) {
func((uchar *)dr, (uchar *)outr, (uchar *)sr);
2019-04-23 03:01:30 +02:00
}
}
}
drect += destskip;
orect += origskip;
srect += srcskip;
}
if (do_float) {
drf = drectf;
orf = orectf;
srf = srectf;
if (cmaskrect) {
/* mask accumulation for painting */
cmr = cmaskrect;
tmr = texmaskrect;
/* destination mask present, do max alpha masking */
if (dmaskrect) {
dmr = dmaskrect;
for (x = width; x > 0; x--, drf += 4, orf += 4, srf += 4, dmr++, cmr++) {
float mask_lim = mask_max * (*cmr);
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
mask_lim *= ((*tmr++) / 65535.0f);
2019-04-23 03:01:30 +02:00
}
if (srf[3] && mask_lim) {
float mask;
2019-04-23 03:01:30 +02:00
if (accumulate) {
mask = min_ff(*dmr + mask_lim, 65535.0);
2019-04-23 03:01:30 +02:00
}
else {
mask = *dmr + mask_lim - (*dmr * (*cmr / 65535.0f));
2019-04-23 03:01:30 +02:00
}
mask = min_ff(mask, 65535.0);
if (mask > *dmr) {
*dmr = mask;
if (mode == IMB_BLEND_INTERPOLATE) {
blend_color_interpolate_float(drf, orf, srf, mask / 65535.0f);
}
else {
float mask_srf[4];
mul_v4_v4fl(mask_srf, srf, mask / 65535.0f);
func_float(drf, orf, mask_srf);
}
}
}
}
dmaskrect += origskip;
}
/* No destination mask buffer, do regular blend with mask-texture if present. */
else {
for (x = width; x > 0; x--, drf += 4, orf += 4, srf += 4, cmr++) {
float mask = float(mask_max) * float(*cmr);
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
mask *= (float(*tmr++) / 65535.0f);
2019-04-23 03:01:30 +02:00
}
mask = min_ff(mask, 65535.0);
if (srf[3] && (mask > 0.0f)) {
if (mode == IMB_BLEND_INTERPOLATE) {
blend_color_interpolate_float(drf, orf, srf, mask / 65535.0f);
}
else {
float mask_srf[4];
mul_v4_v4fl(mask_srf, srf, mask / 65535.0f);
func_float(drf, orf, mask_srf);
}
}
}
}
cmaskrect += srcskip;
2019-04-23 03:01:30 +02:00
if (texmaskrect) {
texmaskrect += srcskip;
2019-04-23 03:01:30 +02:00
}
}
else {
/* regular blending */
for (x = width; x > 0; x--, drf += 4, orf += 4, srf += 4) {
2019-04-23 03:01:30 +02:00
if (srf[3] != 0) {
func_float(drf, orf, srf);
2019-04-23 03:01:30 +02:00
}
}
}
2012-05-08 13:48:19 +02:00
drectf += destskip * 4;
orectf += origskip * 4;
2012-05-08 13:48:19 +02:00
srectf += srcskip * 4;
}
}
2002-10-12 13:37:38 +02:00
}
}
struct RectBlendThreadData {
ImBuf *dbuf;
const ImBuf *obuf, *sbuf;
ushort *dmask;
const ushort *curvemask, *texmask;
float mask_max;
int destx, desty, origx, origy;
int srcx, srcy, width;
IMB_BlendMode mode;
bool accumulate;
};
static void rectblend_thread_do(void *data_v, int scanline)
{
const int num_scanlines = 1;
RectBlendThreadData *data = (RectBlendThreadData *)data_v;
IMB_rectblend(data->dbuf,
data->obuf,
data->sbuf,
data->dmask,
data->curvemask,
data->texmask,
data->mask_max,
data->destx,
data->desty + scanline,
data->origx,
data->origy + scanline,
data->srcx,
data->srcy + scanline,
data->width,
num_scanlines,
data->mode,
data->accumulate);
}
void IMB_rectblend_threaded(ImBuf *dbuf,
const ImBuf *obuf,
const ImBuf *sbuf,
ushort *dmask,
const ushort *curvemask,
const ushort *texmask,
float mask_max,
int destx,
int desty,
int origx,
int origy,
int srcx,
int srcy,
int width,
int height,
IMB_BlendMode mode,
bool accumulate)
{
if (size_t(width) * height < 64 * 64) {
IMB_rectblend(dbuf,
obuf,
sbuf,
dmask,
curvemask,
texmask,
mask_max,
destx,
desty,
origx,
origy,
srcx,
srcy,
width,
height,
mode,
accumulate);
}
else {
RectBlendThreadData data;
data.dbuf = dbuf;
data.obuf = obuf;
data.sbuf = sbuf;
data.dmask = dmask;
data.curvemask = curvemask;
data.texmask = texmask;
data.mask_max = mask_max;
data.destx = destx;
data.desty = desty;
data.origx = origx;
data.origy = origy;
data.srcx = srcx;
data.srcy = srcy;
data.width = width;
