tornavis/source/blender/blenkernel/intern/constraint.c

4804 lines
138 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): 2007, Joshua Leung, major recode
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/constraint.c
* \ingroup bke
*/
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_kdopbvh.h"
#include "BLI_utildefines.h"
#include "BLF_translation.h"
#include "DNA_armature_types.h"
#include "DNA_camera_types.h"
#include "DNA_constraint_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_action_types.h"
#include "DNA_curve_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_lattice_types.h"
#include "DNA_scene_types.h"
#include "DNA_text_types.h"
#include "DNA_tracking_types.h"
#include "DNA_movieclip_types.h"
#include "BKE_action.h"
#include "BKE_anim.h" /* for the curve calculation part */
#include "BKE_armature.h"
#include "BKE_blender.h"
#include "BKE_bvhutils.h"
#include "BKE_camera.h"
#include "BKE_constraint.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_deform.h"
#include "BKE_DerivedMesh.h" /* for geometry targets */
#include "BKE_cdderivedmesh.h" /* for geometry targets */
#include "BKE_object.h"
#include "BKE_ipo.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_idprop.h"
#include "BKE_mesh.h"
#include "BKE_shrinkwrap.h"
#include "BKE_editmesh.h"
#include "BKE_tracking.h"
#include "BKE_movieclip.h"
#ifdef WITH_PYTHON
# include "BPY_extern.h"
#endif
/* Workaround for cyclic depenndnecy with curves.
* In such case curve_cache might not be ready yet,
*/
#define CYCLIC_DEPENDENCY_WORKAROUND
/* ************************ Constraints - General Utilities *************************** */
/* These functions here don't act on any specific constraints, and are therefore should/will
* not require any of the special function-pointers afforded by the relevant constraint
* type-info structs.
*/
/* -------------- Naming -------------- */
/* Find the first available, non-duplicate name for a given constraint */
void BKE_unique_constraint_name(bConstraint *con, ListBase *list)
{
BLI_uniquename(list, con, DATA_("Const"), '.', offsetof(bConstraint, name), sizeof(con->name));
}
/* ----------------- Evaluation Loop Preparation --------------- */
/* package an object/bone for use in constraint evaluation */
/* This function MEM_calloc's a bConstraintOb struct, that will need to be freed after evaluation */
bConstraintOb *BKE_constraints_make_evalob(Scene *scene, Object *ob, void *subdata, short datatype)
{
bConstraintOb *cob;
/* create regardless of whether we have any data! */
cob = MEM_callocN(sizeof(bConstraintOb), "bConstraintOb");
/* for system time, part of deglobalization, code nicer later with local time (ton) */
cob->scene = scene;
/* based on type of available data */
switch (datatype) {
case CONSTRAINT_OBTYPE_OBJECT:
{
/* disregard subdata... calloc should set other values right */
if (ob) {
cob->ob = ob;
cob->type = datatype;
cob->rotOrder = EULER_ORDER_DEFAULT; // TODO: when objects have rotation order too, use that
copy_m4_m4(cob->matrix, ob->obmat);
}
else
unit_m4(cob->matrix);
copy_m4_m4(cob->startmat, cob->matrix);
break;
}
case CONSTRAINT_OBTYPE_BONE:
{
/* only set if we have valid bone, otherwise default */
if (ob && subdata) {
cob->ob = ob;
cob->pchan = (bPoseChannel *)subdata;
cob->type = datatype;
if (cob->pchan->rotmode > 0) {
/* should be some type of Euler order */
cob->rotOrder = cob->pchan->rotmode;
}
else {
/* Quats, so eulers should just use default order */
cob->rotOrder = EULER_ORDER_DEFAULT;
}
/* matrix in world-space */
mul_m4_m4m4(cob->matrix, ob->obmat, cob->pchan->pose_mat);
}
else
unit_m4(cob->matrix);
copy_m4_m4(cob->startmat, cob->matrix);
break;
}
default: /* other types not yet handled */
unit_m4(cob->matrix);
unit_m4(cob->startmat);
break;
}
return cob;
}
/* cleanup after constraint evaluation */
void BKE_constraints_clear_evalob(bConstraintOb *cob)
{
float delta[4][4], imat[4][4];
/* prevent crashes */
if (cob == NULL)
return;
/* calculate delta of constraints evaluation */
invert_m4_m4(imat, cob->startmat);
mul_m4_m4m4(delta, cob->matrix, imat);
/* copy matrices back to source */
switch (cob->type) {
case CONSTRAINT_OBTYPE_OBJECT:
{
/* cob->ob might not exist! */
if (cob->ob) {
/* copy new ob-matrix back to owner */
copy_m4_m4(cob->ob->obmat, cob->matrix);
/* copy inverse of delta back to owner */
invert_m4_m4(cob->ob->constinv, delta);
}
break;
}
case CONSTRAINT_OBTYPE_BONE:
{
/* cob->ob or cob->pchan might not exist */
if (cob->ob && cob->pchan) {
/* copy new pose-matrix back to owner */
mul_m4_m4m4(cob->pchan->pose_mat, cob->ob->imat, cob->matrix);
/* copy inverse of delta back to owner */
invert_m4_m4(cob->pchan->constinv, delta);
}
break;
}
}
/* free tempolary struct */
MEM_freeN(cob);
}
/* -------------- Space-Conversion API -------------- */
/* This function is responsible for the correct transformations/conversions
* of a matrix from one space to another for constraint evaluation.
* For now, this is only implemented for Objects and PoseChannels.
*/
void BKE_constraint_mat_convertspace(Object *ob, bPoseChannel *pchan, float mat[4][4], short from, short to)
{
float diff_mat[4][4];
float imat[4][4];
/* prevent crashes in these unlikely events */
if (ob == NULL || mat == NULL) return;
/* optimize trick - check if need to do anything */
if (from == to) return;
/* are we dealing with pose-channels or objects */
if (pchan) {
/* pose channels */
switch (from) {
case CONSTRAINT_SPACE_WORLD: /* ---------- FROM WORLDSPACE ---------- */
{
/* world to pose */
invert_m4_m4(imat, ob->obmat);
mul_m4_m4m4(mat, imat, mat);
/* use pose-space as stepping stone for other spaces... */
if (ELEM(to, CONSTRAINT_SPACE_LOCAL, CONSTRAINT_SPACE_PARLOCAL)) {
/* call self with slightly different values */
BKE_constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
break;
}
case CONSTRAINT_SPACE_POSE: /* ---------- FROM POSESPACE ---------- */
{
/* pose to world */
if (to == CONSTRAINT_SPACE_WORLD) {
mul_m4_m4m4(mat, ob->obmat, mat);
}
/* pose to local */
else if (to == CONSTRAINT_SPACE_LOCAL) {
if (pchan->bone) {
BKE_armature_mat_pose_to_bone(pchan, mat, mat);
}
}
/* pose to local with parent */
else if (to == CONSTRAINT_SPACE_PARLOCAL) {
if (pchan->bone) {
invert_m4_m4(imat, pchan->bone->arm_mat);
mul_m4_m4m4(mat, imat, mat);
}
}
break;
}
case CONSTRAINT_SPACE_LOCAL: /* ------------ FROM LOCALSPACE --------- */
{
/* local to pose - do inverse procedure that was done for pose to local */
if (pchan->bone) {
/* we need the posespace_matrix = local_matrix + (parent_posespace_matrix + restpos) */
BKE_armature_mat_bone_to_pose(pchan, mat, mat);
}
/* use pose-space as stepping stone for other spaces */
if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_PARLOCAL)) {
/* call self with slightly different values */
BKE_constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
break;
}
case CONSTRAINT_SPACE_PARLOCAL: /* -------------- FROM LOCAL WITH PARENT ---------- */
{
/* local + parent to pose */
if (pchan->bone) {
copy_m4_m4(diff_mat, pchan->bone->arm_mat);
mul_m4_m4m4(mat, mat, diff_mat);
}
/* use pose-space as stepping stone for other spaces */
if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL)) {
/* call self with slightly different values */
BKE_constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
break;
}
}
}
else {
/* objects */
if (from == CONSTRAINT_SPACE_WORLD && to == CONSTRAINT_SPACE_LOCAL) {
/* check if object has a parent */
if (ob->parent) {
/* 'subtract' parent's effects from owner */
mul_m4_m4m4(diff_mat, ob->parent->obmat, ob->parentinv);
invert_m4_m4_safe(imat, diff_mat);
mul_m4_m4m4(mat, imat, mat);
}
else {
/* Local space in this case will have to be defined as local to the owner's
* transform-property-rotated axes. So subtract this rotation component.
*/
BKE_object_to_mat4(ob, diff_mat);
normalize_m4(diff_mat);
zero_v3(diff_mat[3]);
invert_m4_m4_safe(imat, diff_mat);
mul_m4_m4m4(mat, imat, mat);
}
}
else if (from == CONSTRAINT_SPACE_LOCAL && to == CONSTRAINT_SPACE_WORLD) {
/* check that object has a parent - otherwise this won't work */
if (ob->parent) {
/* 'add' parent's effect back to owner */
mul_m4_m4m4(diff_mat, ob->parent->obmat, ob->parentinv);
mul_m4_m4m4(mat, diff_mat, mat);
}
else {
/* Local space in this case will have to be defined as local to the owner's
* transform-property-rotated axes. So add back this rotation component.
*/
BKE_object_to_mat4(ob, diff_mat);
normalize_m4(diff_mat);
zero_v3(diff_mat[3]);
mul_m4_m4m4(mat, diff_mat, mat);
}
}
}
}
/* ------------ General Target Matrix Tools ---------- */
/* function that sets the given matrix based on given vertex group in mesh */
static void contarget_get_mesh_mat(Object *ob, const char *substring, float mat[4][4])
{
DerivedMesh *dm = NULL;
BMEditMesh *em = BKE_editmesh_from_object(ob);
float vec[3] = {0.0f, 0.0f, 0.0f};
float normal[3] = {0.0f, 0.0f, 0.0f}, plane[3];
float imat[3][3], tmat[3][3];
const int defgroup = defgroup_name_index(ob, substring);
short freeDM = 0;
/* initialize target matrix using target matrix */
copy_m4_m4(mat, ob->obmat);
/* get index of vertex group */
if (defgroup == -1) return;
/* get DerivedMesh */
if (em) {
/* target is in editmode, so get a special derived mesh */
dm = CDDM_from_editbmesh(em, false, false);
freeDM = 1;
}
else {
/* when not in EditMode, use the 'final' derived mesh, depsgraph
* ensures we build with CD_MDEFORMVERT layer
*/
dm = (DerivedMesh *)ob->derivedFinal;
}
/* only continue if there's a valid DerivedMesh */
if (dm) {
MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
int numVerts = dm->getNumVerts(dm);
int i;
float co[3], nor[3];
/* check that dvert is a valid pointers (just in case) */
if (dvert) {
MDeformVert *dv = dvert;
float weightsum = 0.0f;
/* get the average of all verts with that are in the vertex-group */
for (i = 0; i < numVerts; i++, dv++) {
MDeformWeight *dw = defvert_find_index(dv, defgroup);
if (dw && dw->weight > 0.0f) {
dm->getVertCo(dm, i, co);
dm->getVertNo(dm, i, nor);
madd_v3_v3fl(vec, co, dw->weight);
madd_v3_v3fl(normal, nor, dw->weight);
weightsum += dw->weight;
}
}
/* calculate averages of normal and coordinates */
if (weightsum > 0) {
mul_v3_fl(vec, 1.0f / weightsum);
mul_v3_fl(normal, 1.0f / weightsum);
}
/* derive the rotation from the average normal:
* - code taken from transform_manipulator.c,
* calc_manipulator_stats, V3D_MANIP_NORMAL case
*/
/* we need the transpose of the inverse for a normal... */
copy_m3_m4(imat, ob->obmat);
invert_m3_m3(tmat, imat);
transpose_m3(tmat);
mul_m3_v3(tmat, normal);
normalize_v3(normal);
copy_v3_v3(plane, tmat[1]);
cross_v3_v3v3(mat[0], normal, plane);
if (len_v3(mat[0]) < 1e-3f) {
copy_v3_v3(plane, tmat[0]);
cross_v3_v3v3(mat[0], normal, plane);
}
copy_v3_v3(mat[2], normal);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
normalize_m4(mat);
/* apply the average coordinate as the new location */
mul_v3_m4v3(mat[3], ob->obmat, vec);
}
}
/* free temporary DerivedMesh created (in EditMode case) */
if (dm && freeDM)
dm->release(dm);
}
/* function that sets the given matrix based on given vertex group in lattice */
static void contarget_get_lattice_mat(Object *ob, const char *substring, float mat[4][4])
{
Lattice *lt = (Lattice *)ob->data;
DispList *dl = ob->curve_cache ? BKE_displist_find(&ob->curve_cache->disp, DL_VERTS) : NULL;
float *co = dl ? dl->verts : NULL;
BPoint *bp = lt->def;
MDeformVert *dv = lt->dvert;
int tot_verts = lt->pntsu * lt->pntsv * lt->pntsw;
float vec[3] = {0.0f, 0.0f, 0.0f}, tvec[3];
int grouped = 0;
int i, n;
const int defgroup = defgroup_name_index(ob, substring);
/* initialize target matrix using target matrix */
copy_m4_m4(mat, ob->obmat);
/* get index of vertex group */
if (defgroup == -1) return;
if (dv == NULL) return;
/* 1. Loop through control-points checking if in nominated vertex-group.
* 2. If it is, add it to vec to find the average point.
