tornavis/source/blender/collada/AnimationImporter.cpp

1884 lines
56 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Chingiz Dyussenov, Arystanbek Dyussenov, Nathan Letwory, Sukhitha Jayathilake.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/collada/AnimationImporter.cpp
* \ingroup collada
*/
#include <stddef.h>
/* COLLADABU_ASSERT, may be able to remove later */
#include "COLLADABUPlatform.h"
#include "DNA_armature_types.h"
#include "ED_keyframing.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_path_util.h"
#include "BLI_string.h"
#include "BKE_action.h"
#include "BKE_armature.h"
#include "BKE_fcurve.h"
#include "BKE_object.h"
#include "MEM_guardedalloc.h"
#include "collada_utils.h"
#include "AnimationImporter.h"
#include "ArmatureImporter.h"
#include "MaterialExporter.h"
#include <algorithm>
// first try node name, if not available (since is optional), fall back to original id
template<class T>
static const char *bc_get_joint_name(T *node)
{
const std::string& id = node->getName();
return id.size() ? id.c_str() : node->getOriginalId().c_str();
}
FCurve *AnimationImporter::create_fcurve(int array_index, const char *rna_path)
{
FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve");
fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED);
fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
fcu->array_index = array_index;
return fcu;
}
void AnimationImporter::create_bezt(FCurve *fcu, float frame, float output)
{
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
bez.vec[1][0] = frame;
bez.vec[1][1] = output;
bez.ipo = U.ipo_new; /* use default interpolation mode here... */
bez.f1 = bez.f2 = bez.f3 = SELECT;
bez.h1 = bez.h2 = HD_AUTO;
insert_bezt_fcurve(fcu, &bez, 0);
calchandles_fcurve(fcu);
}
// create one or several fcurves depending on the number of parameters being animated
void AnimationImporter::animation_to_fcurves(COLLADAFW::AnimationCurve *curve)
{
COLLADAFW::FloatOrDoubleArray& input = curve->getInputValues();
COLLADAFW::FloatOrDoubleArray& output = curve->getOutputValues();
float fps = (float)FPS;
size_t dim = curve->getOutDimension();
unsigned int i;
std::vector<FCurve*>& fcurves = curve_map[curve->getUniqueId()];
switch (dim) {
case 1: // X, Y, Z or angle
case 3: // XYZ
case 4:
case 16: // matrix
{
for (i = 0; i < dim; i++ ) {
FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve");
fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED);
// fcu->rna_path = BLI_strdupn(path, strlen(path));
fcu->array_index = 0;
fcu->totvert = curve->getKeyCount();
// create beztriple for each key
for (unsigned int j = 0; j < curve->getKeyCount(); j++) {
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
// input, output
bez.vec[1][0] = bc_get_float_value(input, j) * fps;
bez.vec[1][1] = bc_get_float_value(output, j * dim + i);
if ( curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER ||
curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_STEP)
{
COLLADAFW::FloatOrDoubleArray& intan = curve->getInTangentValues();
COLLADAFW::FloatOrDoubleArray& outtan = curve->getOutTangentValues();
// intangent
bez.vec[0][0] = bc_get_float_value(intan, (j * 2 * dim ) + (2 * i)) * fps;
bez.vec[0][1] = bc_get_float_value(intan, (j * 2 * dim )+ (2 * i) + 1);
// outtangent
bez.vec[2][0] = bc_get_float_value(outtan, (j * 2 * dim ) + (2 * i)) * fps;
bez.vec[2][1] = bc_get_float_value(outtan, (j * 2 * dim )+ (2 * i) + 1);
if (curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER)
bez.ipo = BEZT_IPO_BEZ;
else
bez.ipo = BEZT_IPO_CONST;
//bez.h1 = bez.h2 = HD_AUTO;
}
else {
bez.h1 = bez.h2 = HD_AUTO;
bez.ipo = BEZT_IPO_LIN;
}
// bez.ipo = U.ipo_new; /* use default interpolation mode here... */
bez.f1 = bez.f2 = bez.f3 = SELECT;
insert_bezt_fcurve(fcu, &bez, 0);
}
calchandles_fcurve(fcu);
fcurves.push_back(fcu);
}
}
break;
default:
fprintf(stderr, "Output dimension of %d is not yet supported (animation id = %s)\n", (int)dim, curve->getOriginalId().c_str());
}
for (std::vector<FCurve*>::iterator it = fcurves.begin(); it != fcurves.end(); it++)
unused_curves.push_back(*it);
}
void AnimationImporter::fcurve_deg_to_rad(FCurve *cu)
{
for (unsigned int i = 0; i < cu->totvert; i++) {
// TODO convert handles too
cu->bezt[i].vec[1][1] *= DEG2RADF(1.0f);
cu->bezt[i].vec[0][1] *= DEG2RADF(1.0f);
cu->bezt[i].vec[2][1] *= DEG2RADF(1.0f);
}
}
void AnimationImporter::add_fcurves_to_object(Object *ob, std::vector<FCurve*>& curves, char *rna_path, int array_index, Animation *animated)
{
bAction *act;
if (!ob->adt || !ob->adt->action) act = verify_adt_action((ID*)&ob->id, 1);
else act = ob->adt->action;
std::vector<FCurve*>::iterator it;
int i;
#if 0
char *p = strstr(rna_path, "rotation_euler");
bool is_rotation = p && *(p + strlen("rotation_euler")) == '\0';
// convert degrees to radians for rotation
if (is_rotation)
fcurve_deg_to_rad(fcu);
#endif
for (it = curves.begin(), i = 0; it != curves.end(); it++, i++) {
FCurve *fcu = *it;
fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
if (array_index == -1) fcu->array_index = i;
else fcu->array_index = array_index;
if (ob->type == OB_ARMATURE) {
bActionGroup *grp = NULL;
const char *bone_name = bc_get_joint_name(animated->node);
if (bone_name) {
/* try to find group */
grp = BKE_action_group_find_name(act, bone_name);
/* no matching groups, so add one */
if (grp == NULL) {
/* Add a new group, and make it active */
grp = (bActionGroup*)MEM_callocN(sizeof(bActionGroup), "bActionGroup");
grp->flag = AGRP_SELECTED;
BLI_strncpy(grp->name, bone_name, sizeof(grp->name));
BLI_addtail(&act->groups, grp);
BLI_uniquename(&act->groups, grp, "Group", '.', offsetof(bActionGroup, name), 64);
}
/* add F-Curve to group */
action_groups_add_channel(act, grp, fcu);
}
#if 0
if (is_rotation) {
fcurves_actionGroup_map[grp].push_back(fcu);
}
#endif
}
else {
BLI_addtail(&act->curves, fcu);
}
// curve is used, so remove it from unused_curves
unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu), unused_curves.end());
}
}
AnimationImporter::AnimationImporter(UnitConverter *conv, ArmatureImporter *arm, Scene *scene) :
TransformReader(conv), armature_importer(arm), scene(scene) { }
AnimationImporter::~AnimationImporter()
{
// free unused FCurves
for (std::vector<FCurve*>::iterator it = unused_curves.begin(); it != unused_curves.end(); it++)
free_fcurve(*it);
if (unused_curves.size())
fprintf(stderr, "removed %d unused curves\n", (int)unused_curves.size());
}
bool AnimationImporter::write_animation(const COLLADAFW::Animation* anim)
{
if (anim->getAnimationType() == COLLADAFW::Animation::ANIMATION_CURVE) {
COLLADAFW::AnimationCurve *curve = (COLLADAFW::AnimationCurve*)anim;
// XXX Don't know if it's necessary
// Should we check outPhysicalDimension?