data.mode = mode;
data.accumulate = accumulate;
IMB_processor_apply_threaded_scanlines(height, rectblend_thread_do, &data);
}
}
void IMB_rectfill(ImBuf *drect, const float col[4])
2002-10-12 13:37:38 +02:00
{
int num;
if (drect->byte_buffer.data) {
uint *rrect = (uint *)drect->byte_buffer.data;
char ccol[4];
ccol[0] = int(col[0] * 255);
ccol[1] = int(col[1] * 255);
ccol[2] = int(col[2] * 255);
ccol[3] = int(col[3] * 255);
num = drect->x * drect->y;
2019-04-23 03:01:30 +02:00
for (; num > 0; num--) {
*rrect++ = *((uint *)ccol);
2019-04-23 03:01:30 +02:00
}
}
if (drect->float_buffer.data) {
float *rrectf = drect->float_buffer.data;
num = drect->x * drect->y;
2012-05-08 13:48:19 +02:00
for (; num > 0; num--) {
*rrectf++ = col[0];
*rrectf++ = col[1];
*rrectf++ = col[2];
*rrectf++ = col[3];
}
}
2002-10-12 13:37:38 +02:00
}
VSE: Media transform redesign This patch changes behavior of strip transform and crop feature. Purpose of this change is to allow display arbitrary portion of input image, simplify user interface and workflow. Offset and Crop values in old files are converted in versioning. Offset animation is also converted. Crop animation and animation of crop or offset enable properties is not taken into account Changes in behavior and interface: - If image is added to timeline it is scaled to fit inside preview area while maintaining aspect ratio. Image is centered. This is considered as a baseline for further transformation. - Scale and rotation was added, so it is possible to transform image at it's original resolution. - Crop will not affect image transformation (does not move image). - Values of Crop and Transform Position are in pixels, these values are corrected if preview is fraction of project resolution. - Transform and Mirror panel has been removed and new Transform panel and Crop panel is moved to Adjust panel. Mirror is now part of new Transform panel. Technical changes: - Preprocessing stage must work on duplicated image, because original is cached. Previously Crop and Offset could run at once and required only one duplication of image. This is not the case with new algorithms, so duplication on demand is implemented. Transformation can read original image and will output new image that is safe to modify. It should be possible to add crop step to transform algorithm, so that Crop won't require previous duplication though. - Use Crop and Use Translation checkboxes were removed. Individual values are compared to default values to check if image needs to be processed. In case of transform this will be done also if resolution of source. Reviewed By: sergey Differential Revision: https://developer.blender.org/D8393
2020-11-02 22:15:52 +01:00
void IMB_rectfill_area_replace(
const ImBuf *ibuf, const float col[4], int x1, int y1, int x2, int y2)
{
/* Sanity checks. */
BLI_assert(ibuf->channels == 4);
if (ibuf->channels != 4) {
return;
}
int width = ibuf->x;
int height = ibuf->y;
CLAMP(x1, 0, width);
CLAMP(x2, 0, width);
CLAMP(y1, 0, height);
CLAMP(y2, 0, height);
if (x1 > x2) {
SWAP(int, x1, x2);
}
if (y1 > y2) {
SWAP(int, y1, y2);
}
if (x1 == x2 || y1 == y2) {
return;
}
uchar col_char[4] = {
uchar(col[0] * 255), uchar(col[1] * 255), uchar(col[2] * 255), uchar(col[3] * 255)};