*/
for (i = 0; i < tot_verts; i++, dv++) {
for (n = 0; n < dv->totweight; n++) {
MDeformWeight *dw = defvert_find_index(dv, defgroup);
if (dw && dw->weight > 0.0f) {
/* copy coordinates of point to temporary vector, then add to find average */
memcpy(tvec, co ? co : bp->vec, 3 * sizeof(float));
add_v3_v3(vec, tvec);
grouped++;
}
}
/* advance pointer to coordinate data */
if (co) co += 3;
else bp++;
}
/* find average location, then multiply by ob->obmat to find world-space location */
if (grouped)
mul_v3_fl(vec, 1.0f / grouped);
mul_v3_m4v3(tvec, ob->obmat, vec);
/* copy new location to matrix */
copy_v3_v3(mat[3], tvec);
}
/* generic function to get the appropriate matrix for most target cases */
/* The cases where the target can be object data have not been implemented */
static void constraint_target_to_mat4(Object *ob, const char *substring, float mat[4][4], short from, short to, float headtail)
{
/* Case OBJECT */
if (!strlen(substring)) {
copy_m4_m4(mat, ob->obmat);
BKE_constraint_mat_convertspace(ob, NULL, mat, from, to);
}
/* Case VERTEXGROUP */
/* Current method just takes the average location of all the points in the
* VertexGroup, and uses that as the location value of the targets. Where
* possible, the orientation will also be calculated, by calculating an
* 'average' vertex normal, and deriving the rotation from that.
*
* NOTE: EditMode is not currently supported, and will most likely remain that
* way as constraints can only really affect things on object/bone level.
*/
else if (ob->type == OB_MESH) {
contarget_get_mesh_mat(ob, substring, mat);
BKE_constraint_mat_convertspace(ob, NULL, mat, from, to);
}
else if (ob->type == OB_LATTICE) {
contarget_get_lattice_mat(ob, substring, mat);
BKE_constraint_mat_convertspace(ob, NULL, mat, from, to);
}
/* Case BONE */
else {
bPoseChannel *pchan;
pchan = BKE_pose_channel_find_name(ob->pose, substring);
if (pchan) {
/* Multiply the PoseSpace accumulation/final matrix for this
* PoseChannel by the Armature Object's Matrix to get a worldspace
* matrix.
*/
if (headtail < 0.000001f) {
/* skip length interpolation if set to head */
mul_m4_m4m4(mat, ob->obmat, pchan->pose_mat);
}
else {
float tempmat[4][4], loc[3];
/* interpolate along length of bone */
interp_v3_v3v3(loc, pchan->pose_head, pchan->pose_tail, headtail);
/* use interpolated distance for subtarget */
copy_m4_m4(tempmat, pchan->pose_mat);
copy_v3_v3(tempmat[3], loc);
mul_m4_m4m4(mat, ob->obmat, tempmat);
}
}
else
copy_m4_m4(mat, ob->obmat);
/* convert matrix space as required */
BKE_constraint_mat_convertspace(ob, pchan, mat, from, to);
}
}
/* ************************* Specific Constraints ***************************** */
/* Each constraint defines a set of functions, which will be called at the appropriate
* times. In addition to this, each constraint should have a type-info struct, where
* its functions are attached for use.
*/
/* Template for type-info data:
* - make a copy of this when creating new constraints, and just change the functions
* pointed to as necessary
* - although the naming of functions doesn't matter, it would help for code
* readability, to follow the same naming convention as is presented here
* - any functions that a constraint doesn't need to define, don't define
* for such cases, just use NULL
* - these should be defined after all the functions have been defined, so that
* forward-definitions/prototypes don't need to be used!
* - keep this copy #if-def'd so that future constraints can get based off this
*/
#if 0
static bConstraintTypeInfo CTI_CONSTRNAME = {
CONSTRAINT_TYPE_CONSTRNAME, /* type */
sizeof(bConstrNameConstraint), /* size */
"ConstrName", /* name */
"bConstrNameConstraint", /* struct name */
constrname_free, /* free data */
constrname_id_looper, /* id looper */
constrname_copy, /* copy data */
constrname_new_data, /* new data */
constrname_get_tars, /* get constraint targets */
constrname_flush_tars, /* flush constraint targets */
constrname_get_tarmat, /* get target matrix */
constrname_evaluate /* evaluate */
};
#endif
/* This function should be used for the get_target_matrix member of all
* constraints that are not picky about what happens to their target matrix.
*/
static void default_get_tarmat(bConstraint *con, bConstraintOb *UNUSED(cob), bConstraintTarget *ct, float UNUSED(ctime))
{
if (VALID_CONS_TARGET(ct))
constraint_target_to_mat4(ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
else if (ct)
unit_m4(ct->matrix);
}
/* This following macro should be used for all standard single-target *_get_tars functions
* to save typing and reduce maintenance woes.
* (Hopefully all compilers will be happy with the lines with just a space on them. Those are
* really just to help this code easier to read)
*/
// TODO: cope with getting rotation order...
#define SINGLETARGET_GET_TARS(con, datatar, datasubtarget, ct, list) \
{ \
ct = MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
\
ct->tar = datatar; \
BLI_strncpy(ct->subtarget, datasubtarget, sizeof(ct->subtarget)); \
ct->space = con->tarspace; \
ct->flag = CONSTRAINT_TAR_TEMP; \
\
if (ct->tar) { \
if ((ct->tar->type == OB_ARMATURE) && (ct->subtarget[0])) { \
bPoseChannel *pchan = BKE_pose_channel_find_name(ct->tar->pose, ct->subtarget); \
ct->type = CONSTRAINT_OBTYPE_BONE; \
ct->rotOrder = (pchan) ? (pchan->rotmode) : EULER_ORDER_DEFAULT; \
} \
else if (OB_TYPE_SUPPORT_VGROUP(ct->tar->type) && (ct->subtarget[0])) { \
ct->type = CONSTRAINT_OBTYPE_VERT; \
ct->rotOrder = EULER_ORDER_DEFAULT; \
} \
else { \
ct->type = CONSTRAINT_OBTYPE_OBJECT; \
ct->rotOrder = ct->tar->rotmode; \
} \
} \
\
BLI_addtail(list, ct); \
} (void)0
/* This following macro should be used for all standard single-target *_get_tars functions
* to save typing and reduce maintenance woes. It does not do the subtarget related operations
* (Hopefully all compilers will be happy with the lines with just a space on them. Those are
* really just to help this code easier to read)
*/
// TODO: cope with getting rotation order...
#define SINGLETARGETNS_GET_TARS(con, datatar, ct, list) \
{ \
ct = MEM_callocN(sizeof(bConstraintTarget), "tempConstraintTarget"); \
\
ct->tar = datatar; \
ct->space = con->tarspace; \
ct->flag = CONSTRAINT_TAR_TEMP; \
\
if (ct->tar) ct->type = CONSTRAINT_OBTYPE_OBJECT; \
\
BLI_addtail(list, ct); \
} (void)0
/* This following macro should be used for all standard single-target *_flush_tars functions
* to save typing and reduce maintenance woes.
* Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
* (Hopefully all compilers will be happy with the lines with just a space on them. Those are
* really just to help this code easier to read)
*/
#define SINGLETARGET_FLUSH_TARS(con, datatar, datasubtarget, ct, list, no_copy) \
{ \
if (ct) { \
bConstraintTarget *ctn = ct->next; \
if (no_copy == 0) { \
datatar = ct->tar; \
BLI_strncpy(datasubtarget, ct->subtarget, sizeof(datasubtarget)); \
con->tarspace = (char)ct->space; \
} \
\
BLI_freelinkN(list, ct); \
ct = ctn; \
} \
} (void)0
/* This following macro should be used for all standard single-target *_flush_tars functions
* to save typing and reduce maintenance woes. It does not do the subtarget related operations.
* Note: the pointer to ct will be changed to point to the next in the list (as it gets removed)
* (Hopefully all compilers will be happy with the lines with just a space on them. Those are
* really just to help this code easier to read)
*/
#define SINGLETARGETNS_FLUSH_TARS(con, datatar, ct, list, no_copy) \
{ \
if (ct) { \
bConstraintTarget *ctn = ct->next; \
if (no_copy == 0) { \
datatar = ct->tar; \
con->tarspace = (char)ct->space; \
} \
\
BLI_freelinkN(list, ct); \
ct = ctn; \
} \
} (void)0
/* --------- ChildOf Constraint ------------ */
static void childof_new_data(void *cdata)
{
bChildOfConstraint *data = (bChildOfConstraint *)cdata;
data->flag = (CHILDOF_LOCX | CHILDOF_LOCY | CHILDOF_LOCZ |
CHILDOF_ROTX | CHILDOF_ROTY | CHILDOF_ROTZ |
CHILDOF_SIZEX | CHILDOF_SIZEY | CHILDOF_SIZEZ);
unit_m4(data->invmat);
}
static void childof_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bChildOfConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int childof_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bChildOfConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void childof_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bChildOfConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void childof_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bChildOfConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
float parmat[4][4];
/* simple matrix parenting */
if (data->flag == CHILDOF_ALL) {
/* multiply target (parent matrix) by offset (parent inverse) to get
* the effect of the parent that will be exerted on the owner
*/
mul_m4_m4m4(parmat, ct->matrix, data->invmat);
/* now multiply the parent matrix by the owner matrix to get the
* the effect of this constraint (i.e. owner is 'parented' to parent)
*/
mul_m4_m4m4(cob->matrix, parmat, cob->matrix);
}
else {
float invmat[4][4], tempmat[4][4];
float loc[3], eul[3], size[3];
float loco[3], eulo[3], sizo[3];
/* get offset (parent-inverse) matrix */
copy_m4_m4(invmat, data->invmat);
/* extract components of both matrices */
copy_v3_v3(loc, ct->matrix[3]);
mat4_to_eulO(eul, ct->rotOrder, ct->matrix);
mat4_to_size(size, ct->matrix);
copy_v3_v3(loco, invmat[3]);
mat4_to_eulO(eulo, cob->rotOrder, invmat);
mat4_to_size(sizo, invmat);
/* disable channels not enabled */
if (!(data->flag & CHILDOF_LOCX)) loc[0] = loco[0] = 0.0f;
if (!(data->flag & CHILDOF_LOCY)) loc[1] = loco[1] = 0.0f;
if (!(data->flag & CHILDOF_LOCZ)) loc[2] = loco[2] = 0.0f;
if (!(data->flag & CHILDOF_ROTX)) eul[0] = eulo[0] = 0.0f;
if (!(data->flag & CHILDOF_ROTY)) eul[1] = eulo[1] = 0.0f;
if (!(data->flag & CHILDOF_ROTZ)) eul[2] = eulo[2] = 0.0f;
if (!(data->flag & CHILDOF_SIZEX)) size[0] = sizo[0] = 1.0f;
if (!(data->flag & CHILDOF_SIZEY)) size[1] = sizo[1] = 1.0f;
if (!(data->flag & CHILDOF_SIZEZ)) size[2] = sizo[2] = 1.0f;
/* make new target mat and offset mat */
loc_eulO_size_to_mat4(ct->matrix, loc, eul, size, ct->rotOrder);
loc_eulO_size_to_mat4(invmat, loco, eulo, sizo, cob->rotOrder);
/* multiply target (parent matrix) by offset (parent inverse) to get
* the effect of the parent that will be exerted on the owner
*/
mul_m4_m4m4(parmat, ct->matrix, invmat);
/* now multiply the parent matrix by the owner matrix to get the
* the effect of this constraint (i.e. owner is 'parented' to parent)
*/
copy_m4_m4(tempmat, cob->matrix);
mul_m4_m4m4(cob->matrix, parmat, tempmat);
/* without this, changes to scale and rotation can change location
* of a parentless bone or a disconnected bone. Even though its set
* to zero above. */
if (!(data->flag & CHILDOF_LOCX)) cob->matrix[3][0] = tempmat[3][0];
if (!(data->flag & CHILDOF_LOCY)) cob->matrix[3][1] = tempmat[3][1];
if (!(data->flag & CHILDOF_LOCZ)) cob->matrix[3][2] = tempmat[3][2];
}
}
}
/* XXX note, con->flag should be CONSTRAINT_SPACEONCE for bone-childof, patched in readfile.c */
static bConstraintTypeInfo CTI_CHILDOF = {
CONSTRAINT_TYPE_CHILDOF, /* type */
sizeof(bChildOfConstraint), /* size */
"Child Of", /* name */
"bChildOfConstraint", /* struct name */
NULL, /* free data */
childof_id_looper, /* id looper */
NULL, /* copy data */
childof_new_data, /* new data */
childof_get_tars, /* get constraint targets */
childof_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get a target matrix */
childof_evaluate /* evaluate */
};
/* -------- TrackTo Constraint ------- */
static void trackto_new_data(void *cdata)
{
bTrackToConstraint *data = (bTrackToConstraint *)cdata;
data->reserved1 = TRACK_Y;
data->reserved2 = UP_Z;
}
static void trackto_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bTrackToConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int trackto_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bTrackToConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void trackto_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bTrackToConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static int basis_cross(int n, int m)
{
switch (n - m) {
case 1:
case -2:
return 1;
case -1:
case 2:
return -1;
default:
return 0;
}
}
static void vectomat(const float vec[3], const float target_up[3], short axis, short upflag, short flags, float m[3][3])
{
float n[3];
float u[3]; /* vector specifying the up axis */
float proj[3];
float right[3];
float neg = -1;
int right_index;
if (normalize_v3_v3(n, vec) == 0.0f) {
n[0] = 0.0f;
n[1] = 0.0f;