if (curve->getInPhysicalDimension() != COLLADAFW::PHYSICAL_DIMENSION_TIME) {
fprintf(stderr, "Inputs physical dimension is not time.\n");
return true;
}
// a curve can have mixed interpolation type,
// in this case curve->getInterpolationTypes returns a list of interpolation types per key
COLLADAFW::AnimationCurve::InterpolationType interp = curve->getInterpolationType();
if (interp != COLLADAFW::AnimationCurve::INTERPOLATION_MIXED) {
switch (interp) {
case COLLADAFW::AnimationCurve::INTERPOLATION_LINEAR:
case COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER:
case COLLADAFW::AnimationCurve::INTERPOLATION_STEP:
animation_to_fcurves(curve);
break;
default:
// TODO there're also CARDINAL, HERMITE, BSPLINE and STEP types
fprintf(stderr, "CARDINAL, HERMITE and BSPLINE anim interpolation types not supported yet.\n");
break;
}
}
else {
// not supported yet
fprintf(stderr, "MIXED anim interpolation type is not supported yet.\n");
}
}
else {
fprintf(stderr, "FORMULA animation type is not supported yet.\n");
}
return true;
}
// called on post-process stage after writeVisualScenes
bool AnimationImporter::write_animation_list(const COLLADAFW::AnimationList* animlist)
{
const COLLADAFW::UniqueId& animlist_id = animlist->getUniqueId();
animlist_map[animlist_id] = animlist;
#if 0
// should not happen
if (uid_animated_map.find(animlist_id) == uid_animated_map.end()) {
return true;
}
// for bones rna_path is like: pose.bones["bone-name"].rotation
#endif
return true;
}
// \todo refactor read_node_transform to not automatically apply anything,
// but rather return the transform matrix, so caller can do with it what is
// necessary. Same for \ref get_node_mat
void AnimationImporter::read_node_transform(COLLADAFW::Node *node, Object *ob)
{
float mat[4][4];
TransformReader::get_node_mat(mat, node, &uid_animated_map, ob);
if (ob) {
copy_m4_m4(ob->obmat, mat);
BKE_object_apply_mat4(ob, ob->obmat, 0, 0);
}
}
#if 0
virtual void AnimationImporter::change_eul_to_quat(Object *ob, bAction *act)
{
bActionGroup *grp;
int i;
for (grp = (bActionGroup*)act->groups.first; grp; grp = grp->next) {
FCurve *eulcu[3] = {NULL, NULL, NULL};
if (fcurves_actionGroup_map.find(grp) == fcurves_actionGroup_map.end())
continue;
std::vector<FCurve*> &rot_fcurves = fcurves_actionGroup_map[grp];
if (rot_fcurves.size() > 3) continue;
for (i = 0; i < rot_fcurves.size(); i++)
eulcu[rot_fcurves[i]->array_index] = rot_fcurves[i];
char joint_path[100];
char rna_path[100];
BLI_snprintf(joint_path, sizeof(joint_path), "pose.bones[\"%s\"]", grp->name);
BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_quaternion", joint_path);
FCurve *quatcu[4] = {
create_fcurve(0, rna_path),
create_fcurve(1, rna_path),
create_fcurve(2, rna_path),
create_fcurve(3, rna_path)
};
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, grp->name);
float m4[4][4], irest[3][3];
invert_m4_m4(m4, chan->bone->arm_mat);
copy_m3_m4(irest, m4);
for (i = 0; i < 3; i++) {
FCurve *cu = eulcu[i];
if (!cu) continue;
for (int j = 0; j < cu->totvert; j++) {
float frame = cu->bezt[j].vec[1][0];
float eul[3] = {
eulcu[0] ? evaluate_fcurve(eulcu[0], frame) : 0.0f,
eulcu[1] ? evaluate_fcurve(eulcu[1], frame) : 0.0f,
eulcu[2] ? evaluate_fcurve(eulcu[2], frame) : 0.0f
};
// make eul relative to bone rest pose
float rot[3][3], rel[3][3], quat[4];
/*eul_to_mat3(rot, eul);
mul_m3_m3m3(rel, irest, rot);
mat3_to_quat(quat, rel);
*/
eul_to_quat(quat, eul);
for (int k = 0; k < 4; k++)
create_bezt(quatcu[k], frame, quat[k]);
}
}
// now replace old Euler curves
for (i = 0; i < 3; i++) {
if (!eulcu[i]) continue;
action_groups_remove_channel(act, eulcu[i]);
free_fcurve(eulcu[i]);
}
chan->rotmode = ROT_MODE_QUAT;
for (i = 0; i < 4; i++)
action_groups_add_channel(act, grp, quatcu[i]);
}
bPoseChannel *pchan;
for (pchan = (bPoseChannel*)ob->pose->chanbase.first; pchan; pchan = pchan->next) {
pchan->rotmode = ROT_MODE_QUAT;
}
}
#endif
//sets the rna_path and array index to curve
void AnimationImporter::modify_fcurve(std::vector<FCurve*>* curves, const char* rna_path, int array_index )
{
std::vector<FCurve*>::iterator it;
int i;
for (it = curves->begin(), i = 0; it != curves->end(); it++, i++) {
FCurve *fcu = *it;
fcu->rna_path = BLI_strdup(rna_path);
if (array_index == -1) fcu->array_index = i;
else fcu->array_index = array_index;
unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu), unused_curves.end());
}
}
void AnimationImporter::unused_fcurve(std::vector<FCurve*>* curves)
{
// when an error happens and we can't actually use curve remove it from unused_curves
std::vector<FCurve*>::iterator it;
for (it = curves->begin(); it != curves->end(); it++) {
FCurve *fcu = *it;
unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu), unused_curves.end());
}
}
void AnimationImporter::find_frames( std::vector<float>* frames, std::vector<FCurve*>* curves)
{
std::vector<FCurve*>::iterator iter;
for (iter = curves->begin(); iter != curves->end(); iter++) {
FCurve *fcu = *iter;
for (unsigned int k = 0; k < fcu->totvert; k++) {
//get frame value from bezTriple
float fra = fcu->bezt[k].vec[1][0];
//if frame already not added add frame to frames
if (std::find(frames->begin(), frames->end(), fra) == frames->end())
frames->push_back(fra);
}
}
}
//creates the rna_paths and array indices of fcurves from animations using transformation and bound animation class of each animation.