VSE: Media transform redesign This patch changes behavior of strip transform and crop feature. Purpose of this change is to allow display arbitrary portion of input image, simplify user interface and workflow. Offset and Crop values in old files are converted in versioning. Offset animation is also converted. Crop animation and animation of crop or offset enable properties is not taken into account Changes in behavior and interface: - If image is added to timeline it is scaled to fit inside preview area while maintaining aspect ratio. Image is centered. This is considered as a baseline for further transformation. - Scale and rotation was added, so it is possible to transform image at it's original resolution. - Crop will not affect image transformation (does not move image). - Values of Crop and Transform Position are in pixels, these values are corrected if preview is fraction of project resolution. - Transform and Mirror panel has been removed and new Transform panel and Crop panel is moved to Adjust panel. Mirror is now part of new Transform panel. Technical changes: - Preprocessing stage must work on duplicated image, because original is cached. Previously Crop and Offset could run at once and required only one duplication of image. This is not the case with new algorithms, so duplication on demand is implemented. Transformation can read original image and will output new image that is safe to modify. It should be possible to add crop step to transform algorithm, so that Crop won't require previous duplication though. - Use Crop and Use Translation checkboxes were removed. Individual values are compared to default values to check if image needs to be processed. In case of transform this will be done also if resolution of source. Reviewed By: sergey Differential Revision: https://developer.blender.org/D8393
2020-11-02 22:15:52 +01:00
for (int y = y1; y < y2; y++) {
for (int x = x1; x < x2; x++) {
size_t offset = size_t(ibuf->x) * y * 4 + 4 * x;
VSE: Media transform redesign This patch changes behavior of strip transform and crop feature. Purpose of this change is to allow display arbitrary portion of input image, simplify user interface and workflow. Offset and Crop values in old files are converted in versioning. Offset animation is also converted. Crop animation and animation of crop or offset enable properties is not taken into account Changes in behavior and interface: - If image is added to timeline it is scaled to fit inside preview area while maintaining aspect ratio. Image is centered. This is considered as a baseline for further transformation. - Scale and rotation was added, so it is possible to transform image at it's original resolution. - Crop will not affect image transformation (does not move image). - Values of Crop and Transform Position are in pixels, these values are corrected if preview is fraction of project resolution. - Transform and Mirror panel has been removed and new Transform panel and Crop panel is moved to Adjust panel. Mirror is now part of new Transform panel. Technical changes: - Preprocessing stage must work on duplicated image, because original is cached. Previously Crop and Offset could run at once and required only one duplication of image. This is not the case with new algorithms, so duplication on demand is implemented. Transformation can read original image and will output new image that is safe to modify. It should be possible to add crop step to transform algorithm, so that Crop won't require previous duplication though. - Use Crop and Use Translation checkboxes were removed. Individual values are compared to default values to check if image needs to be processed. In case of transform this will be done also if resolution of source. Reviewed By: sergey Differential Revision: https://developer.blender.org/D8393
2020-11-02 22:15:52 +01:00
if (ibuf->byte_buffer.data) {
uchar *rrect = ibuf->byte_buffer.data + offset;
memcpy(rrect, col_char, sizeof(uchar[4]));