n[2] = 1.0f;
}
if (axis > 2) axis -= 3;
else negate_v3(n);
/* n specifies the transformation of the track axis */
if (flags & TARGET_Z_UP) {
/* target Z axis is the global up axis */
copy_v3_v3(u, target_up);
}
else {
/* world Z axis is the global up axis */
u[0] = 0;
u[1] = 0;
u[2] = 1;
}
/* project the up vector onto the plane specified by n */
project_v3_v3v3(proj, u, n); /* first u onto n... */
sub_v3_v3v3(proj, u, proj); /* then onto the plane */
/* proj specifies the transformation of the up axis */
if (normalize_v3(proj) == 0.0f) { /* degenerate projection */
proj[0] = 0.0f;
proj[1] = 1.0f;
proj[2] = 0.0f;
}
/* Normalized cross product of n and proj specifies transformation of the right axis */
cross_v3_v3v3(right, proj, n);
normalize_v3(right);
if (axis != upflag) {
right_index = 3 - axis - upflag;
neg = (float)basis_cross(axis, upflag);
/* account for up direction, track direction */
m[right_index][0] = neg * right[0];
m[right_index][1] = neg * right[1];
m[right_index][2] = neg * right[2];
copy_v3_v3(m[upflag], proj);
copy_v3_v3(m[axis], n);
}
/* identity matrix - don't do anything if the two axes are the same */
else {
unit_m3(m);
}
}
static void trackto_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bTrackToConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
if (VALID_CONS_TARGET(ct)) {
float size[3], vec[3];
float totmat[3][3];
/* Get size property, since ob->size is only the object's own relative size, not its global one */
mat4_to_size(size, cob->matrix);
/* Clear the object's rotation */
cob->matrix[0][0] = size[0];
cob->matrix[0][1] = 0;
cob->matrix[0][2] = 0;
cob->matrix[1][0] = 0;
cob->matrix[1][1] = size[1];
cob->matrix[1][2] = 0;
cob->matrix[2][0] = 0;
cob->matrix[2][1] = 0;
cob->matrix[2][2] = size[2];
/* targetmat[2] instead of ownermat[2] is passed to vectomat
* for backwards compatibility it seems... (Aligorith)
*/
sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
vectomat(vec, ct->matrix[2],
(short)data->reserved1, (short)data->reserved2,
data->flags, totmat);
mul_m4_m3m4(cob->matrix, totmat, cob->matrix);
}
}
static bConstraintTypeInfo CTI_TRACKTO = {
CONSTRAINT_TYPE_TRACKTO, /* type */
sizeof(bTrackToConstraint), /* size */
"Track To", /* name */
"bTrackToConstraint", /* struct name */
NULL, /* free data */
trackto_id_looper, /* id looper */
NULL, /* copy data */
trackto_new_data, /* new data */
trackto_get_tars, /* get constraint targets */
trackto_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
trackto_evaluate /* evaluate */
};
/* --------- Inverse-Kinematics --------- */
static void kinematic_new_data(void *cdata)
{
bKinematicConstraint *data = (bKinematicConstraint *)cdata;
data->weight = 1.0f;
data->orientweight = 1.0f;
data->iterations = 500;
data->dist = 1.0f;
data->flag = CONSTRAINT_IK_TIP | CONSTRAINT_IK_STRETCH | CONSTRAINT_IK_POS;
}
static void kinematic_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bKinematicConstraint *data = con->data;
/* chain target */
func(con, (ID **)&data->tar, false, userdata);
/* poletarget */
func(con, (ID **)&data->poletar, false, userdata);
}
static int kinematic_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bKinematicConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints is used twice here */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
SINGLETARGET_GET_TARS(con, data->poletar, data->polesubtarget, ct, list);
return 2;
}
return 0;
}
static void kinematic_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bKinematicConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
SINGLETARGET_FLUSH_TARS(con, data->poletar, data->polesubtarget, ct, list, no_copy);
}
}
static void kinematic_get_tarmat(bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
{
bKinematicConstraint *data = con->data;
if (VALID_CONS_TARGET(ct))
constraint_target_to_mat4(ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
else if (ct) {
if (data->flag & CONSTRAINT_IK_AUTO) {
Object *ob = cob->ob;
if (ob == NULL) {
unit_m4(ct->matrix);
}
else {
float vec[3];
/* move grabtarget into world space */
mul_v3_m4v3(vec, ob->obmat, data->grabtarget);
copy_m4_m4(ct->matrix, ob->obmat);
copy_v3_v3(ct->matrix[3], vec);
}
}
else
unit_m4(ct->matrix);
}
}
static bConstraintTypeInfo CTI_KINEMATIC = {
CONSTRAINT_TYPE_KINEMATIC, /* type */
sizeof(bKinematicConstraint), /* size */
"IK", /* name */
"bKinematicConstraint", /* struct name */
NULL, /* free data */
kinematic_id_looper, /* id looper */
NULL, /* copy data */
kinematic_new_data, /* new data */
kinematic_get_tars, /* get constraint targets */
kinematic_flush_tars, /* flush constraint targets */
kinematic_get_tarmat, /* get target matrix */
NULL /* evaluate - solved as separate loop */
};
/* -------- Follow-Path Constraint ---------- */
static void followpath_new_data(void *cdata)
{
bFollowPathConstraint *data = (bFollowPathConstraint *)cdata;
data->trackflag = TRACK_Y;
data->upflag = UP_Z;
data->offset = 0;
data->followflag = 0;
}
static void followpath_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bFollowPathConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int followpath_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bFollowPathConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints without subtargets */
SINGLETARGETNS_GET_TARS(con, data->tar, ct, list);
return 1;
}
return 0;
}
static void followpath_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bFollowPathConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGETNS_FLUSH_TARS(con, data->tar, ct, list, no_copy);
}
}
static void followpath_get_tarmat(bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
{
bFollowPathConstraint *data = con->data;
if (VALID_CONS_TARGET(ct) && (ct->tar->type == OB_CURVE)) {
Curve *cu = ct->tar->data;
float vec[4], dir[3], radius;
float totmat[4][4] = MAT4_UNITY;
float curvetime;
unit_m4(ct->matrix);
/* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
* currently for paths to work it needs to go through the bevlist/displist system (ton)
*/
#ifdef CYCLIC_DEPENDENCY_WORKAROUND
if (ct->tar->curve_cache == NULL) {
BKE_displist_make_curveTypes(cob->scene, ct->tar, false);
}
#endif
if (ct->tar->curve_cache->path && ct->tar->curve_cache->path->data) {
float quat[4];
if ((data->followflag & FOLLOWPATH_STATIC) == 0) {
/* animated position along curve depending on time */
Nurb *nu = cu->nurb.first;
curvetime = cu->ctime - data->offset;
/* ctime is now a proper var setting of Curve which gets set by Animato like any other var that's animated,
* but this will only work if it actually is animated...
*
* we divide the curvetime calculated in the previous step by the length of the path, to get a time
* factor, which then gets clamped to lie within 0.0 - 1.0 range
*/
curvetime /= cu->pathlen;
if (nu && nu->flagu & CU_NURB_CYCLIC) {
/* If the curve is cyclic, enable looping around if the time is
* outside the bounds 0..1 */
if ((curvetime < 0.0f) || (curvetime > 1.0f)) {
curvetime -= floorf(curvetime);
}
}
else {
/* The curve is not cyclic, so clamp to the begin/end points. */
CLAMP(curvetime, 0.0f, 1.0f);
}
}
else {
/* fixed position along curve */
curvetime = data->offset_fac;
}
if (where_on_path(ct->tar, curvetime, vec, dir, (data->followflag & FOLLOWPATH_FOLLOW) ? quat : NULL, &radius, NULL) ) { /* quat_pt is quat or NULL*/
if (data->followflag & FOLLOWPATH_FOLLOW) {
#if 0
float x1, q[4];
vec_to_quat(quat, dir, (short)data->trackflag, (short)data->upflag);
normalize_v3(dir);
q[0] = cosf(0.5 * vec[3]);
x1 = sinf(0.5 * vec[3]);
q[1] = -x1 * dir[0];
q[2] = -x1 * dir[1];
q[3] = -x1 * dir[2];
mul_qt_qtqt(quat, q, quat);
#else
quat_apply_track(quat, data->trackflag, data->upflag);
#endif
quat_to_mat4(totmat, quat);
}
if (data->followflag & FOLLOWPATH_RADIUS) {
float tmat[4][4], rmat[4][4];
scale_m4_fl(tmat, radius);
mul_m4_m4m4(rmat, tmat, totmat);
copy_m4_m4(totmat, rmat);
}
copy_v3_v3(totmat[3], vec);
mul_m4_m4m4(ct->matrix, ct->tar->obmat, totmat);
}
}
}
else if (ct)
unit_m4(ct->matrix);
}
static void followpath_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bConstraintTarget *ct = targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
float obmat[4][4];
float size[3];
bFollowPathConstraint *data = con->data;
/* get Object transform (loc/rot/size) to determine transformation from path */
/* TODO: this used to be local at one point, but is probably more useful as-is */
copy_m4_m4(obmat, cob->matrix);
/* get scaling of object before applying constraint */
mat4_to_size(size, cob->matrix);
/* apply targetmat - containing location on path, and rotation */
mul_m4_m4m4(cob->matrix, ct->matrix, obmat);
/* un-apply scaling caused by path */
if ((data->followflag & FOLLOWPATH_RADIUS) == 0) { /* XXX - assume that scale correction means that radius will have some scale error in it - Campbell */
float obsize[3];
mat4_to_size(obsize, cob->matrix);
if (obsize[0])
mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
if (obsize[1])
mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
if (obsize[2])
mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
}
}
}
static bConstraintTypeInfo CTI_FOLLOWPATH = {
CONSTRAINT_TYPE_FOLLOWPATH, /* type */
sizeof(bFollowPathConstraint), /* size */
"Follow Path", /* name */
"bFollowPathConstraint", /* struct name */
NULL, /* free data */
followpath_id_looper, /* id looper */
NULL, /* copy data */
followpath_new_data, /* new data */
followpath_get_tars, /* get constraint targets */
followpath_flush_tars, /* flush constraint targets */
followpath_get_tarmat, /* get target matrix */
followpath_evaluate /* evaluate */
};
/* --------- Limit Location --------- */
static void loclimit_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
{
bLocLimitConstraint *data = con->data;
if (data->flag & LIMIT_XMIN) {
if (cob->matrix[3][0] < data->xmin)
cob->matrix[3][0] = data->xmin;
}
if (data->flag & LIMIT_XMAX) {
if (cob->matrix[3][0] > data->xmax)
cob->matrix[3][0] = data->xmax;
}
if (data->flag & LIMIT_YMIN) {
if (cob->matrix[3][1] < data->ymin)
cob->matrix[3][1] = data->ymin;
}
if (data->flag & LIMIT_YMAX) {
if (cob->matrix[3][1] > data->ymax)
cob->matrix[3][1] = data->ymax;
}
if (data->flag & LIMIT_ZMIN) {
if (cob->matrix[3][2] < data->zmin)
cob->matrix[3][2] = data->zmin;
}
if (data->flag & LIMIT_ZMAX) {
if (cob->matrix[3][2] > data->zmax)
cob->matrix[3][2] = data->zmax;
}
}
static bConstraintTypeInfo CTI_LOCLIMIT = {
CONSTRAINT_TYPE_LOCLIMIT, /* type */
sizeof(bLocLimitConstraint), /* size */
"Limit Location", /* name */
"bLocLimitConstraint", /* struct name */
NULL, /* free data */
NULL, /* id looper */
NULL, /* copy data */
NULL, /* new data */
NULL, /* get constraint targets */
NULL, /* flush constraint targets */
NULL, /* get target matrix */
loclimit_evaluate /* evaluate */
};
/* -------- Limit Rotation --------- */
static void rotlimit_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
{
bRotLimitConstraint *data = con->data;
float loc[3];
float eul[3];
float size[3];
copy_v3_v3(loc, cob->matrix[3]);
mat4_to_size(size, cob->matrix);
mat4_to_eulO(eul, cob->rotOrder, cob->matrix);
/* constraint data uses radians internally */
/* limiting of euler values... */
if (data->flag & LIMIT_XROT) {
if (eul[0] < data->xmin)
eul[0] = data->xmin;
if (eul[0] > data->xmax)
eul[0] = data->xmax;
}
if (data->flag & LIMIT_YROT) {
if (eul[1] < data->ymin)
eul[1] = data->ymin;
if (eul[1] > data->ymax)
eul[1] = data->ymax;
}
if (data->flag & LIMIT_ZROT) {
if (eul[2] < data->zmin)
eul[2] = data->zmin;
if (eul[2] > data->zmax)
eul[2] = data->zmax;
}
loc_eulO_size_to_mat4(cob->matrix, loc, eul, size, cob->rotOrder);
}
static bConstraintTypeInfo CTI_ROTLIMIT = {
CONSTRAINT_TYPE_ROTLIMIT, /* type */
sizeof(bRotLimitConstraint), /* size */
"Limit Rotation", /* name */
"bRotLimitConstraint", /* struct name */
NULL, /* free data */
NULL, /* id looper */
NULL, /* copy data */
NULL, /* new data */
NULL, /* get constraint targets */
NULL, /* flush constraint targets */
NULL, /* get target matrix */
rotlimit_evaluate /* evaluate */
};
/* --------- Limit Scale --------- */
static void sizelimit_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
{
bSizeLimitConstraint *data = con->data;
float obsize[3], size[3];
mat4_to_size(size, cob->matrix);
mat4_to_size(obsize, cob->matrix);
if (data->flag & LIMIT_XMIN) {
if (size[0] < data->xmin)
size[0] = data->xmin;
}
if (data->flag & LIMIT_XMAX) {
if (size[0] > data->xmax)
size[0] = data->xmax;
}
if (data->flag & LIMIT_YMIN) {
if (size[1] < data->ymin)
size[1] = data->ymin;
}