void AnimationImporter:: Assign_transform_animations(COLLADAFW::Transformation * transform,
const COLLADAFW::AnimationList::AnimationBinding * binding,
std::vector<FCurve*>* curves, bool is_joint, char * joint_path)
{
COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
//to check if the no of curves are valid
bool xyz = ((tm_type == COLLADAFW::Transformation::TRANSLATE ||tm_type == COLLADAFW::Transformation::SCALE) && binding->animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
if (!((!xyz && curves->size() == 1) || (xyz && curves->size() == 3) || is_matrix)) {
fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, (int)curves->size());
return;
}
char rna_path[100];
switch (tm_type) {
case COLLADAFW::Transformation::TRANSLATE:
case COLLADAFW::Transformation::SCALE:
{
bool loc = tm_type == COLLADAFW::Transformation::TRANSLATE;
if (is_joint)
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, loc ? "location" : "scale");
else
BLI_strncpy(rna_path, loc ? "location" : "scale", sizeof(rna_path));
switch (binding->animationClass) {
case COLLADAFW::AnimationList::POSITION_X:
modify_fcurve(curves, rna_path, 0 );
break;
case COLLADAFW::AnimationList::POSITION_Y:
modify_fcurve(curves, rna_path, 1 );
break;
case COLLADAFW::AnimationList::POSITION_Z:
modify_fcurve(curves, rna_path, 2 );
break;
case COLLADAFW::AnimationList::POSITION_XYZ:
modify_fcurve(curves, rna_path, -1 );
break;
default:
unused_fcurve(curves);
fprintf(stderr, "AnimationClass %d is not supported for %s.\n",
binding->animationClass, loc ? "TRANSLATE" : "SCALE");
}
break;
}
case COLLADAFW::Transformation::ROTATE:
{
if (is_joint)
BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_euler", joint_path);
else
BLI_strncpy(rna_path, "rotation_euler", sizeof(rna_path));
std::vector<FCurve*>::iterator iter;
for (iter = curves->begin(); iter != curves->end(); iter++) {
FCurve* fcu = *iter;
//if transform is rotation the fcurves values must be turned in to radian.
if (is_rotation)
fcurve_deg_to_rad(fcu);
}
COLLADAFW::Rotate* rot = (COLLADAFW::Rotate*)transform;
COLLADABU::Math::Vector3& axis = rot->getRotationAxis();
switch (binding->animationClass) {
case COLLADAFW::AnimationList::ANGLE:
if (COLLADABU::Math::Vector3::UNIT_X == axis) {
modify_fcurve(curves, rna_path, 0 );
}
else if (COLLADABU::Math::Vector3::UNIT_Y == axis) {
modify_fcurve(curves, rna_path, 1 );
}
else if (COLLADABU::Math::Vector3::UNIT_Z == axis) {
modify_fcurve(curves, rna_path, 2 );
}
else
unused_fcurve(curves);
break;
case COLLADAFW::AnimationList::AXISANGLE:
// TODO convert axis-angle to quat? or XYZ?
default:
unused_fcurve(curves);
fprintf(stderr, "AnimationClass %d is not supported for ROTATE transformation.\n",
binding->animationClass);
}
break;
}
case COLLADAFW::Transformation::MATRIX:
/*{
COLLADAFW::Matrix* mat = (COLLADAFW::Matrix*)transform;
COLLADABU::Math::Matrix4 mat4 = mat->getMatrix();
switch (binding->animationClass) {
case COLLADAFW::AnimationList::TRANSFORM:
}
}*/
unused_fcurve(curves);
break;
case COLLADAFW::Transformation::SKEW:
case COLLADAFW::Transformation::LOOKAT:
unused_fcurve(curves);
fprintf(stderr, "Animation of SKEW and LOOKAT transformations is not supported yet.\n");
break;
}
}
//creates the rna_paths and array indices of fcurves from animations using color and bound animation class of each animation.
void AnimationImporter:: Assign_color_animations(const COLLADAFW::UniqueId& listid, ListBase *AnimCurves, const char * anim_type)
{
char rna_path[100];
BLI_strncpy(rna_path, anim_type, sizeof(rna_path));
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
//all the curves belonging to the current binding
std::vector<FCurve*> animcurves;
for (unsigned int j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
switch (bindings[j].animationClass) {
case COLLADAFW::AnimationList::COLOR_R:
modify_fcurve(&animcurves, rna_path, 0 );
break;
case COLLADAFW::AnimationList::COLOR_G:
modify_fcurve(&animcurves, rna_path, 1 );
break;
case COLLADAFW::AnimationList::COLOR_B:
modify_fcurve(&animcurves, rna_path, 2 );
break;
case COLLADAFW::AnimationList::COLOR_RGB:
case COLLADAFW::AnimationList::COLOR_RGBA: // to do-> set intensity
modify_fcurve(&animcurves, rna_path, -1 );
break;
default:
unused_fcurve(&animcurves);
fprintf(stderr, "AnimationClass %d is not supported for %s.\n",
bindings[j].animationClass, "COLOR" );
}
std::vector<FCurve*>::iterator iter;
//Add the curves of the current animation to the object
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve * fcu = *iter;
BLI_addtail(AnimCurves, fcu);
}
}
}
void AnimationImporter:: Assign_float_animations(const COLLADAFW::UniqueId& listid, ListBase *AnimCurves, const char * anim_type)
{
char rna_path[100];
if (animlist_map.find(listid) == animlist_map.end()) {
return;
}
else {
//anim_type has animations
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
//all the curves belonging to the current binding
std::vector<FCurve*> animcurves;
for (unsigned int j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
BLI_strncpy(rna_path, anim_type, sizeof(rna_path));
modify_fcurve(&animcurves, rna_path, 0 );
std::vector<FCurve*>::iterator iter;
//Add the curves of the current animation to the object
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve * fcu = *iter;
BLI_addtail(AnimCurves, fcu);
}
}
}
}
void AnimationImporter::apply_matrix_curves( Object * ob, std::vector<FCurve*>& animcurves, COLLADAFW::Node* root, COLLADAFW::Node* node,
COLLADAFW::Transformation * tm )
{
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL;
char joint_path[200];
if ( is_joint )
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
std::vector<float> frames;
find_frames(&frames, &animcurves);
float irest_dae[4][4];
float rest[4][4], irest[4][4];
if (is_joint) {
get_joint_rest_mat(irest_dae, root, node);
invert_m4(irest_dae);
Bone *bone = BKE_armature_find_bone_name((bArmature*)ob->data, bone_name);
if (!bone) {
fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
return;
}
unit_m4(rest);
copy_m4_m4(rest, bone->arm_mat);
invert_m4_m4(irest, rest);
}
// new curves to assign matrix transform animation
FCurve *newcu[10]; // if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale
unsigned int totcu = 10;
const char *tm_str = NULL;
char rna_path[200];
for (int i = 0; i < totcu; i++) {
int axis = i;
if (i < 4) {
tm_str = "rotation_quaternion";