VSE: Media transform redesign This patch changes behavior of strip transform and crop feature. Purpose of this change is to allow display arbitrary portion of input image, simplify user interface and workflow. Offset and Crop values in old files are converted in versioning. Offset animation is also converted. Crop animation and animation of crop or offset enable properties is not taken into account Changes in behavior and interface: - If image is added to timeline it is scaled to fit inside preview area while maintaining aspect ratio. Image is centered. This is considered as a baseline for further transformation. - Scale and rotation was added, so it is possible to transform image at it's original resolution. - Crop will not affect image transformation (does not move image). - Values of Crop and Transform Position are in pixels, these values are corrected if preview is fraction of project resolution. - Transform and Mirror panel has been removed and new Transform panel and Crop panel is moved to Adjust panel. Mirror is now part of new Transform panel. Technical changes: - Preprocessing stage must work on duplicated image, because original is cached. Previously Crop and Offset could run at once and required only one duplication of image. This is not the case with new algorithms, so duplication on demand is implemented. Transformation can read original image and will output new image that is safe to modify. It should be possible to add crop step to transform algorithm, so that Crop won't require previous duplication though. - Use Crop and Use Translation checkboxes were removed. Individual values are compared to default values to check if image needs to be processed. In case of transform this will be done also if resolution of source. Reviewed By: sergey Differential Revision: https://developer.blender.org/D8393
2020-11-02 22:15:52 +01:00
}
if (ibuf->float_buffer.data) {
float *rrectf = ibuf->float_buffer.data + offset;
memcpy(rrectf, col, sizeof(float[4]));
VSE: Media transform redesign This patch changes behavior of strip transform and crop feature. Purpose of this change is to allow display arbitrary portion of input image, simplify user interface and workflow. Offset and Crop values in old files are converted in versioning. Offset animation is also converted. Crop animation and animation of crop or offset enable properties is not taken into account Changes in behavior and interface: - If image is added to timeline it is scaled to fit inside preview area while maintaining aspect ratio. Image is centered. This is considered as a baseline for further transformation. - Scale and rotation was added, so it is possible to transform image at it's original resolution. - Crop will not affect image transformation (does not move image). - Values of Crop and Transform Position are in pixels, these values are corrected if preview is fraction of project resolution. - Transform and Mirror panel has been removed and new Transform panel and Crop panel is moved to Adjust panel. Mirror is now part of new Transform panel. Technical changes: - Preprocessing stage must work on duplicated image, because original is cached. Previously Crop and Offset could run at once and required only one duplication of image. This is not the case with new algorithms, so duplication on demand is implemented. Transformation can read original image and will output new image that is safe to modify. It should be possible to add crop step to transform algorithm, so that Crop won't require previous duplication though. - Use Crop and Use Translation checkboxes were removed. Individual values are compared to default values to check if image needs to be processed. In case of transform this will be done also if resolution of source. Reviewed By: sergey Differential Revision: https://developer.blender.org/D8393