if (data->flag & LIMIT_YMAX) {
if (size[1] > data->ymax)
size[1] = data->ymax;
}
if (data->flag & LIMIT_ZMIN) {
if (size[2] < data->zmin)
size[2] = data->zmin;
}
if (data->flag & LIMIT_ZMAX) {
if (size[2] > data->zmax)
size[2] = data->zmax;
}
if (obsize[0])
mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
if (obsize[1])
mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
if (obsize[2])
mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
}
static bConstraintTypeInfo CTI_SIZELIMIT = {
CONSTRAINT_TYPE_SIZELIMIT, /* type */
sizeof(bSizeLimitConstraint), /* size */
"Limit Scale", /* name */
"bSizeLimitConstraint", /* struct name */
NULL, /* free data */
NULL, /* id looper */
NULL, /* copy data */
NULL, /* new data */
NULL, /* get constraint targets */
NULL, /* flush constraint targets */
NULL, /* get target matrix */
sizelimit_evaluate /* evaluate */
};
/* ----------- Copy Location ------------- */
static void loclike_new_data(void *cdata)
{
bLocateLikeConstraint *data = (bLocateLikeConstraint *)cdata;
data->flag = LOCLIKE_X | LOCLIKE_Y | LOCLIKE_Z;
}
static void loclike_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bLocateLikeConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int loclike_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bLocateLikeConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void loclike_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bLocateLikeConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void loclike_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bLocateLikeConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
if (VALID_CONS_TARGET(ct)) {
float offset[3] = {0.0f, 0.0f, 0.0f};
if (data->flag & LOCLIKE_OFFSET)
copy_v3_v3(offset, cob->matrix[3]);
if (data->flag & LOCLIKE_X) {
cob->matrix[3][0] = ct->matrix[3][0];
if (data->flag & LOCLIKE_X_INVERT) cob->matrix[3][0] *= -1;
cob->matrix[3][0] += offset[0];
}
if (data->flag & LOCLIKE_Y) {
cob->matrix[3][1] = ct->matrix[3][1];
if (data->flag & LOCLIKE_Y_INVERT) cob->matrix[3][1] *= -1;
cob->matrix[3][1] += offset[1];
}
if (data->flag & LOCLIKE_Z) {
cob->matrix[3][2] = ct->matrix[3][2];
if (data->flag & LOCLIKE_Z_INVERT) cob->matrix[3][2] *= -1;
cob->matrix[3][2] += offset[2];
}
}
}
static bConstraintTypeInfo CTI_LOCLIKE = {
CONSTRAINT_TYPE_LOCLIKE, /* type */
sizeof(bLocateLikeConstraint), /* size */
"Copy Location", /* name */
"bLocateLikeConstraint", /* struct name */
NULL, /* free data */
loclike_id_looper, /* id looper */
NULL, /* copy data */
loclike_new_data, /* new data */
loclike_get_tars, /* get constraint targets */
loclike_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
loclike_evaluate /* evaluate */
};
/* ----------- Copy Rotation ------------- */
static void rotlike_new_data(void *cdata)
{
bRotateLikeConstraint *data = (bRotateLikeConstraint *)cdata;
data->flag = ROTLIKE_X | ROTLIKE_Y | ROTLIKE_Z;
}
static void rotlike_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bRotateLikeConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int rotlike_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bRotateLikeConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void rotlike_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bRotateLikeConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void rotlike_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bRotateLikeConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
if (VALID_CONS_TARGET(ct)) {
float loc[3];
float eul[3], obeul[3];
float size[3];
copy_v3_v3(loc, cob->matrix[3]);
mat4_to_size(size, cob->matrix);
/* to allow compatible rotations, must get both rotations in the order of the owner... */
mat4_to_eulO(obeul, cob->rotOrder, cob->matrix);
/* we must get compatible eulers from the beginning because some of them can be modified below (see bug #21875) */
mat4_to_compatible_eulO(eul, obeul, cob->rotOrder, ct->matrix);
if ((data->flag & ROTLIKE_X) == 0)
eul[0] = obeul[0];
else {
if (data->flag & ROTLIKE_OFFSET)
rotate_eulO(eul, cob->rotOrder, 'X', obeul[0]);
if (data->flag & ROTLIKE_X_INVERT)
eul[0] *= -1;
}
if ((data->flag & ROTLIKE_Y) == 0)
eul[1] = obeul[1];
else {
if (data->flag & ROTLIKE_OFFSET)
rotate_eulO(eul, cob->rotOrder, 'Y', obeul[1]);
if (data->flag & ROTLIKE_Y_INVERT)
eul[1] *= -1;
}
if ((data->flag & ROTLIKE_Z) == 0)
eul[2] = obeul[2];
else {
if (data->flag & ROTLIKE_OFFSET)
rotate_eulO(eul, cob->rotOrder, 'Z', obeul[2]);
if (data->flag & ROTLIKE_Z_INVERT)
eul[2] *= -1;
}
/* good to make eulers compatible again, since we don't know how much they were changed above */
compatible_eul(eul, obeul);
loc_eulO_size_to_mat4(cob->matrix, loc, eul, size, cob->rotOrder);
}
}
static bConstraintTypeInfo CTI_ROTLIKE = {
CONSTRAINT_TYPE_ROTLIKE, /* type */
sizeof(bRotateLikeConstraint), /* size */
"Copy Rotation", /* name */
"bRotateLikeConstraint", /* struct name */
NULL, /* free data */
rotlike_id_looper, /* id looper */
NULL, /* copy data */
rotlike_new_data, /* new data */
rotlike_get_tars, /* get constraint targets */
rotlike_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
rotlike_evaluate /* evaluate */
};
/* ---------- Copy Scale ---------- */
static void sizelike_new_data(void *cdata)
{
bSizeLikeConstraint *data = (bSizeLikeConstraint *)cdata;
data->flag = SIZELIKE_X | SIZELIKE_Y | SIZELIKE_Z;
}
static void sizelike_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bSizeLikeConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int sizelike_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bSizeLikeConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void sizelike_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bSizeLikeConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void sizelike_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bSizeLikeConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
if (VALID_CONS_TARGET(ct)) {
float obsize[3], size[3];
mat4_to_size(size, ct->matrix);
mat4_to_size(obsize, cob->matrix);
if ((data->flag & SIZELIKE_X) && (obsize[0] != 0)) {
if (data->flag & SIZELIKE_OFFSET) {
size[0] += (obsize[0] - 1.0f);
mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
}
else
mul_v3_fl(cob->matrix[0], size[0] / obsize[0]);
}
if ((data->flag & SIZELIKE_Y) && (obsize[1] != 0)) {
if (data->flag & SIZELIKE_OFFSET) {
size[1] += (obsize[1] - 1.0f);
mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
}
else
mul_v3_fl(cob->matrix[1], size[1] / obsize[1]);
}
if ((data->flag & SIZELIKE_Z) && (obsize[2] != 0)) {
if (data->flag & SIZELIKE_OFFSET) {
size[2] += (obsize[2] - 1.0f);
mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
}
else
mul_v3_fl(cob->matrix[2], size[2] / obsize[2]);
}
}
}
static bConstraintTypeInfo CTI_SIZELIKE = {
CONSTRAINT_TYPE_SIZELIKE, /* type */
sizeof(bSizeLikeConstraint), /* size */
"Copy Scale", /* name */
"bSizeLikeConstraint", /* struct name */
NULL, /* free data */
sizelike_id_looper, /* id looper */
NULL, /* copy data */
sizelike_new_data, /* new data */
sizelike_get_tars, /* get constraint targets */
sizelike_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
sizelike_evaluate /* evaluate */
};
/* ----------- Copy Transforms ------------- */
static void translike_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bTransLikeConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int translike_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bTransLikeConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void translike_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bTransLikeConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void translike_evaluate(bConstraint *UNUSED(con), bConstraintOb *cob, ListBase *targets)
{
bConstraintTarget *ct = targets->first;
if (VALID_CONS_TARGET(ct)) {
/* just copy the entire transform matrix of the target */
copy_m4_m4(cob->matrix, ct->matrix);
}
}
static bConstraintTypeInfo CTI_TRANSLIKE = {
CONSTRAINT_TYPE_TRANSLIKE, /* type */
sizeof(bTransLikeConstraint), /* size */
"Copy Transforms", /* name */
"bTransLikeConstraint", /* struct name */
NULL, /* free data */
translike_id_looper, /* id looper */
NULL, /* copy data */
NULL, /* new data */
translike_get_tars, /* get constraint targets */
translike_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
translike_evaluate /* evaluate */
};
/* ---------- Maintain Volume ---------- */
static void samevolume_new_data(void *cdata)
{
bSameVolumeConstraint *data = (bSameVolumeConstraint *)cdata;
data->flag = SAMEVOL_Y;
data->volume = 1.0f;
}
static void samevolume_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
{
bSameVolumeConstraint *data = con->data;
float volume = data->volume;
float fac = 1.0f;
float obsize[3];
mat4_to_size(obsize, cob->matrix);
/* calculate normalizing scale factor for non-essential values */
if (obsize[data->flag] != 0)
fac = sqrtf(volume / obsize[data->flag]) / obsize[data->flag];
/* apply scaling factor to the channels not being kept */
switch (data->flag) {
case SAMEVOL_X:
mul_v3_fl(cob->matrix[1], fac);
mul_v3_fl(cob->matrix[2], fac);
break;
case SAMEVOL_Y:
mul_v3_fl(cob->matrix[0], fac);
mul_v3_fl(cob->matrix[2], fac);
break;
case SAMEVOL_Z:
mul_v3_fl(cob->matrix[0], fac);
mul_v3_fl(cob->matrix[1], fac);
break;
}
}
static bConstraintTypeInfo CTI_SAMEVOL = {
CONSTRAINT_TYPE_SAMEVOL, /* type */
sizeof(bSameVolumeConstraint), /* size */
"Maintain Volume", /* name */
"bSameVolumeConstraint", /* struct name */
NULL, /* free data */
NULL, /* id looper */
NULL, /* copy data */
samevolume_new_data, /* new data */
NULL, /* get constraint targets */
NULL, /* flush constraint targets */
NULL, /* get target matrix */
samevolume_evaluate /* evaluate */
};
/* ----------- Python Constraint -------------- */
static void pycon_free(bConstraint *con)
{
bPythonConstraint *data = con->data;
/* id-properties */
IDP_FreeProperty(data->prop);
MEM_freeN(data->prop);
/* multiple targets */
BLI_freelistN(&data->targets);
}
static void pycon_copy(bConstraint *con, bConstraint *srccon)
{
bPythonConstraint *pycon = (bPythonConstraint *)con->data;
bPythonConstraint *opycon = (bPythonConstraint *)srccon->data;
pycon->prop = IDP_CopyProperty(opycon->prop);
BLI_duplicatelist(&pycon->targets, &opycon->targets);
}
static void pycon_new_data(void *cdata)
{
bPythonConstraint *data = (bPythonConstraint *)cdata;
/* everything should be set correctly by calloc, except for the prop->type constant.*/
data->prop = MEM_callocN(sizeof(IDProperty), "PyConstraintProps");
data->prop->type = IDP_GROUP;
}
static int pycon_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bPythonConstraint *data = con->data;
list->first = data->targets.first;
list->last = data->targets.last;
return data->tarnum;
}
return 0;
}
static void pycon_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bPythonConstraint *data = con->data;
bConstraintTarget *ct;
/* targets */
for (ct = data->targets.first; ct; ct = ct->next)
func(con, (ID **)&ct->tar, false, userdata);
/* script */
func(con, (ID **)&data->text, true, userdata);
}
/* Whether this approach is maintained remains to be seen (aligorith) */
static void pycon_get_tarmat(bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
{
#ifdef WITH_PYTHON
bPythonConstraint *data = con->data;
#endif
if (VALID_CONS_TARGET(ct)) {
#ifdef CYCLIC_DEPENDENCY_WORKAROUND
/* special exception for curves - depsgraph issues */
if (ct->tar->type == OB_CURVE) {
if (ct->tar->curve_cache == NULL) {
BKE_displist_make_curveTypes(cob->scene, ct->tar, false);
}
}
#endif
/* firstly calculate the matrix the normal way, then let the py-function override
* this matrix if it needs to do so
*/
constraint_target_to_mat4(ct->tar, ct->subtarget, ct->matrix, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
/* only execute target calculation if allowed */
#ifdef WITH_PYTHON
if (G.f & G_SCRIPT_AUTOEXEC)
BPY_pyconstraint_target(data, ct);
#endif
}
else if (ct)
unit_m4(ct->matrix);
}
static void pycon_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
#ifndef WITH_PYTHON
(void)con; (void)cob; (void)targets; /* unused */
return;
#else
bPythonConstraint *data = con->data;
/* only evaluate in python if we're allowed to do so */
if ((G.f & G_SCRIPT_AUTOEXEC) == 0) return;
/* currently removed, until I this can be re-implemented for multiple targets */
#if 0
/* Firstly, run the 'driver' function which has direct access to the objects involved
* Technically, this is potentially dangerous as users may abuse this and cause dependency-problems,
* but it also allows certain 'clever' rigging hacks to work.