axis = i;
}
else if (i < 7) {
tm_str = "location";
axis = i - 4;
}
else {
tm_str = "scale";
axis = i - 7;
}
if (is_joint)
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
else
BLI_strncpy(rna_path, tm_str, sizeof(rna_path));
newcu[i] = create_fcurve(axis, rna_path);
newcu[i]->totvert = frames.size();
}
if (frames.size() == 0)
return;
std::sort(frames.begin(), frames.end());
std::vector<float>::iterator it;
// sample values at each frame
for (it = frames.begin(); it != frames.end(); it++) {
float fra = *it;
float mat[4][4];
float matfra[4][4];
unit_m4(matfra);
// calc object-space mat
evaluate_transform_at_frame(matfra, node, fra);
// for joints, we need a special matrix
if (is_joint) {
// special matrix: iR * M * iR_dae * R
// where R, iR are bone rest and inverse rest mats in world space (Blender bones),
// iR_dae is joint inverse rest matrix (DAE) and M is an evaluated joint world-space matrix (DAE)
float temp[4][4], par[4][4];
// calc M
calc_joint_parent_mat_rest(par, NULL, root, node);
mult_m4_m4m4(temp, par, matfra);
// evaluate_joint_world_transform_at_frame(temp, NULL, node, fra);
// calc special matrix
mul_serie_m4(mat, irest, temp, irest_dae, rest, NULL, NULL, NULL, NULL);
}
else {
copy_m4_m4(mat, matfra);
}
float rot[4], loc[3], scale[3];
mat4_to_quat(rot, mat);
/*for ( int i = 0 ; i < 4 ; i ++ )
{
rot[i] = RAD2DEGF(rot[i]);
}*/
copy_v3_v3(loc, mat[3]);
mat4_to_size(scale, mat);
// add keys
for (int i = 0; i < totcu; i++) {
if (i < 4)
add_bezt(newcu[i], fra, rot[i]);
else if (i < 7)
add_bezt(newcu[i], fra, loc[i - 4]);
else
add_bezt(newcu[i], fra, scale[i - 7]);
}
}
verify_adt_action((ID*)&ob->id, 1);
ListBase *curves = &ob->adt->action->curves;
// add curves
for (int i= 0; i < totcu; i++) {
if (is_joint)
add_bone_fcurve(ob, node, newcu[i]);
else
BLI_addtail(curves, newcu[i]);
}
if (is_joint) {
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
chan->rotmode = ROT_MODE_QUAT;
}
else {
ob->rotmode = ROT_MODE_QUAT;
}
return;
}
void AnimationImporter::translate_Animations ( COLLADAFW::Node * node,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node*>& root_map,
std::multimap<COLLADAFW::UniqueId, Object*>& object_map,
std::map<COLLADAFW::UniqueId, const COLLADAFW::Object*> FW_object_map)
{
AnimationImporter::AnimMix* animType = get_animation_type(node, FW_object_map );
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
COLLADAFW::Node *root = root_map.find(node->getUniqueId()) == root_map.end() ? node : root_map[node->getUniqueId()];
Object *ob = is_joint ? armature_importer->get_armature_for_joint(root) : object_map.find(node->getUniqueId())->second;
if (!ob) {
fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
return;
}
bAction * act;
if ( (animType->transform) != 0 ) {
/* const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL; */ /* UNUSED */
char joint_path[200];
if ( is_joint )
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
if (!ob->adt || !ob->adt->action) act = verify_adt_action((ID*)&ob->id, 1);
else act = ob->adt->action;
//Get the list of animation curves of the object
ListBase *AnimCurves = &(act->curves);
const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
//for each transformation in node
for (unsigned int i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
const COLLADAFW::UniqueId& listid = transform->getAnimationList();
//check if transformation has animations
if (animlist_map.find(listid) == animlist_map.end()) {
continue;
}
else {
//transformation has animations
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
//all the curves belonging to the current binding
std::vector<FCurve*> animcurves;
for (unsigned int j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
if ( is_matrix ) {
apply_matrix_curves(ob, animcurves, root, node, transform );
}
else {
if (is_joint) {
add_bone_animation_sampled(ob, animcurves, root, node, transform);
}
else {
//calculate rnapaths and array index of fcurves according to transformation and animation class
Assign_transform_animations(transform, &bindings[j], &animcurves, is_joint, joint_path );
std::vector<FCurve*>::iterator iter;
//Add the curves of the current animation to the object
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve * fcu = *iter;
BLI_addtail(AnimCurves, fcu);
}
}
}
}
}
if (is_rotation && !is_joint) {
ob->rotmode = ROT_MODE_EUL;
}
}
}
if ((animType->light) != 0) {
Lamp * lamp = (Lamp*) ob->data;
if (!lamp->adt || !lamp->adt->action) act = verify_adt_action((ID*)&lamp->id, 1);
else act = lamp->adt->action;
ListBase *AnimCurves = &(act->curves);
const COLLADAFW::InstanceLightPointerArray& nodeLights = node->getInstanceLights();
for (unsigned int i = 0; i < nodeLights.getCount(); i++) {
const COLLADAFW::Light *light = (COLLADAFW::Light *) FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
if ((animType->light & LIGHT_COLOR) != 0) {
const COLLADAFW::Color *col = &(light->getColor());
const COLLADAFW::UniqueId& listid = col->getAnimationList();
Assign_color_animations(listid, AnimCurves, "color");
}
if ((animType->light & LIGHT_FOA) != 0 ) {
const COLLADAFW::AnimatableFloat *foa = &(light->getFallOffAngle());
const COLLADAFW::UniqueId& listid = foa->getAnimationList();
Assign_float_animations( listid, AnimCurves, "spot_size");
}
if ( (animType->light & LIGHT_FOE) != 0 ) {
const COLLADAFW::AnimatableFloat *foe = &(light->getFallOffExponent());
const COLLADAFW::UniqueId& listid = foe->getAnimationList();
Assign_float_animations( listid, AnimCurves, "spot_blend");
}
}
}
if ( (animType->camera) != 0) {
Camera * camera = (Camera*) ob->data;
if (!camera->adt || !camera->adt->action) act = verify_adt_action((ID*)&camera->id, 1);
else act = camera->adt->action;
ListBase *AnimCurves = &(act->curves);
const COLLADAFW::InstanceCameraPointerArray& nodeCameras= node->getInstanceCameras();
for (unsigned int i = 0; i < nodeCameras.getCount(); i++) {
const COLLADAFW::Camera *camera = (COLLADAFW::Camera *) FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
if ((animType->camera & CAMERA_XFOV) != 0 ) {
const COLLADAFW::AnimatableFloat *xfov = &(camera->getXFov());
const COLLADAFW::UniqueId& listid = xfov->getAnimationList();
Assign_float_animations( listid, AnimCurves, "lens");
}
else if ((animType->camera & CAMERA_XMAG) != 0 ) {
const COLLADAFW::AnimatableFloat *xmag = &(camera->getXMag());