2020-11-02 22:15:52 +01:00
}
}
}
}
void buf_rectfill_area(uchar *rect,
float *rectf,
int width,
int height,
const float col[4],
ColorManagedDisplay *display,
int x1,
int y1,
int x2,
int y2)
{
int i, j;
float a; /* alpha */
float ai; /* alpha inverted */
float aich; /* alpha, inverted, ai/255.0 - Convert char to float at the same time */
2019-04-23 03:01:30 +02:00
if ((!rect && !rectf) || (!col) || col[3] == 0.0f) {
return;
2019-04-23 03:01:30 +02:00
}
/* sanity checks for coords */
CLAMP(x1, 0, width);
CLAMP(x2, 0, width);
CLAMP(y1, 0, height);
CLAMP(y2, 0, height);
2019-04-23 03:01:30 +02:00
if (x1 > x2) {
2012-05-08 13:48:19 +02:00
SWAP(int, x1, x2);
2019-04-23 03:01:30 +02:00
}
if (y1 > y2) {
2012-05-08 13:48:19 +02:00
SWAP(int, y1, y2);
2019-04-23 03:01:30 +02:00
}
if (x1 == x2 || y1 == y2) {
2012-05-08 13:48:19 +02:00
return;
2019-04-23 03:01:30 +02:00
}
a = col[3];
2012-05-08 13:48:19 +02:00
ai = 1 - a;
aich = ai / 255.0f;
if (rect) {
uchar *pixel;
uchar chr = 0, chg = 0, chb = 0;
2012-05-08 13:48:19 +02:00
float fr = 0, fg = 0, fb = 0;
const int alphaint = unit_float_to_uchar_clamp(a);
if (a == 1.0f) {
chr = unit_float_to_uchar_clamp(col[0]);
chg = unit_float_to_uchar_clamp(col[1]);
chb = unit_float_to_uchar_clamp(col[2]);
}
else {
2012-05-08 13:48:19 +02:00
fr = col[0] * a;
fg = col[1] * a;
fb = col[2] * a;
}
2012-05-08 13:48:19 +02:00
for (j = 0; j < y2 - y1; j++) {
for (i = 0; i < x2 - x1; i++) {
pixel = rect + 4 * (((y1 + j) * width) + (x1 + i));
2012-05-08 13:48:19 +02:00
if (pixel >= rect && pixel < rect + (4 * (width * height))) {
if (a == 1.0f) {
pixel[0] = chr;
pixel[1] = chg;
pixel[2] = chb;
pixel[3] = 255;
}
else {
int alphatest;
pixel[0] = char((fr + (float(pixel[0]) * aich)) * 255.0f);
pixel[1] = char((fg + (float(pixel[1]) * aich)) * 255.0f);
pixel[2] = char((fb + (float(pixel[2]) * aich)) * 255.0f);
pixel[3] = char((alphatest = (int(pixel[3]) + alphaint)) < 255 ? alphatest : 255);
}
}
}
}
}
if (rectf) {
float col_conv[4];
float *pixel;
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 12:05:07 +02:00
if (display) {
copy_v4_v4(col_conv, col);
IMB_colormanagement_display_to_scene_linear_v3(col_conv, display);
}
else {
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 12:05:07 +02:00
srgb_to_linearrgb_v4(col_conv, col);
}
2012-05-08 13:48:19 +02:00
for (j = 0; j < y2 - y1; j++) {
for (i = 0; i < x2 - x1; i++) {
pixel = rectf + 4 * (((y1 + j) * width) + (x1 + i));
if (a == 1.0f) {
pixel[0] = col_conv[0];
pixel[1] = col_conv[1];
pixel[2] = col_conv[2];
pixel[3] = 1.0f;
}
else {
float alphatest;
pixel[0] = (col_conv[0] * a) + (pixel[0] * ai);
pixel[1] = (col_conv[1] * a) + (pixel[1] * ai);
pixel[2] = (col_conv[2] * a) + (pixel[2] * ai);
2012-05-08 13:48:19 +02:00
pixel[3] = (alphatest = (pixel[3] + a)) < 1.0f ? alphatest : 1.0f;
}
}
}
}
}
void IMB_rectfill_area(
ImBuf *ibuf, const float col[4], int x1, int y1, int x2, int y2, ColorManagedDisplay *display)
{
2019-04-23 03:01:30 +02:00
if (!ibuf) {
return;
2019-04-23 03:01:30 +02:00
}
buf_rectfill_area(ibuf->byte_buffer.data,
ibuf->float_buffer.data,
ibuf->x,
ibuf->y,
col,
display,
x1,
y1,
x2,
y2);
}
void IMB_rectfill_alpha(ImBuf *ibuf, const float value)
{
int i;
if (ibuf->float_buffer.data && (ibuf->channels == 4)) {
float *fbuf = ibuf->float_buffer.data + 3;
2012-05-08 13:48:19 +02:00
for (i = ibuf->x * ibuf->y; i > 0; i--, fbuf += 4) {
*fbuf = value;
}
}
if (ibuf->byte_buffer.data) {
const uchar cvalue = value * 255;
uchar *cbuf = ibuf->byte_buffer.data + 3;
2012-05-08 13:48:19 +02:00
for (i = ibuf->x * ibuf->y; i > 0; i--, cbuf += 4) {
*cbuf = cvalue;
}
}
}