*/
BPY_pyconstraint_driver(data, cob, targets);
#endif
/* Now, run the actual 'constraint' function, which should only access the matrices */
BPY_pyconstraint_exec(data, cob, targets);
#endif /* WITH_PYTHON */
}
static bConstraintTypeInfo CTI_PYTHON = {
CONSTRAINT_TYPE_PYTHON, /* type */
sizeof(bPythonConstraint), /* size */
"Script", /* name */
"bPythonConstraint", /* struct name */
pycon_free, /* free data */
pycon_id_looper, /* id looper */
pycon_copy, /* copy data */
pycon_new_data, /* new data */
pycon_get_tars, /* get constraint targets */
NULL, /* flush constraint targets */
pycon_get_tarmat, /* get target matrix */
pycon_evaluate /* evaluate */
};
/* -------- Action Constraint ----------- */
static void actcon_new_data(void *cdata)
{
bActionConstraint *data = (bActionConstraint *)cdata;
/* set type to 20 (Loc X), as 0 is Rot X for backwards compatibility */
data->type = 20;
}
static void actcon_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bActionConstraint *data = con->data;
/* target */
func(con, (ID **)&data->tar, false, userdata);
/* action */
func(con, (ID **)&data->act, true, userdata);
}
static int actcon_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bActionConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void actcon_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bActionConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void actcon_get_tarmat(bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
{
bActionConstraint *data = con->data;
if (VALID_CONS_TARGET(ct)) {
float tempmat[4][4], vec[3];
float s, t;
short axis;
/* initialize return matrix */
unit_m4(ct->matrix);
/* get the transform matrix of the target */
constraint_target_to_mat4(ct->tar, ct->subtarget, tempmat, CONSTRAINT_SPACE_WORLD, ct->space, con->headtail);
/* determine where in transform range target is */
/* data->type is mapped as follows for backwards compatibility:
* 00,01,02 - rotation (it used to be like this)
* 10,11,12 - scaling
* 20,21,22 - location
*/
if (data->type < 10) {
/* extract rotation (is in whatever space target should be in) */
mat4_to_eul(vec, tempmat);
mul_v3_fl(vec, RAD2DEGF(1.0f)); /* rad -> deg */
axis = data->type;
}
else if (data->type < 20) {
/* extract scaling (is in whatever space target should be in) */
mat4_to_size(vec, tempmat);
axis = data->type - 10;
}
else {
/* extract location */
copy_v3_v3(vec, tempmat[3]);
axis = data->type - 20;
}
BLI_assert((unsigned int)axis < 3);
/* Target defines the animation */
s = (vec[axis] - data->min) / (data->max - data->min);
CLAMP(s, 0, 1);
t = (s * (data->end - data->start)) + data->start;
if (G.debug & G_DEBUG)
printf("do Action Constraint %s - Ob %s Pchan %s\n", con->name, cob->ob->id.name + 2, (cob->pchan) ? cob->pchan->name : NULL);
/* Get the appropriate information from the action */
if (cob->type == CONSTRAINT_OBTYPE_OBJECT || (data->flag & ACTCON_BONE_USE_OBJECT_ACTION)) {
Object workob;
/* evaluate using workob */
/* FIXME: we don't have any consistent standards on limiting effects on object... */
what_does_obaction(cob->ob, &workob, NULL, data->act, NULL, t);
BKE_object_to_mat4(&workob, ct->matrix);
}
else if (cob->type == CONSTRAINT_OBTYPE_BONE) {
Object workob;
bPose *pose;
bPoseChannel *pchan, *tchan;
/* make a temporary pose and evaluate using that */
pose = MEM_callocN(sizeof(bPose), "pose");
/* make a copy of the bone of interest in the temp pose before evaluating action, so that it can get set
* - we need to manually copy over a few settings, including rotation order, otherwise this fails
*/
pchan = cob->pchan;
tchan = BKE_pose_channel_verify(pose, pchan->name);
tchan->rotmode = pchan->rotmode;
/* evaluate action using workob (it will only set the PoseChannel in question) */
what_does_obaction(cob->ob, &workob, pose, data->act, pchan->name, t);
/* convert animation to matrices for use here */
BKE_pchan_calc_mat(tchan);
copy_m4_m4(ct->matrix, tchan->chan_mat);
/* Clean up */
BKE_pose_free(pose);
}
else {
/* behavior undefined... */
puts("Error: unknown owner type for Action Constraint");
}
}
}
static void actcon_evaluate(bConstraint *UNUSED(con), bConstraintOb *cob, ListBase *targets)
{
bConstraintTarget *ct = targets->first;
if (VALID_CONS_TARGET(ct)) {
float temp[4][4];
/* Nice and simple... we just need to multiply the matrices, as the get_target_matrix
* function has already taken care of everything else.
*/
copy_m4_m4(temp, cob->matrix);
mul_m4_m4m4(cob->matrix, temp, ct->matrix);
}
}
static bConstraintTypeInfo CTI_ACTION = {
CONSTRAINT_TYPE_ACTION, /* type */
sizeof(bActionConstraint), /* size */
"Action", /* name */
"bActionConstraint", /* struct name */
NULL, /* free data */
actcon_id_looper, /* id looper */
NULL, /* copy data */
actcon_new_data, /* new data */
actcon_get_tars, /* get constraint targets */
actcon_flush_tars, /* flush constraint targets */
actcon_get_tarmat, /* get target matrix */
actcon_evaluate /* evaluate */
};
/* --------- Locked Track ---------- */
static void locktrack_new_data(void *cdata)
{
bLockTrackConstraint *data = (bLockTrackConstraint *)cdata;
data->trackflag = TRACK_Y;
data->lockflag = LOCK_Z;
}
static void locktrack_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bLockTrackConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int locktrack_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bLockTrackConstraint *data = con->data;
bConstraintTarget *ct;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void locktrack_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bLockTrackConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void locktrack_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bLockTrackConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
if (VALID_CONS_TARGET(ct)) {
float vec[3], vec2[3];
float totmat[3][3];
float tmpmat[3][3];
float invmat[3][3];
float mdet;
/* Vector object -> target */
sub_v3_v3v3(vec, ct->matrix[3], cob->matrix[3]);
switch (data->lockflag) {
case LOCK_X: /* LOCK X */
{
switch (data->trackflag) {
case TRACK_Y: /* LOCK X TRACK Y */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[0]);
sub_v3_v3v3(totmat[1], vec, vec2);
normalize_v3(totmat[1]);
/* the x axis is fixed */
normalize_v3_v3(totmat[0], cob->matrix[0]);
/* the z axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
break;
}
case TRACK_Z: /* LOCK X TRACK Z */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[0]);
sub_v3_v3v3(totmat[2], vec, vec2);
normalize_v3(totmat[2]);
/* the x axis is fixed */
normalize_v3_v3(totmat[0], cob->matrix[0]);
/* the z axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
break;
}
case TRACK_nY: /* LOCK X TRACK -Y */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[0]);
sub_v3_v3v3(totmat[1], vec, vec2);
normalize_v3(totmat[1]);
negate_v3(totmat[1]);
/* the x axis is fixed */
normalize_v3_v3(totmat[0], cob->matrix[0]);
/* the z axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
break;
}
case TRACK_nZ: /* LOCK X TRACK -Z */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[0]);
sub_v3_v3v3(totmat[2], vec, vec2);
normalize_v3(totmat[2]);
negate_v3(totmat[2]);
/* the x axis is fixed */
normalize_v3_v3(totmat[0], cob->matrix[0]);
/* the z axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
break;
}
default:
{
unit_m3(totmat);
break;
}
}
break;
}
case LOCK_Y: /* LOCK Y */
{
switch (data->trackflag) {
case TRACK_X: /* LOCK Y TRACK X */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[1]);
sub_v3_v3v3(totmat[0], vec, vec2);
normalize_v3(totmat[0]);
/* the y axis is fixed */
normalize_v3_v3(totmat[1], cob->matrix[1]);
/* the z axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
break;
}
case TRACK_Z: /* LOCK Y TRACK Z */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[1]);
sub_v3_v3v3(totmat[2], vec, vec2);
normalize_v3(totmat[2]);
/* the y axis is fixed */
normalize_v3_v3(totmat[1], cob->matrix[1]);
/* the z axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
break;
}
case TRACK_nX: /* LOCK Y TRACK -X */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[1]);
sub_v3_v3v3(totmat[0], vec, vec2);
normalize_v3(totmat[0]);
negate_v3(totmat[0]);
/* the y axis is fixed */
normalize_v3_v3(totmat[1], cob->matrix[1]);
/* the z axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[2], totmat[0], totmat[1]);
break;
}
case TRACK_nZ: /* LOCK Y TRACK -Z */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[1]);
sub_v3_v3v3(totmat[2], vec, vec2);
normalize_v3(totmat[2]);
negate_v3(totmat[2]);
/* the y axis is fixed */
normalize_v3_v3(totmat[1], cob->matrix[1]);
/* the z axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
break;
}
default:
{
unit_m3(totmat);
break;
}
}
break;
}
case LOCK_Z: /* LOCK Z */
{
switch (data->trackflag) {
case TRACK_X: /* LOCK Z TRACK X */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[2]);
sub_v3_v3v3(totmat[0], vec, vec2);
normalize_v3(totmat[0]);
/* the z axis is fixed */
normalize_v3_v3(totmat[2], cob->matrix[2]);
/* the x axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
break;
}
case TRACK_Y: /* LOCK Z TRACK Y */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[2]);
sub_v3_v3v3(totmat[1], vec, vec2);
normalize_v3(totmat[1]);
/* the z axis is fixed */
normalize_v3_v3(totmat[2], cob->matrix[2]);
/* the x axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
break;
}
case TRACK_nX: /* LOCK Z TRACK -X */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[2]);
sub_v3_v3v3(totmat[0], vec, vec2);
normalize_v3(totmat[0]);
negate_v3(totmat[0]);
/* the z axis is fixed */
normalize_v3_v3(totmat[2], cob->matrix[2]);
/* the x axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[1], totmat[2], totmat[0]);
break;
}
case TRACK_nY: /* LOCK Z TRACK -Y */
{
/* Projection of Vector on the plane */
project_v3_v3v3(vec2, vec, cob->matrix[2]);
sub_v3_v3v3(totmat[1], vec, vec2);
normalize_v3(totmat[1]);
negate_v3(totmat[1]);
/* the z axis is fixed */
normalize_v3_v3(totmat[2], cob->matrix[2]);
/* the x axis gets mapped onto a third orthogonal vector */
cross_v3_v3v3(totmat[0], totmat[1], totmat[2]);
break;
}
default:
{
unit_m3(totmat);
break;
}
}
break;
}
default:
{
unit_m3(totmat);
break;
}
}
/* Block to keep matrix heading */
copy_m3_m4(tmpmat, cob->matrix);
normalize_m3(tmpmat);
invert_m3_m3(invmat, tmpmat);
mul_m3_m3m3(tmpmat, totmat, invmat);
totmat[0][0] = tmpmat[0][0]; totmat[0][1] = tmpmat[0][1]; totmat[0][2] = tmpmat[0][2];
totmat[1][0] = tmpmat[1][0]; totmat[1][1] = tmpmat[1][1]; totmat[1][2] = tmpmat[1][2];
totmat[2][0] = tmpmat[2][0]; totmat[2][1] = tmpmat[2][1]; totmat[2][2] = tmpmat[2][2];
mdet = determinant_m3(totmat[0][0], totmat[0][1], totmat[0][2],
totmat[1][0], totmat[1][1], totmat[1][2],
totmat[2][0], totmat[2][1], totmat[2][2]);
if (mdet == 0) {
unit_m3(totmat);
}
/* apply out transformaton to the object */
mul_m4_m3m4(cob->matrix, totmat, cob->matrix);
}
}
static bConstraintTypeInfo CTI_LOCKTRACK = {
CONSTRAINT_TYPE_LOCKTRACK, /* type */
sizeof(bLockTrackConstraint), /* size */
"Locked Track", /* name */
"bLockTrackConstraint", /* struct name */
NULL, /* free data */
locktrack_id_looper, /* id looper */
NULL, /* copy data */
locktrack_new_data, /* new data */
locktrack_get_tars, /* get constraint targets */
locktrack_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
locktrack_evaluate /* evaluate */
};
/* ---------- Limit Distance Constraint ----------- */
static void distlimit_new_data(void *cdata)
{
bDistLimitConstraint *data = (bDistLimitConstraint *)cdata;
data->dist = 0.0f;
}
static void distlimit_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bDistLimitConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int distlimit_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bDistLimitConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void distlimit_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bDistLimitConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void distlimit_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bDistLimitConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
float dvec[3], dist, sfac = 1.0f;
short clamp_surf = 0;
/* calculate our current distance from the target */
dist = len_v3v3(cob->matrix[3], ct->matrix[3]);
/* set distance (flag is only set when user demands it) */
if (data->dist == 0)
data->dist = dist;
/* check if we're which way to clamp from, and calculate interpolation factor (if needed) */
if (data->mode == LIMITDIST_OUTSIDE) {
/* if inside, then move to surface */
if (dist <= data->dist) {
clamp_surf = 1;
if (dist != 0.0f) sfac = data->dist / dist;
}
/* if soft-distance is enabled, start fading once owner is dist+softdist from the target */
else if (data->flag & LIMITDIST_USESOFT) {
if (dist <= (data->dist + data->soft)) {
}
}
}
else if (data->mode == LIMITDIST_INSIDE) {
/* if outside, then move to surface */
if (dist >= data->dist) {
clamp_surf = 1;
if (dist != 0.0f) sfac = data->dist / dist;
}
/* if soft-distance is enabled, start fading once owner is dist-soft from the target */
else if (data->flag & LIMITDIST_USESOFT) {
/* FIXME: there's a problem with "jumping" when this kicks in */
if (dist >= (data->dist - data->soft)) {
sfac = (float)(data->soft * (1.0f - expf(-(dist - data->dist) / data->soft)) + data->dist);
if (dist != 0.0f) sfac /= dist;
clamp_surf = 1;
}
}
}
else {
if (IS_EQF(dist, data->dist) == 0) {
clamp_surf = 1;
if (dist != 0.0f) sfac = data->dist / dist;
}
}
/* clamp to 'surface' (i.e. move owner so that dist == data->dist) */
if (clamp_surf) {
/* simply interpolate along line formed by target -> owner */
interp_v3_v3v3(dvec, ct->matrix[3], cob->matrix[3], sfac);
/* copy new vector onto owner */
copy_v3_v3(cob->matrix[3], dvec);
}
}
}
static bConstraintTypeInfo CTI_DISTLIMIT = {
CONSTRAINT_TYPE_DISTLIMIT, /* type */
sizeof(bDistLimitConstraint), /* size */
"Limit Distance", /* name */
"bDistLimitConstraint", /* struct name */
NULL, /* free data */
distlimit_id_looper, /* id looper */