const COLLADAFW::UniqueId& listid = xmag->getAnimationList();
Assign_float_animations( listid, AnimCurves, "ortho_scale");
}
if ((animType->camera & CAMERA_ZFAR) != 0 ) {
const COLLADAFW::AnimatableFloat *zfar = &(camera->getFarClippingPlane());
const COLLADAFW::UniqueId& listid = zfar->getAnimationList();
Assign_float_animations( listid, AnimCurves, "clip_end");
}
if ((animType->camera & CAMERA_ZNEAR) != 0 ) {
const COLLADAFW::AnimatableFloat *znear = &(camera->getNearClippingPlane());
const COLLADAFW::UniqueId& listid = znear->getAnimationList();
Assign_float_animations( listid, AnimCurves, "clip_start");
}
}
}
if ( animType->material != 0) {
Material *ma = give_current_material(ob, 1);
if (!ma->adt || !ma->adt->action) act = verify_adt_action((ID*)&ma->id, 1);
else act = ma->adt->action;
ListBase *AnimCurves = &(act->curves);
const COLLADAFW::InstanceGeometryPointerArray& nodeGeoms = node->getInstanceGeometries();
for (unsigned int i = 0; i < nodeGeoms.getCount(); i++) {
const COLLADAFW::MaterialBindingArray& matBinds = nodeGeoms[i]->getMaterialBindings();
for (unsigned int j = 0; j < matBinds.getCount(); j++) {
const COLLADAFW::UniqueId & matuid = matBinds[j].getReferencedMaterial();
const COLLADAFW::Effect *ef = (COLLADAFW::Effect *) (FW_object_map[matuid]);
if (ef != NULL) { /* can be NULL [#28909] */
const COLLADAFW::CommonEffectPointerArray& commonEffects = ef->getCommonEffects();
COLLADAFW::EffectCommon *efc = commonEffects[0];
if ((animType->material & MATERIAL_SHININESS) != 0) {
const COLLADAFW::FloatOrParam *shin = &(efc->getShininess());
const COLLADAFW::UniqueId& listid = shin->getAnimationList();
Assign_float_animations( listid, AnimCurves, "specular_hardness" );
}
if ((animType->material & MATERIAL_IOR) != 0) {
const COLLADAFW::FloatOrParam *ior = &(efc->getIndexOfRefraction());
const COLLADAFW::UniqueId& listid = ior->getAnimationList();
Assign_float_animations( listid, AnimCurves, "raytrace_transparency.ior" );
}
if ((animType->material & MATERIAL_SPEC_COLOR) != 0) {
const COLLADAFW::ColorOrTexture *cot = &(efc->getSpecular());
const COLLADAFW::UniqueId& listid = cot->getColor().getAnimationList();
Assign_color_animations( listid, AnimCurves, "specular_color" );
}
if ((animType->material & MATERIAL_DIFF_COLOR) != 0) {
const COLLADAFW::ColorOrTexture *cot = &(efc->getDiffuse());
const COLLADAFW::UniqueId& listid = cot->getColor().getAnimationList();
Assign_color_animations( listid, AnimCurves, "diffuse_color" );
}
}
}
}
}
}
void AnimationImporter::add_bone_animation_sampled(Object * ob, std::vector<FCurve*>& animcurves, COLLADAFW::Node* root, COLLADAFW::Node* node, COLLADAFW::Transformation * tm)
{
const char *bone_name = bc_get_joint_name(node);
char joint_path[200];
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
std::vector<float> frames;
find_frames(&frames, &animcurves);
// convert degrees to radians
if (tm->getTransformationType() == COLLADAFW::Transformation::ROTATE) {
std::vector<FCurve*>::iterator iter;
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve* fcu = *iter;
fcurve_deg_to_rad(fcu);
}
}
float irest_dae[4][4];
float rest[4][4], irest[4][4];
get_joint_rest_mat(irest_dae, root, node);
invert_m4(irest_dae);
Bone *bone = BKE_armature_find_bone_name((bArmature*)ob->data, bone_name);
if (!bone) {
fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
return;
}
unit_m4(rest);
copy_m4_m4(rest, bone->arm_mat);
invert_m4_m4(irest, rest);
// new curves to assign matrix transform animation
FCurve *newcu[10]; // if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale
unsigned int totcu = 10;
const char *tm_str = NULL;
char rna_path[200];
for (int i = 0; i < totcu; i++) {
int axis = i;
if (i < 4) {
tm_str = "rotation_quaternion";
axis = i;
}
else if (i < 7) {
tm_str = "location";
axis = i - 4;
}
else {
tm_str = "scale";
axis = i - 7;
}
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
newcu[i] = create_fcurve(axis, rna_path);
newcu[i]->totvert = frames.size();
}
if (frames.size() == 0)
return;
std::sort(frames.begin(), frames.end());
std::vector<float>::iterator it;
// sample values at each frame
for (it = frames.begin(); it != frames.end(); it++) {
float fra = *it;
float mat[4][4];
float matfra[4][4];
unit_m4(matfra);
// calc object-space mat
evaluate_transform_at_frame(matfra, node, fra);
// for joints, we need a special matrix
// special matrix: iR * M * iR_dae * R
// where R, iR are bone rest and inverse rest mats in world space (Blender bones),
// iR_dae is joint inverse rest matrix (DAE) and M is an evaluated joint world-space matrix (DAE)
float temp[4][4], par[4][4];
// calc M
calc_joint_parent_mat_rest(par, NULL, root, node);
mult_m4_m4m4(temp, par, matfra);
// evaluate_joint_world_transform_at_frame(temp, NULL,, node, fra);
// calc special matrix
mul_serie_m4(mat, irest, temp, irest_dae, rest, NULL, NULL, NULL, NULL);
float rot[4], loc[3], scale[3];
mat4_to_quat(rot, mat);
copy_v3_v3(loc, mat[3]);
mat4_to_size(scale, mat);
// add keys
for (int i = 0; i < totcu; i++) {
if (i < 4)
add_bezt(newcu[i], fra, rot[i]);
else if (i < 7)
add_bezt(newcu[i], fra, loc[i - 4]);
else
add_bezt(newcu[i], fra, scale[i - 7]);
}
}
verify_adt_action((ID*)&ob->id, 1);
// add curves
for (int i= 0; i < totcu; i++) {
add_bone_fcurve(ob, node, newcu[i]);
}
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
chan->rotmode = ROT_MODE_QUAT;
}
//Check if object is animated by checking if animlist_map holds the animlist_id of node transforms
AnimationImporter::AnimMix* AnimationImporter::get_animation_type ( const COLLADAFW::Node * node,
std::map<COLLADAFW::UniqueId, const COLLADAFW::Object*> FW_object_map)
{
AnimMix *types = new AnimMix();
const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
//for each transformation in node
for (unsigned int i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
const COLLADAFW::UniqueId& listid = transform->getAnimationList();
//check if transformation has animations
if (animlist_map.find(listid) == animlist_map.end()) {
continue;
}
else {
types->transform = types->transform|NODE_TRANSFORM;
break;
}
}
const COLLADAFW::InstanceLightPointerArray& nodeLights = node->getInstanceLights();
for (unsigned int i = 0; i < nodeLights.getCount(); i++) {
const COLLADAFW::Light *light = (COLLADAFW::Light *) FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
types->light = setAnimType(&(light->getColor()), (types->light), LIGHT_COLOR);
types->light = setAnimType(&(light->getFallOffAngle()), (types->light), LIGHT_FOA);
types->light = setAnimType(&(light->getFallOffExponent()), (types->light), LIGHT_FOE);
if ( types->light != 0) break;
}
const COLLADAFW::InstanceCameraPointerArray& nodeCameras = node->getInstanceCameras();
for (unsigned int i = 0; i < nodeCameras.getCount(); i++) {
const COLLADAFW::Camera *camera = (COLLADAFW::Camera *) FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
if ( camera->getCameraType() == COLLADAFW::Camera::PERSPECTIVE ) {
types->camera = setAnimType(&(camera->getXMag()), (types->camera), CAMERA_XFOV);
}
else {
types->camera = setAnimType(&(camera->getXMag()), (types->camera), CAMERA_XMAG);
}
types->camera = setAnimType(&(camera->getFarClippingPlane()), (types->camera), CAMERA_ZFAR);
types->camera = setAnimType(&(camera->getNearClippingPlane()), (types->camera), CAMERA_ZNEAR);
if ( types->camera != 0) break;
}
const COLLADAFW::InstanceGeometryPointerArray& nodeGeoms = node->getInstanceGeometries();
for (unsigned int i = 0; i < nodeGeoms.getCount(); i++) {
const COLLADAFW::MaterialBindingArray& matBinds = nodeGeoms[i]->getMaterialBindings();
for (unsigned int j = 0; j < matBinds.getCount(); j++) {
const COLLADAFW::UniqueId & matuid = matBinds[j].getReferencedMaterial();
const COLLADAFW::Effect *ef = (COLLADAFW::Effect *) (FW_object_map[matuid]);
if (ef != NULL) { /* can be NULL [#28909] */
const COLLADAFW::CommonEffectPointerArray& commonEffects = ef->getCommonEffects();
if (!commonEffects.empty()) {
COLLADAFW::EffectCommon *efc = commonEffects[0];
types->material = setAnimType(&(efc->getShininess()), (types->material), MATERIAL_SHININESS);
types->material = setAnimType(&(efc->getSpecular().getColor()), (types->material), MATERIAL_SPEC_COLOR);
types->material = setAnimType(&(efc->getDiffuse().getColor()), (types->material), MATERIAL_DIFF_COLOR);
// types->material = setAnimType(&(efc->get()), (types->material), MATERIAL_TRANSPARENCY);
types->material = setAnimType(&(efc->getIndexOfRefraction()), (types->material), MATERIAL_IOR);
}
}
}
}
return types;
}
int AnimationImporter::setAnimType ( const COLLADAFW::Animatable * prop, int types, int addition)
{
const COLLADAFW::UniqueId& listid = prop->getAnimationList();
if (animlist_map.find(listid) != animlist_map.end())
return types|addition;
else return types;
}
// Is not used anymore.
void AnimationImporter::find_frames_old(std::vector<float> * frames, COLLADAFW::Node * node, COLLADAFW::Transformation::TransformationType tm_type)
{
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
// for each <rotate>, <translate>, etc. there is a separate Transformation
const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
unsigned int i;
// find frames at which to sample plus convert all rotation keys to radians
for (i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
COLLADAFW::Transformation::TransformationType nodeTmType = transform->getTransformationType();
if (nodeTmType == tm_type) {
//get animation bindings for the current transformation
const COLLADAFW::UniqueId& listid = transform->getAnimationList();
//if transform is animated its animlist must exist.
if (animlist_map.find(listid) != animlist_map.end()) {
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
if (bindings.getCount()) {
//for each AnimationBinding get the fcurves which animate the transform
for (unsigned int j = 0; j < bindings.getCount(); j++) {
std::vector<FCurve*>& curves = curve_map[bindings[j].animation];
bool xyz = ((nodeTmType == COLLADAFW::Transformation::TRANSLATE || nodeTmType == COLLADAFW::Transformation::SCALE) && bindings[j].animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
if ((!xyz && curves.size() == 1) || (xyz && curves.size() == 3) || is_matrix) {
std::vector<FCurve*>::iterator iter;
for (iter = curves.begin(); iter != curves.end(); iter++) {
FCurve *fcu = *iter;
//if transform is rotation the fcurves values must be turned in to radian.
if (is_rotation)
fcurve_deg_to_rad(fcu);
for (unsigned int k = 0; k < fcu->totvert; k++) {
//get frame value from bezTriple
float fra = fcu->bezt[k].vec[1][0];
//if frame already not added add frame to frames
if (std::find(frames->begin(), frames->end(), fra) == frames->end())
frames->push_back(fra);
}
}
}
else {
fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, (int)curves.size());
}
}
}
}
}
}
}
// prerequisites:
// animlist_map - map animlist id -> animlist
// curve_map - map anim id -> curve(s)
Object *AnimationImporter::translate_animation_OLD(COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, Object*>& object_map,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node*>& root_map,
COLLADAFW::Transformation::TransformationType tm_type,
Object *par_job)
{
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
COLLADAFW::Node *root = root_map.find(node->getUniqueId()) == root_map.end() ? node : root_map[node->getUniqueId()];
Object *ob = is_joint ? armature_importer->get_armature_for_joint(node) : object_map[node->getUniqueId()];
const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL;
if (!ob) {
fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
return NULL;
}
// frames at which to sample
std::vector<float> frames;
find_frames_old(&frames, node, tm_type);
unsigned int i;
float irest_dae[4][4];
float rest[4][4], irest[4][4];
if (is_joint) {
get_joint_rest_mat(irest_dae, root, node);
invert_m4(irest_dae);
Bone *bone = BKE_armature_find_bone_name((bArmature*)ob->data, bone_name);
if (!bone) {
fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
return NULL;
}
unit_m4(rest);
copy_m4_m4(rest, bone->arm_mat);
invert_m4_m4(irest, rest);
}
Object *job = NULL;
#ifdef ARMATURE_TEST
FCurve *job_curves[10];
job = get_joint_object(root, node, par_job);
#endif
if (frames.size() == 0)
return job;
std::sort(frames.begin(), frames.end());
const char *tm_str = NULL;
switch (tm_type) {
case COLLADAFW::Transformation::ROTATE:
tm_str = "rotation_quaternion";
break;
case COLLADAFW::Transformation::SCALE:
tm_str = "scale";
break;
case COLLADAFW::Transformation::TRANSLATE:
tm_str = "location";
break;
case COLLADAFW::Transformation::MATRIX:
break;
default:
return job;
}
char rna_path[200];
char joint_path[200];
if (is_joint)
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
// new curves