NULL, /* copy data */
distlimit_new_data, /* new data */
distlimit_get_tars, /* get constraint targets */
distlimit_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get a target matrix */
distlimit_evaluate /* evaluate */
};
/* ---------- Stretch To ------------ */
static void stretchto_new_data(void *cdata)
{
bStretchToConstraint *data = (bStretchToConstraint *)cdata;
data->volmode = 0;
data->plane = 0;
data->orglength = 0.0;
data->bulge = 1.0;
}
static void stretchto_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bStretchToConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int stretchto_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bStretchToConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void stretchto_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bStretchToConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void stretchto_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bStretchToConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
float size[3], scale[3], vec[3], xx[3], zz[3], orth[3];
float totmat[3][3];
float dist;
/* store scaling before destroying obmat */
mat4_to_size(size, cob->matrix);
/* store X orientation before destroying obmat */
normalize_v3_v3(xx, cob->matrix[0]);
/* store Z orientation before destroying obmat */
normalize_v3_v3(zz, cob->matrix[2]);
/* XXX That makes the constraint buggy with asymmetrically scaled objects, see #29940. */
/* sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);*/
/* vec[0] /= size[0];*/
/* vec[1] /= size[1];*/
/* vec[2] /= size[2];*/
/* dist = normalize_v3(vec);*/
dist = len_v3v3(cob->matrix[3], ct->matrix[3]);
/* Only Y constrained object axis scale should be used, to keep same length when scaling it. */
dist /= size[1];
/* data->orglength==0 occurs on first run, and after 'R' button is clicked */
if (data->orglength == 0)
data->orglength = dist;
if (data->bulge == 0)
data->bulge = 1.0;
scale[1] = dist / data->orglength;
switch (data->volmode) {
/* volume preserving scaling */
case VOLUME_XZ:
scale[0] = 1.0f - sqrtf(data->bulge) + sqrtf(data->bulge * (data->orglength / dist));
scale[2] = scale[0];
break;
case VOLUME_X:
scale[0] = 1.0f + data->bulge * (data->orglength / dist - 1);
scale[2] = 1.0;
break;
case VOLUME_Z:
scale[0] = 1.0;
scale[2] = 1.0f + data->bulge * (data->orglength / dist - 1);
break;
/* don't care for volume */
case NO_VOLUME:
scale[0] = 1.0;
scale[2] = 1.0;
break;
default: /* should not happen, but in case*/
return;
} /* switch (data->volmode) */
/* Clear the object's rotation and scale */
cob->matrix[0][0] = size[0] * scale[0];
cob->matrix[0][1] = 0;
cob->matrix[0][2] = 0;
cob->matrix[1][0] = 0;
cob->matrix[1][1] = size[1] * scale[1];
cob->matrix[1][2] = 0;
cob->matrix[2][0] = 0;
cob->matrix[2][1] = 0;
cob->matrix[2][2] = size[2] * scale[2];
sub_v3_v3v3(vec, cob->matrix[3], ct->matrix[3]);
normalize_v3(vec);
/* new Y aligns object target connection*/
negate_v3_v3(totmat[1], vec);
switch (data->plane) {
case PLANE_X:
/* build new Z vector */
/* othogonal to "new Y" "old X! plane */
cross_v3_v3v3(orth, vec, xx);
normalize_v3(orth);
/* new Z*/
copy_v3_v3(totmat[2], orth);
/* we decided to keep X plane*/
cross_v3_v3v3(xx, orth, vec);
normalize_v3_v3(totmat[0], xx);
break;
case PLANE_Z:
/* build new X vector */
/* othogonal to "new Y" "old Z! plane */
cross_v3_v3v3(orth, vec, zz);
normalize_v3(orth);
/* new X */
negate_v3_v3(totmat[0], orth);
/* we decided to keep Z */
cross_v3_v3v3(zz, orth, vec);
normalize_v3_v3(totmat[2], zz);
break;
} /* switch (data->plane) */
mul_m4_m3m4(cob->matrix, totmat, cob->matrix);
}
}
static bConstraintTypeInfo CTI_STRETCHTO = {
CONSTRAINT_TYPE_STRETCHTO, /* type */
sizeof(bStretchToConstraint), /* size */
"Stretch To", /* name */
"bStretchToConstraint", /* struct name */
NULL, /* free data */
stretchto_id_looper, /* id looper */
NULL, /* copy data */
stretchto_new_data, /* new data */
stretchto_get_tars, /* get constraint targets */
stretchto_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
stretchto_evaluate /* evaluate */
};
/* ---------- Floor ------------ */
static void minmax_new_data(void *cdata)
{
bMinMaxConstraint *data = (bMinMaxConstraint *)cdata;
data->minmaxflag = TRACK_Z;
data->offset = 0.0f;
zero_v3(data->cache);
data->flag = 0;
}
static void minmax_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bMinMaxConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int minmax_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bMinMaxConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void minmax_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bMinMaxConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void minmax_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bMinMaxConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
float obmat[4][4], imat[4][4], tarmat[4][4], tmat[4][4];
float val1, val2;
int index;
copy_m4_m4(obmat, cob->matrix);
copy_m4_m4(tarmat, ct->matrix);
if (data->flag & MINMAX_USEROT) {
/* take rotation of target into account by doing the transaction in target's localspace */
invert_m4_m4(imat, tarmat);
mul_m4_m4m4(tmat, imat, obmat);
copy_m4_m4(obmat, tmat);
unit_m4(tarmat);
}
switch (data->minmaxflag) {
case TRACK_Z:
val1 = tarmat[3][2];
val2 = obmat[3][2] - data->offset;
index = 2;
break;
case TRACK_Y:
val1 = tarmat[3][1];
val2 = obmat[3][1] - data->offset;
index = 1;
break;
case TRACK_X:
val1 = tarmat[3][0];
val2 = obmat[3][0] - data->offset;
index = 0;
break;
case TRACK_nZ:
val2 = tarmat[3][2];
val1 = obmat[3][2] - data->offset;
index = 2;
break;
case TRACK_nY:
val2 = tarmat[3][1];
val1 = obmat[3][1] - data->offset;
index = 1;
break;
case TRACK_nX:
val2 = tarmat[3][0];
val1 = obmat[3][0] - data->offset;
index = 0;
break;
default:
return;
}
if (val1 > val2) {
obmat[3][index] = tarmat[3][index] + data->offset;
if (data->flag & MINMAX_STICKY) {
if (data->flag & MINMAX_STUCK) {
copy_v3_v3(obmat[3], data->cache);
}
else {
copy_v3_v3(data->cache, obmat[3]);
data->flag |= MINMAX_STUCK;
}
}
if (data->flag & MINMAX_USEROT) {
/* get out of localspace */
mul_m4_m4m4(tmat, ct->matrix, obmat);
copy_m4_m4(cob->matrix, tmat);
}
else {
copy_v3_v3(cob->matrix[3], obmat[3]);
}
}
else {
data->flag &= ~MINMAX_STUCK;
}
}
}
static bConstraintTypeInfo CTI_MINMAX = {
CONSTRAINT_TYPE_MINMAX, /* type */
sizeof(bMinMaxConstraint), /* size */
"Floor", /* name */
"bMinMaxConstraint", /* struct name */
NULL, /* free data */
minmax_id_looper, /* id looper */
NULL, /* copy data */
minmax_new_data, /* new data */
minmax_get_tars, /* get constraint targets */
minmax_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
minmax_evaluate /* evaluate */
};
/* ------- RigidBody Joint ---------- */
static void rbj_new_data(void *cdata)
{
bRigidBodyJointConstraint *data = (bRigidBodyJointConstraint *)cdata;
/* removed code which set target of this constraint */
data->type = 1;
}
static void rbj_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bRigidBodyJointConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
func(con, (ID **)&data->child, false, userdata);
}
static int rbj_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bRigidBodyJointConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints without subtargets */
SINGLETARGETNS_GET_TARS(con, data->tar, ct, list);
return 1;
}
return 0;
}
static void rbj_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bRigidBodyJointConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGETNS_FLUSH_TARS(con, data->tar, ct, list, no_copy);
}
}
static bConstraintTypeInfo CTI_RIGIDBODYJOINT = {
CONSTRAINT_TYPE_RIGIDBODYJOINT, /* type */
sizeof(bRigidBodyJointConstraint), /* size */
"Rigid Body Joint", /* name */
"bRigidBodyJointConstraint", /* struct name */
NULL, /* free data */
rbj_id_looper, /* id looper */
NULL, /* copy data */
rbj_new_data, /* new data */
rbj_get_tars, /* get constraint targets */
rbj_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
NULL /* evaluate - this is not solved here... is just an interface for game-engine */
};
/* -------- Clamp To ---------- */
static void clampto_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bClampToConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int clampto_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bClampToConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints without subtargets */
SINGLETARGETNS_GET_TARS(con, data->tar, ct, list);
return 1;
}
return 0;
}
static void clampto_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bClampToConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGETNS_FLUSH_TARS(con, data->tar, ct, list, no_copy);
}
}
static void clampto_get_tarmat(bConstraint *UNUSED(con), bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
{
#ifdef CYCLIC_DEPENDENCY_WORKAROUND
if (VALID_CONS_TARGET(ct)) {
if (ct->tar->curve_cache == NULL) {
BKE_displist_make_curveTypes(cob->scene, ct->tar, false);
}
}
#endif
/* technically, this isn't really needed for evaluation, but we don't know what else
* might end up calling this...
*/
if (ct)
unit_m4(ct->matrix);
}
static void clampto_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bClampToConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
/* only evaluate if there is a target and it is a curve */
if (VALID_CONS_TARGET(ct) && (ct->tar->type == OB_CURVE)) {
float obmat[4][4], ownLoc[3];
float curveMin[3], curveMax[3];
float targetMatrix[4][4] = MAT4_UNITY;
copy_m4_m4(obmat, cob->matrix);
copy_v3_v3(ownLoc, obmat[3]);
INIT_MINMAX(curveMin, curveMax);
/* XXX - don't think this is good calling this here - campbell */
BKE_object_minmax(ct->tar, curveMin, curveMax, true);
/* get targetmatrix */
if (data->tar->curve_cache && data->tar->curve_cache->path && data->tar->curve_cache->path->data) {
float vec[4], dir[3], totmat[4][4];
float curvetime;
short clamp_axis;
/* find best position on curve */
/* 1. determine which axis to sample on? */
if (data->flag == CLAMPTO_AUTO) {
float size[3];
sub_v3_v3v3(size, curveMax, curveMin);
/* find axis along which the bounding box has the greatest
* extent. Otherwise, default to the x-axis, as that is quite
* frequently used.
*/
if ((size[2] > size[0]) && (size[2] > size[1]))
clamp_axis = CLAMPTO_Z - 1;
else if ((size[1] > size[0]) && (size[1] > size[2]))
clamp_axis = CLAMPTO_Y - 1;
else
clamp_axis = CLAMPTO_X - 1;
}
else
clamp_axis = data->flag - 1;
/* 2. determine position relative to curve on a 0-1 scale based on bounding box */
if (data->flag2 & CLAMPTO_CYCLIC) {
/* cyclic, so offset within relative bounding box is used */
float len = (curveMax[clamp_axis] - curveMin[clamp_axis]);
float offset;
/* check to make sure len is not so close to zero that it'll cause errors */
if (IS_EQF(len, 0.0f) == false) {
/* find bounding-box range where target is located */
if (ownLoc[clamp_axis] < curveMin[clamp_axis]) {
/* bounding-box range is before */
offset = curveMin[clamp_axis] - ceilf((curveMin[clamp_axis] - ownLoc[clamp_axis]) / len) * len;
/* now, we calculate as per normal, except using offset instead of curveMin[clamp_axis] */
curvetime = (ownLoc[clamp_axis] - offset) / (len);
}
else if (ownLoc[clamp_axis] > curveMax[clamp_axis]) {
/* bounding-box range is after */
offset = curveMax[clamp_axis] + (int)((ownLoc[clamp_axis] - curveMax[clamp_axis]) / len) * len;
/* now, we calculate as per normal, except using offset instead of curveMax[clamp_axis] */
curvetime = (ownLoc[clamp_axis] - offset) / (len);
}
else {
/* as the location falls within bounds, just calculate */
curvetime = (ownLoc[clamp_axis] - curveMin[clamp_axis]) / (len);
}
}
else {
/* as length is close to zero, curvetime by default should be 0 (i.e. the start) */
curvetime = 0.0f;
}
}
else {
/* no cyclic, so position is clamped to within the bounding box */
if (ownLoc[clamp_axis] <= curveMin[clamp_axis])
curvetime = 0.0f;
else if (ownLoc[clamp_axis] >= curveMax[clamp_axis])
curvetime = 1.0f;
else if (IS_EQF((curveMax[clamp_axis] - curveMin[clamp_axis]), 0.0f) == false)
curvetime = (ownLoc[clamp_axis] - curveMin[clamp_axis]) / (curveMax[clamp_axis] - curveMin[clamp_axis]);
else
curvetime = 0.0f;
}
/* 3. position on curve */
if (where_on_path(ct->tar, curvetime, vec, dir, NULL, NULL, NULL) ) {
unit_m4(totmat);
copy_v3_v3(totmat[3], vec);
mul_m4_m4m4(targetMatrix, ct->tar->obmat, totmat);
}
}
/* obtain final object position */
copy_v3_v3(cob->matrix[3], targetMatrix[3]);
}
}
static bConstraintTypeInfo CTI_CLAMPTO = {
CONSTRAINT_TYPE_CLAMPTO, /* type */
sizeof(bClampToConstraint), /* size */
"Clamp To", /* name */
"bClampToConstraint", /* struct name */
NULL, /* free data */
clampto_id_looper, /* id looper */
NULL, /* copy data */
NULL, /* new data */
clampto_get_tars, /* get constraint targets */
clampto_flush_tars, /* flush constraint targets */
clampto_get_tarmat, /* get target matrix */
clampto_evaluate /* evaluate */
};
/* ---------- Transform Constraint ----------- */
static void transform_new_data(void *cdata)
{
bTransformConstraint *data = (bTransformConstraint *)cdata;
data->map[0] = 0;
data->map[1] = 1;
data->map[2] = 2;
}
static void transform_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bTransformConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int transform_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bTransformConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void transform_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bTransformConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void transform_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bTransformConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
float loc[3], eul[3], size[3];
float dvec[3], sval[3];
int i;
/* obtain target effect */
switch (data->from) {
case TRANS_SCALE:
mat4_to_size(dvec, ct->matrix);
if (is_negative_m4(ct->matrix)) {
/* Bugfix [#27886]
* We can't be sure which axis/axes are negative, though we know that something is negative.
* Assume we don't care about negativity of separate axes. <--- This is a limitation that
* riggers will have to live with for now.
*/
negate_v3(dvec);
}
break;
case TRANS_ROTATION:
mat4_to_eulO(dvec, cob->rotOrder, ct->matrix);
break;
case TRANS_LOCATION:
default:
copy_v3_v3(dvec, ct->matrix[3]);
break;
}
/* extract components of owner's matrix */
copy_v3_v3(loc, cob->matrix[3]);
mat4_to_eulO(eul, cob->rotOrder, cob->matrix);
mat4_to_size(size, cob->matrix);
/* determine where in range current transforms lie */
if (data->expo) {
for (i = 0; i < 3; i++) {
if (data->from_max[i] - data->from_min[i])
sval[i] = (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
else
sval[i] = 0.0f;
}
}
else {
/* clamp transforms out of range */
for (i = 0; i < 3; i++) {
CLAMP(dvec[i], data->from_min[i], data->from_max[i]);
if (data->from_max[i] - data->from_min[i])
sval[i] = (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
else
sval[i] = 0.0f;
}
}
/* apply transforms */
switch (data->to) {
case TRANS_SCALE:
for (i = 0; i < 3; i++) {
/* multiply with original scale (so that it can still be scaled) */
size[i] *= data->to_min[i] + (sval[(int)data->map[i]] * (data->to_max[i] - data->to_min[i]));
}
break;
case TRANS_ROTATION:
for (i = 0; i < 3; i++) {
/* add to original rotation (so that it can still be rotated) */
eul[i] += data->to_min[i] + (sval[(int)data->map[i]] * (data->to_max[i] - data->to_min[i]));
}
break;
case TRANS_LOCATION:
default:
for (i = 0; i < 3; i++) {
/* add to original location (so that it can still be moved) */
loc[i] += (data->to_min[i] + (sval[(int)data->map[i]] * (data->to_max[i] - data->to_min[i])));
}
break;
}
/* apply to matrix */
loc_eulO_size_to_mat4(cob->matrix, loc, eul, size, cob->rotOrder);
}
}
static bConstraintTypeInfo CTI_TRANSFORM = {
CONSTRAINT_TYPE_TRANSFORM, /* type */
sizeof(bTransformConstraint), /* size */
"Transformation", /* name */
"bTransformConstraint", /* struct name */
NULL, /* free data */
transform_id_looper, /* id looper */
NULL, /* copy data */
transform_new_data, /* new data */
transform_get_tars, /* get constraint targets */
transform_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get a target matrix */
transform_evaluate /* evaluate */
};
/* ---------- Shrinkwrap Constraint ----------- */
static void shrinkwrap_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bShrinkwrapConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->target, false, userdata);
}
static void shrinkwrap_new_data(void *cdata)
{
bShrinkwrapConstraint *data = (bShrinkwrapConstraint *)cdata;
data->projAxis = OB_POSZ;
data->projAxisSpace = CONSTRAINT_SPACE_LOCAL;
}
static int shrinkwrap_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bShrinkwrapConstraint *data = con->data;
bConstraintTarget *ct;
SINGLETARGETNS_GET_TARS(con, data->target, ct, list);
return 1;
}
return 0;
}
static void shrinkwrap_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bShrinkwrapConstraint *data = con->data;
bConstraintTarget *ct = list->first;
SINGLETARGETNS_FLUSH_TARS(con, data->target, ct, list, no_copy);
}
}
static void shrinkwrap_get_tarmat(bConstraint *con, bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
{
bShrinkwrapConstraint *scon = (bShrinkwrapConstraint *) con->data;
if (VALID_CONS_TARGET(ct) && (ct->tar->type == OB_MESH) ) {
bool fail = false;
float co[3] = {0.0f, 0.0f, 0.0f};
SpaceTransform transform;
/* TODO(sergey): use proper for_render flag here when known. */
DerivedMesh *target = object_get_derived_final(ct->tar, false);
BVHTreeFromMesh treeData = {NULL};
unit_m4(ct->matrix);
if (target != NULL) {
space_transform_from_matrixs(&transform, cob->matrix, ct->tar->obmat);
switch (scon->shrinkType) {
case MOD_SHRINKWRAP_NEAREST_SURFACE:
case MOD_SHRINKWRAP_NEAREST_VERTEX:
{
BVHTreeNearest nearest;
float dist;
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
if (scon->shrinkType == MOD_SHRINKWRAP_NEAREST_VERTEX)
bvhtree_from_mesh_verts(&treeData, target, 0.0, 2, 6);
else
bvhtree_from_mesh_faces(&treeData, target, 0.0, 2, 6);
if (treeData.tree == NULL) {
fail = true;
break;
}
space_transform_apply(&transform, co);
BLI_bvhtree_find_nearest(treeData.tree, co, &nearest, treeData.nearest_callback, &treeData);
dist = len_v3v3(co, nearest.co);
if (dist != 0.0f) {
interp_v3_v3v3(co, co, nearest.co, (dist - scon->dist) / dist); /* linear interpolation */
}
space_transform_invert(&transform, co);
break;
}
case MOD_SHRINKWRAP_PROJECT:
{
BVHTreeRayHit hit;
float mat[4][4];
float no[3] = {0.0f, 0.0f, 0.0f};
/* TODO should use FLT_MAX.. but normal projection doenst yet supports it */
hit.index = -1;
hit.dist = (scon->projLimit == 0.0f) ? 100000.0f : scon->projLimit;
switch (scon->projAxis) {
case OB_POSX: case OB_POSY: case OB_POSZ:
no[scon->projAxis - OB_POSX] = 1.0f;
break;
case OB_NEGX: case OB_NEGY: case OB_NEGZ:
no[scon->projAxis - OB_NEGX] = -1.0f;
break;
}
/* transform normal into requested space */
unit_m4(mat);
BKE_constraint_mat_convertspace(cob->ob, cob->pchan, mat, CONSTRAINT_SPACE_LOCAL, scon->projAxisSpace);
invert_m4(mat);
mul_mat3_m4_v3(mat, no);
if (normalize_v3(no) < FLT_EPSILON) {
fail = true;
break;
}
bvhtree_from_mesh_faces(&treeData, target, scon->dist, 4, 6);
if (treeData.tree == NULL) {
fail = true;
break;
}
if (BKE_shrinkwrap_project_normal(0, co, no, &transform, treeData.tree, &hit,
treeData.raycast_callback, &treeData) == false)
{
fail = true;
break;
}
copy_v3_v3(co, hit.co);
break;
}
}
free_bvhtree_from_mesh(&treeData);
target->release(target);
if (fail == true) {
/* Don't move the point */
zero_v3(co);
}
/* co is in local object coordinates, change it to global and update target position */
mul_m4_v3(cob->matrix, co);
copy_v3_v3(ct->matrix[3], co);
}
}
}
static void shrinkwrap_evaluate(bConstraint *UNUSED(con), bConstraintOb *cob, ListBase *targets)
{
bConstraintTarget *ct = targets->first;
/* only evaluate if there is a target */
if (VALID_CONS_TARGET(ct)) {
copy_v3_v3(cob->matrix[3], ct->matrix[3]);
}
}
static bConstraintTypeInfo CTI_SHRINKWRAP = {
CONSTRAINT_TYPE_SHRINKWRAP, /* type */
sizeof(bShrinkwrapConstraint), /* size */
"Shrinkwrap", /* name */
"bShrinkwrapConstraint", /* struct name */
NULL, /* free data */
shrinkwrap_id_looper, /* id looper */
NULL, /* copy data */
shrinkwrap_new_data, /* new data */
shrinkwrap_get_tars, /* get constraint targets */
shrinkwrap_flush_tars, /* flush constraint targets */
shrinkwrap_get_tarmat, /* get a target matrix */
shrinkwrap_evaluate /* evaluate */
};
/* --------- Damped Track ---------- */
static void damptrack_new_data(void *cdata)
{
bDampTrackConstraint *data = (bDampTrackConstraint *)cdata;
data->trackflag = TRACK_Y;
}
static void damptrack_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bDampTrackConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int damptrack_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bDampTrackConstraint *data = con->data;
bConstraintTarget *ct;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void damptrack_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bDampTrackConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
/* array of direction vectors for the tracking flags */
static const float track_dir_vecs[6][3] = {
{+1, 0, 0}, {0, +1, 0}, {0, 0, +1}, /* TRACK_X, TRACK_Y, TRACK_Z */
{-1, 0, 0}, {0, -1, 0}, {0, 0, -1} /* TRACK_NX, TRACK_NY, TRACK_NZ */
};
static void damptrack_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bDampTrackConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
if (VALID_CONS_TARGET(ct)) {
float obvec[3], tarvec[3], obloc[3];
float raxis[3], rangle;
float rmat[3][3], tmat[4][4];
/* find the (unit) direction that the axis we're interested in currently points
* - mul_mat3_m4_v3() only takes the 3x3 (rotation+scaling) components of the 4x4 matrix
* - the normalization step at the end should take care of any unwanted scaling
* left over in the 3x3 matrix we used
*/
copy_v3_v3(obvec, track_dir_vecs[data->trackflag]);
mul_mat3_m4_v3(cob->matrix, obvec);
if (normalize_v3(obvec) == 0.0f) {
/* exceptional case - just use the track vector as appropriate */
copy_v3_v3(obvec, track_dir_vecs[data->trackflag]);
}
/* find the (unit) direction vector going from the owner to the target */
copy_v3_v3(obloc, cob->matrix[3]);
sub_v3_v3v3(tarvec, ct->matrix[3], obloc);
if (normalize_v3(tarvec) == 0.0f) {
/* the target is sitting on the owner, so just make them use the same direction vectors */
/* FIXME: or would it be better to use the pure direction vector? */
copy_v3_v3(tarvec, obvec);
//copy_v3_v3(tarvec, track_dir_vecs[data->trackflag]);
}
/* determine the axis-angle rotation, which represents the smallest possible rotation
* between the two rotation vectors (i.e. the 'damping' referred to in the name)
* - we take this to be the rotation around the normal axis/vector to the plane defined
* by the current and destination vectors, which will 'map' the current axis to the
* destination vector
* - the min/max wrappers around (obvec . tarvec) result (stored temporarily in rangle)
* are used to ensure that the smallest angle is chosen
*/
cross_v3_v3v3(raxis, obvec, tarvec);
rangle = dot_v3v3(obvec, tarvec);
rangle = acos(max_ff(-1.0f, min_ff(1.0f, rangle)));
/* construct rotation matrix from the axis-angle rotation found above
* - this call takes care to make sure that the axis provided is a unit vector first
*/
axis_angle_to_mat3(rmat, raxis, rangle);
/* rotate the owner in the way defined by this rotation matrix, then reapply the location since
* we may have destroyed that in the process of multiplying the matrix
*/
unit_m4(tmat);
mul_m4_m3m4(tmat, rmat, cob->matrix); // m1, m3, m2
copy_m4_m4(cob->matrix, tmat);
copy_v3_v3(cob->matrix[3], obloc);
}
}
static bConstraintTypeInfo CTI_DAMPTRACK = {
CONSTRAINT_TYPE_DAMPTRACK, /* type */
sizeof(bDampTrackConstraint), /* size */
"Damped Track", /* name */
"bDampTrackConstraint", /* struct name */
NULL, /* free data */
damptrack_id_looper, /* id looper */
NULL, /* copy data */
damptrack_new_data, /* new data */
damptrack_get_tars, /* get constraint targets */
damptrack_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
damptrack_evaluate /* evaluate */
};
/* ----------- Spline IK ------------ */
static void splineik_free(bConstraint *con)
{
bSplineIKConstraint *data = con->data;
/* binding array */
if (data->points)
MEM_freeN(data->points);
}
static void splineik_copy(bConstraint *con, bConstraint *srccon)
{
bSplineIKConstraint *src = srccon->data;
bSplineIKConstraint *dst = con->data;
/* copy the binding array */
dst->points = MEM_dupallocN(src->points);
}
static void splineik_new_data(void *cdata)
{
bSplineIKConstraint *data = (bSplineIKConstraint *)cdata;
data->chainlen = 1;
}
static void splineik_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bSplineIKConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int splineik_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bSplineIKConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints without subtargets */
SINGLETARGETNS_GET_TARS(con, data->tar, ct, list);
return 1;
}
return 0;
}
static void splineik_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bSplineIKConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGETNS_FLUSH_TARS(con, data->tar, ct, list, no_copy);
}
}
static void splineik_get_tarmat(bConstraint *UNUSED(con), bConstraintOb *cob, bConstraintTarget *ct, float UNUSED(ctime))
{
#ifdef CYCLIC_DEPENDENCY_WORKAROUND
if (VALID_CONS_TARGET(ct)) {
if (ct->tar->curve_cache == NULL) {
BKE_displist_make_curveTypes(cob->scene, ct->tar, false);
}
}
#endif
/* technically, this isn't really needed for evaluation, but we don't know what else
* might end up calling this...