FCurve *newcu[10]; // if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale
unsigned int totcu = is_matrix ? 10 : (is_rotation ? 4 : 3);
for (i = 0; i < totcu; i++) {
int axis = i;
if (is_matrix) {
if (i < 4) {
tm_str = "rotation_quaternion";
axis = i;
}
else if (i < 7) {
tm_str = "location";
axis = i - 4;
}
else {
tm_str = "scale";
axis = i - 7;
}
}
if (is_joint)
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
else
BLI_strncpy(rna_path, tm_str, sizeof(rna_path));
newcu[i] = create_fcurve(axis, rna_path);
#ifdef ARMATURE_TEST
if (is_joint)
job_curves[i] = create_fcurve(axis, tm_str);
#endif
}
std::vector<float>::iterator it;
// sample values at each frame
for (it = frames.begin(); it != frames.end(); it++) {
float fra = *it;
float mat[4][4];
float matfra[4][4];
unit_m4(matfra);
// calc object-space mat
evaluate_transform_at_frame(matfra, node, fra);
// for joints, we need a special matrix
if (is_joint) {
// special matrix: iR * M * iR_dae * R
// where R, iR are bone rest and inverse rest mats in world space (Blender bones),
// iR_dae is joint inverse rest matrix (DAE) and M is an evaluated joint world-space matrix (DAE)
float temp[4][4], par[4][4];
// calc M
calc_joint_parent_mat_rest(par, NULL, root, node);
mult_m4_m4m4(temp, par, matfra);
// evaluate_joint_world_transform_at_frame(temp, NULL,, node, fra);
// calc special matrix
mul_serie_m4(mat, irest, temp, irest_dae, rest, NULL, NULL, NULL, NULL);
}
else {
copy_m4_m4(mat, matfra);
}
float val[4], rot[4], loc[3], scale[3];
switch (tm_type) {
case COLLADAFW::Transformation::ROTATE:
mat4_to_quat(val, mat);
break;
case COLLADAFW::Transformation::SCALE:
mat4_to_size(val, mat);
break;
case COLLADAFW::Transformation::TRANSLATE:
copy_v3_v3(val, mat[3]);
break;
case COLLADAFW::Transformation::MATRIX:
mat4_to_quat(rot, mat);
copy_v3_v3(loc, mat[3]);
mat4_to_size(scale, mat);
break;
default:
break;
}
// add keys
for (i = 0; i < totcu; i++) {
if (is_matrix) {
if (i < 4)
add_bezt(newcu[i], fra, rot[i]);
else if (i < 7)
add_bezt(newcu[i], fra, loc[i - 4]);
else
add_bezt(newcu[i], fra, scale[i - 7]);
}
else {
add_bezt(newcu[i], fra, val[i]);
}
}
#ifdef ARMATURE_TEST
if (is_joint) {
switch (tm_type) {
case COLLADAFW::Transformation::ROTATE:
mat4_to_quat(val, matfra);
break;
case COLLADAFW::Transformation::SCALE:
mat4_to_size(val, matfra);
break;
case COLLADAFW::Transformation::TRANSLATE:
copy_v3_v3(val, matfra[3]);
break;
case MATRIX:
mat4_to_quat(rot, matfra);
copy_v3_v3(loc, matfra[3]);
mat4_to_size(scale, matfra);
break;
default:
break;
}
for (i = 0; i < totcu; i++) {
if (is_matrix) {
if (i < 4)
add_bezt(job_curves[i], fra, rot[i]);
else if (i < 7)
add_bezt(job_curves[i], fra, loc[i - 4]);
else
add_bezt(job_curves[i], fra, scale[i - 7]);
}
else {
add_bezt(job_curves[i], fra, val[i]);
}
}
}
#endif
}
verify_adt_action((ID*)&ob->id, 1);
ListBase *curves = &ob->adt->action->curves;
// add curves
for (i = 0; i < totcu; i++) {
if (is_joint)
add_bone_fcurve(ob, node, newcu[i]);
else
BLI_addtail(curves, newcu[i]);
#ifdef ARMATURE_TEST
if (is_joint)
BLI_addtail(&job->adt->action->curves, job_curves[i]);
#endif
}
if (is_rotation || is_matrix) {
if (is_joint) {
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
chan->rotmode = ROT_MODE_QUAT;
}
else {
ob->rotmode = ROT_MODE_QUAT;
}
}
return job;
}
// internal, better make it private
// warning: evaluates only rotation and only assigns matrix transforms now
// prerequisites: animlist_map, curve_map
void AnimationImporter::evaluate_transform_at_frame(float mat[4][4], COLLADAFW::Node *node, float fra)
{
const COLLADAFW::TransformationPointerArray& tms = node->getTransformations();
unit_m4(mat);
for (unsigned int i = 0; i < tms.getCount(); i++) {
COLLADAFW::Transformation *tm = tms[i];
COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
float m[4][4];
unit_m4(m);
std::string nodename = node->getName().size() ? node->getName() : node->getOriginalId();
if (!evaluate_animation(tm, m, fra, nodename.c_str())) {
switch (type) {
case COLLADAFW::Transformation::ROTATE:
dae_rotate_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::TRANSLATE:
dae_translate_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::SCALE:
dae_scale_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::MATRIX:
dae_matrix_to_mat4(tm, m);
break;
default:
fprintf(stderr, "unsupported transformation type %d\n", type);
}
// dae_matrix_to_mat4(tm, m);
}
float temp[4][4];
copy_m4_m4(temp, mat);
mult_m4_m4m4(mat, temp, m);
}
}
// return true to indicate that mat contains a sane value
bool AnimationImporter::evaluate_animation(COLLADAFW::Transformation *tm, float mat[4][4], float fra, const char *node_id)
{
const COLLADAFW::UniqueId& listid = tm->getAnimationList();
COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
if (type != COLLADAFW::Transformation::ROTATE &&
type != COLLADAFW::Transformation::SCALE &&
type != COLLADAFW::Transformation::TRANSLATE &&
type != COLLADAFW::Transformation::MATRIX) {
fprintf(stderr, "animation of transformation %d is not supported yet\n", type);
return false;
}
if (animlist_map.find(listid) == animlist_map.end())
return false;
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
if (bindings.getCount()) {
float vec[3];
bool is_scale = (type == COLLADAFW::Transformation::SCALE);
bool is_translate = (type == COLLADAFW::Transformation::TRANSLATE);
if (is_scale)
dae_scale_to_v3(tm, vec);
else if (is_translate)
dae_translate_to_v3(tm, vec);
for (unsigned int j = 0; j < bindings.getCount(); j++) {
const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[j];
std::vector<FCurve*>& curves = curve_map[binding.animation];
COLLADAFW::AnimationList::AnimationClass animclass = binding.animationClass;
char path[100];
switch (type) {
case COLLADAFW::Transformation::ROTATE:
BLI_snprintf(path, sizeof(path), "%s.rotate (binding %u)", node_id, j);
break;
case COLLADAFW::Transformation::SCALE:
BLI_snprintf(path, sizeof(path), "%s.scale (binding %u)", node_id, j);
break;
case COLLADAFW::Transformation::TRANSLATE:
BLI_snprintf(path, sizeof(path), "%s.translate (binding %u)", node_id, j);
break;
case COLLADAFW::Transformation::MATRIX:
BLI_snprintf(path, sizeof(path), "%s.matrix (binding %u)", node_id, j);
break;
default:
break;
}
if (animclass == COLLADAFW::AnimationList::UNKNOWN_CLASS) {
fprintf(stderr, "%s: UNKNOWN animation class\n", path);
//continue;
}
if (type == COLLADAFW::Transformation::ROTATE) {
if (curves.size() != 1) {
fprintf(stderr, "expected 1 curve, got %d\n", (int)curves.size());
return false;
}
// TODO support other animclasses
if (animclass != COLLADAFW::AnimationList::ANGLE) {
fprintf(stderr, "%s: animation class %d is not supported yet\n", path, animclass);
return false;
}
COLLADABU::Math::Vector3& axis = ((COLLADAFW::Rotate*)tm)->getRotationAxis();
float ax[3] = {(float)axis[0], (float)axis[1], (float)axis[2]};
float angle = evaluate_fcurve(curves[0], fra);
axis_angle_to_mat4(mat, ax, angle);
return true;
}
else if (is_scale || is_translate) {
bool is_xyz = animclass == COLLADAFW::AnimationList::POSITION_XYZ;
if ((!is_xyz && curves.size() != 1) || (is_xyz && curves.size() != 3)) {
if (is_xyz)
fprintf(stderr, "%s: expected 3 curves, got %d\n", path, (int)curves.size());
else
fprintf(stderr, "%s: expected 1 curve, got %d\n", path, (int)curves.size());
return false;
}
switch (animclass) {
case COLLADAFW::AnimationList::POSITION_X:
vec[0] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_Y:
vec[1] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_Z:
vec[2] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_XYZ:
vec[0] = evaluate_fcurve(curves[0], fra);
vec[1] = evaluate_fcurve(curves[1], fra);
vec[2] = evaluate_fcurve(curves[2], fra);
break;
default:
fprintf(stderr, "%s: animation class %d is not supported yet\n", path, animclass);
break;
}
}
else if (type == COLLADAFW::Transformation::MATRIX) {
// for now, of matrix animation, support only the case when all values are packed into one animation
if (curves.size() != 16) {
fprintf(stderr, "%s: expected 16 curves, got %d\n", path, (int)curves.size());
return false;
}
COLLADABU::Math::Matrix4 matrix;
int i = 0, j = 0;
for (std::vector<FCurve*>::iterator it = curves.begin(); it != curves.end(); it++) {
matrix.setElement(i, j, evaluate_fcurve(*it, fra));
j++;
if (j == 4) {
i++;
j = 0;
}
unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), *it), unused_curves.end());
}
COLLADAFW::Matrix tm(matrix);
dae_matrix_to_mat4(&tm, mat);
std::vector<FCurve*>::iterator it;
return true;
}
}
if (is_scale)
size_to_mat4(mat, vec);
else
copy_v3_v3(mat[3], vec);
return is_scale || is_translate;
}
return false;
}
// gives a world-space mat of joint at rest position
void AnimationImporter::get_joint_rest_mat(float mat[4][4], COLLADAFW::Node *root, COLLADAFW::Node *node)
{
// if bind mat is not available,
// use "current" node transform, i.e. all those tms listed inside <node>
if (!armature_importer->get_joint_bind_mat(mat, node)) {
float par[4][4], m[4][4];
calc_joint_parent_mat_rest(par, NULL, root, node);
get_node_mat(m, node, NULL, NULL);
mult_m4_m4m4(mat, par, m);
}
}
// gives a world-space mat, end's mat not included
bool AnimationImporter::calc_joint_parent_mat_rest(float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end)
{
float m[4][4];
if (node == end) {
par ? copy_m4_m4(mat, par) : unit_m4(mat);
return true;
}
// use bind matrix if available or calc "current" world mat
if (!armature_importer->get_joint_bind_mat(m, node)) {
if (par) {
float temp[4][4];
get_node_mat(temp, node, NULL, NULL);
mult_m4_m4m4(m, par, temp);
}
else {
get_node_mat(m, node, NULL, NULL);
}
}
COLLADAFW::NodePointerArray& children = node->getChildNodes();
for (unsigned int i = 0; i < children.getCount(); i++) {
if (calc_joint_parent_mat_rest(mat, m, children[i], end))
return true;
}
return false;
}
#ifdef ARMATURE_TEST
Object *AnimationImporter::get_joint_object(COLLADAFW::Node *root, COLLADAFW::Node *node, Object *par_job)
{
if (joint_objects.find(node->getUniqueId()) == joint_objects.end()) {
Object *job = bc_add_object(scene, OB_EMPTY, (char*)get_joint_name(node));
job->lay = BKE_scene_base_find(scene, job)->lay = 2;
mul_v3_fl(job->size, 0.5f);
job->recalc |= OB_RECALC_OB;
verify_adt_action((ID*)&job->id, 1);
job->rotmode = ROT_MODE_QUAT;
float mat[4][4];
get_joint_rest_mat(mat, root, node);
if (par_job) {
float temp[4][4], ipar[4][4];
invert_m4_m4(ipar, par_job->obmat);
copy_m4_m4(temp, mat);
mult_m4_m4m4(mat, ipar, temp);
}
TransformBase::decompose(mat, job->loc, NULL, job->quat, job->size);
if (par_job) {
job->parent = par_job;
par_job->recalc |= OB_RECALC_OB;
job->parsubstr[0] = 0;
}
BKE_object_where_is_calc(scene, job);
// after parenting and layer change
DAG_scene_sort(CTX_data_main(C), scene);
joint_objects[node->getUniqueId()] = job;
}
return joint_objects[node->getUniqueId()];
}
#endif
#if 0
// recursively evaluates joint tree until end is found, mat then is world-space matrix of end
// mat must be identity on enter, node must be root
bool AnimationImporter::evaluate_joint_world_transform_at_frame(float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end, float fra)
{
float m[4][4];
if (par) {
float temp[4][4];
evaluate_transform_at_frame(temp, node, node == end ? fra : 0.0f);
mult_m4_m4m4(m, par, temp);
}
else {
evaluate_transform_at_frame(m, node, node == end ? fra : 0.0f);
}
if (node == end) {
copy_m4_m4(mat, m);
return true;
}
else {
COLLADAFW::NodePointerArray& children = node->getChildNodes();
for (int i = 0; i < children.getCount(); i++) {
if (evaluate_joint_world_transform_at_frame(mat, m, children[i], end, fra))
return true;
}
}
return false;
}
#endif
void AnimationImporter::add_bone_fcurve(Object *ob, COLLADAFW::Node *node, FCurve *fcu)
{
const char *bone_name = bc_get_joint_name(node);
bAction *act = ob->adt->action;
/* try to find group */
bActionGroup *grp = BKE_action_group_find_name(act, bone_name);
/* no matching groups, so add one */
if (grp == NULL) {
/* Add a new group, and make it active */
grp = (bActionGroup*)MEM_callocN(sizeof(bActionGroup), "bActionGroup");
grp->flag = AGRP_SELECTED;
BLI_strncpy(grp->name, bone_name, sizeof(grp->name));
BLI_addtail(&act->groups, grp);
BLI_uniquename(&act->groups, grp, "Group", '.', offsetof(bActionGroup, name), 64);
}
/* add F-Curve to group */
action_groups_add_channel(act, grp, fcu);
}
void AnimationImporter::add_bezt(FCurve *fcu, float fra, float value)
{
//float fps = (float)FPS;
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
bez.vec[1][0] = fra;
bez.vec[1][1] = value;
bez.ipo = BEZT_IPO_LIN ;/* use default interpolation mode here... */
bez.f1 = bez.f2 = bez.f3 = SELECT;
bez.h1 = bez.h2 = HD_AUTO;
insert_bezt_fcurve(fcu, &bez, 0);
calchandles_fcurve(fcu);
}