*/
if (ct)
unit_m4(ct->matrix);
}
static bConstraintTypeInfo CTI_SPLINEIK = {
CONSTRAINT_TYPE_SPLINEIK, /* type */
sizeof(bSplineIKConstraint), /* size */
"Spline IK", /* name */
"bSplineIKConstraint", /* struct name */
splineik_free, /* free data */
splineik_id_looper, /* id looper */
splineik_copy, /* copy data */
splineik_new_data, /* new data */
splineik_get_tars, /* get constraint targets */
splineik_flush_tars, /* flush constraint targets */
splineik_get_tarmat, /* get target matrix */
NULL /* evaluate - solved as separate loop */
};
/* ----------- Pivot ------------- */
static void pivotcon_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bPivotConstraint *data = con->data;
/* target only */
func(con, (ID **)&data->tar, false, userdata);
}
static int pivotcon_get_tars(bConstraint *con, ListBase *list)
{
if (con && list) {
bPivotConstraint *data = con->data;
bConstraintTarget *ct;
/* standard target-getting macro for single-target constraints */
SINGLETARGET_GET_TARS(con, data->tar, data->subtarget, ct, list);
return 1;
}
return 0;
}
static void pivotcon_flush_tars(bConstraint *con, ListBase *list, bool no_copy)
{
if (con && list) {
bPivotConstraint *data = con->data;
bConstraintTarget *ct = list->first;
/* the following macro is used for all standard single-target constraints */
SINGLETARGET_FLUSH_TARS(con, data->tar, data->subtarget, ct, list, no_copy);
}
}
static void pivotcon_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *targets)
{
bPivotConstraint *data = con->data;
bConstraintTarget *ct = targets->first;
float pivot[3], vec[3];
float rotMat[3][3];
/* pivot correction */
float axis[3], angle;
/* firstly, check if pivoting should take place based on the current rotation */
if (data->rotAxis != PIVOTCON_AXIS_NONE) {
float rot[3];
/* extract euler-rotation of target */
mat4_to_eulO(rot, cob->rotOrder, cob->matrix);
/* check which range might be violated */
if (data->rotAxis < PIVOTCON_AXIS_X) {
/* negative rotations (data->rotAxis = 0 -> 2) */
if (rot[data->rotAxis] > 0.0f)
return;
}
else {
/* positive rotations (data->rotAxis = 3 -> 5 */
if (rot[data->rotAxis - PIVOTCON_AXIS_X] < 0.0f)
return;
}
}
/* find the pivot-point to use */
if (VALID_CONS_TARGET(ct)) {
/* apply offset to target location */
add_v3_v3v3(pivot, ct->matrix[3], data->offset);
}
else {
/* no targets to worry about... */
if ((data->flag & PIVOTCON_FLAG_OFFSET_ABS) == 0) {
/* offset is relative to owner */
add_v3_v3v3(pivot, cob->matrix[3], data->offset);
}
else {
/* directly use the 'offset' specified as an absolute position instead */
copy_v3_v3(pivot, data->offset);
}
}
/* get rotation matrix representing the rotation of the owner */
/* TODO: perhaps we might want to include scaling based on the pivot too? */
copy_m3_m4(rotMat, cob->matrix);
normalize_m3(rotMat);
/* correct the pivot by the rotation axis otherwise the pivot translates when it shouldnt */
mat3_to_axis_angle(axis, &angle, rotMat);
if (angle) {
float dvec[3];
sub_v3_v3v3(vec, pivot, cob->matrix[3]);
project_v3_v3v3(dvec, vec, axis);
sub_v3_v3(pivot, dvec);
}
/* perform the pivoting... */
/* 1. take the vector from owner to the pivot */
sub_v3_v3v3(vec, cob->matrix[3], pivot);
/* 2. rotate this vector by the rotation of the object... */
mul_m3_v3(rotMat, vec);
/* 3. make the rotation in terms of the pivot now */
add_v3_v3v3(cob->matrix[3], pivot, vec);
}
static bConstraintTypeInfo CTI_PIVOT = {
CONSTRAINT_TYPE_PIVOT, /* type */
sizeof(bPivotConstraint), /* size */
"Pivot", /* name */
"bPivotConstraint", /* struct name */
NULL, /* free data */
pivotcon_id_looper, /* id looper */
NULL, /* copy data */
NULL, /* new data */ // XXX: might be needed to get 'normal' pivot behavior...
pivotcon_get_tars, /* get constraint targets */
pivotcon_flush_tars, /* flush constraint targets */
default_get_tarmat, /* get target matrix */
pivotcon_evaluate /* evaluate */
};
/* ----------- Follow Track ------------- */
static void followtrack_new_data(void *cdata)
{
bFollowTrackConstraint *data = (bFollowTrackConstraint *)cdata;
data->clip = NULL;
data->flag |= FOLLOWTRACK_ACTIVECLIP;
}
static void followtrack_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bFollowTrackConstraint *data = con->data;
func(con, (ID **)&data->clip, true, userdata);
func(con, (ID **)&data->camera, false, userdata);
func(con, (ID **)&data->depth_ob, false, userdata);
}
static void followtrack_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
{
Scene *scene = cob->scene;
bFollowTrackConstraint *data = con->data;
MovieClip *clip = data->clip;
MovieTracking *tracking;
MovieTrackingTrack *track;
MovieTrackingObject *tracking_object;
Object *camob = data->camera ? data->camera : scene->camera;
int framenr;
if (data->flag & FOLLOWTRACK_ACTIVECLIP)
clip = scene->clip;
if (!clip || !data->track[0] || !camob)
return;
tracking = &clip->tracking;
if (data->object[0])
tracking_object = BKE_tracking_object_get_named(tracking, data->object);
else
tracking_object = BKE_tracking_object_get_camera(tracking);
if (!tracking_object)
return;
track = BKE_tracking_track_get_named(tracking, tracking_object, data->track);
if (!track)
return;
framenr = BKE_movieclip_remap_scene_to_clip_frame(clip, scene->r.cfra);
if (data->flag & FOLLOWTRACK_USE_3D_POSITION) {
if (track->flag & TRACK_HAS_BUNDLE) {
float obmat[4][4], mat[4][4];
copy_m4_m4(obmat, cob->matrix);
if ((tracking_object->flag & TRACKING_OBJECT_CAMERA) == 0) {
float imat[4][4];
copy_m4_m4(mat, camob->obmat);
BKE_tracking_camera_get_reconstructed_interpolate(tracking, tracking_object, framenr, imat);
invert_m4(imat);
mul_serie_m4(cob->matrix, obmat, mat, imat, NULL, NULL, NULL, NULL, NULL);
translate_m4(cob->matrix, track->bundle_pos[0], track->bundle_pos[1], track->bundle_pos[2]);
}
else {
BKE_tracking_get_camera_object_matrix(cob->scene, camob, mat);
mul_m4_m4m4(cob->matrix, obmat, mat);
translate_m4(cob->matrix, track->bundle_pos[0], track->bundle_pos[1], track->bundle_pos[2]);
}
}
}
else {
MovieTrackingMarker *marker;
float vec[3], disp[3], axis[3], mat[4][4];
float aspect = (scene->r.xsch * scene->r.xasp) / (scene->r.ysch * scene->r.yasp);
float len, d;
BKE_object_where_is_calc_mat4(scene, camob, mat);
/* camera axis */
vec[0] = 0.0f;
vec[1] = 0.0f;
vec[2] = 1.0f;
mul_v3_m4v3(axis, mat, vec);
/* distance to projection plane */
copy_v3_v3(vec, cob->matrix[3]);
sub_v3_v3(vec, mat[3]);
project_v3_v3v3(disp, vec, axis);
len = len_v3(disp);
if (len > FLT_EPSILON) {
CameraParams params;
float pos[2], rmat[4][4];
marker = BKE_tracking_marker_get(track, framenr);
add_v2_v2v2(pos, marker->pos, track->offset);
/* aspect correction */
if (data->frame_method != FOLLOWTRACK_FRAME_STRETCH) {
int width, height;
float w_src, h_src, w_dst, h_dst, asp_src, asp_dst;
BKE_movieclip_get_size(clip, NULL, &width, &height);
/* apply clip display aspect */
w_src = width * clip->aspx;
h_src = height * clip->aspy;
w_dst = scene->r.xsch * scene->r.xasp;
h_dst = scene->r.ysch * scene->r.yasp;
asp_src = w_src / h_src;
asp_dst = w_dst / h_dst;
if (fabsf(asp_src - asp_dst) >= FLT_EPSILON) {
if ((asp_src > asp_dst) == (data->frame_method == FOLLOWTRACK_FRAME_CROP)) {
/* fit X */
float div = asp_src / asp_dst;
float cent = (float) width / 2.0f;
pos[0] = (((pos[0] * width - cent) * div) + cent) / width;
}
else {
/* fit Y */
float div = asp_dst / asp_src;
float cent = (float) height / 2.0f;
pos[1] = (((pos[1] * height - cent) * div) + cent) / height;
}
}
}
BKE_camera_params_init(&params);
BKE_camera_params_from_object(&params, camob);
if (params.is_ortho) {
vec[0] = params.ortho_scale * (pos[0] - 0.5f + params.shiftx);
vec[1] = params.ortho_scale * (pos[1] - 0.5f + params.shifty);
vec[2] = -len;
if (aspect > 1.0f)
vec[1] /= aspect;
else
vec[0] *= aspect;
mul_v3_m4v3(disp, camob->obmat, vec);
copy_m4_m4(rmat, camob->obmat);
zero_v3(rmat[3]);
mul_m4_m4m4(cob->matrix, cob->matrix, rmat);
copy_v3_v3(cob->matrix[3], disp);
}
else {
d = (len * params.sensor_x) / (2.0f * params.lens);
vec[0] = d * (2.0f * (pos[0] + params.shiftx) - 1.0f);
vec[1] = d * (2.0f * (pos[1] + params.shifty) - 1.0f);
vec[2] = -len;
if (aspect > 1.0f)
vec[1] /= aspect;
else
vec[0] *= aspect;
mul_v3_m4v3(disp, camob->obmat, vec);
/* apply camera rotation so Z-axis would be co-linear */
copy_m4_m4(rmat, camob->obmat);
zero_v3(rmat[3]);
mul_m4_m4m4(cob->matrix, cob->matrix, rmat);
copy_v3_v3(cob->matrix[3], disp);
}
if (data->depth_ob) {
Object *depth_ob = data->depth_ob;
/* TODO(sergey): use proper for_render flag here when known. */
DerivedMesh *target = object_get_derived_final(depth_ob, false);
if (target) {
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
BVHTreeRayHit hit;
float ray_start[3], ray_end[3], ray_nor[3], imat[4][4];
int result;
invert_m4_m4(imat, depth_ob->obmat);
mul_v3_m4v3(ray_start, imat, camob->obmat[3]);
mul_v3_m4v3(ray_end, imat, cob->matrix[3]);
sub_v3_v3v3(ray_nor, ray_end, ray_start);
bvhtree_from_mesh_faces(&treeData, target, 0.0f, 4, 6);
hit.dist = FLT_MAX;
hit.index = -1;
result = BLI_bvhtree_ray_cast(treeData.tree, ray_start, ray_nor, 0.0f, &hit, treeData.raycast_callback, &treeData);
if (result != -1) {
mul_v3_m4v3(cob->matrix[3], depth_ob->obmat, hit.co);
}
free_bvhtree_from_mesh(&treeData);
target->release(target);
}
}
}
}
}
static bConstraintTypeInfo CTI_FOLLOWTRACK = {
CONSTRAINT_TYPE_FOLLOWTRACK, /* type */
sizeof(bFollowTrackConstraint), /* size */
"Follow Track", /* name */
"bFollowTrackConstraint", /* struct name */
NULL, /* free data */
followtrack_id_looper, /* id looper */
NULL, /* copy data */
followtrack_new_data, /* new data */
NULL, /* get constraint targets */
NULL, /* flush constraint targets */
NULL, /* get target matrix */
followtrack_evaluate /* evaluate */
};
/* ----------- Camre Solver ------------- */
static void camerasolver_new_data(void *cdata)
{
bCameraSolverConstraint *data = (bCameraSolverConstraint *)cdata;
data->clip = NULL;
data->flag |= CAMERASOLVER_ACTIVECLIP;
}
static void camerasolver_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bCameraSolverConstraint *data = con->data;
func(con, (ID **)&data->clip, true, userdata);
}
static void camerasolver_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
{
Scene *scene = cob->scene;
bCameraSolverConstraint *data = con->data;
MovieClip *clip = data->clip;
if (data->flag & CAMERASOLVER_ACTIVECLIP)
clip = scene->clip;
if (clip) {
float mat[4][4], obmat[4][4];
MovieTracking *tracking = &clip->tracking;
MovieTrackingObject *object = BKE_tracking_object_get_camera(tracking);
int framenr = BKE_movieclip_remap_scene_to_clip_frame(clip, scene->r.cfra);
BKE_tracking_camera_get_reconstructed_interpolate(tracking, object, framenr, mat);
copy_m4_m4(obmat, cob->matrix);
mul_m4_m4m4(cob->matrix, obmat, mat);
}
}
static bConstraintTypeInfo CTI_CAMERASOLVER = {
CONSTRAINT_TYPE_CAMERASOLVER, /* type */
sizeof(bCameraSolverConstraint), /* size */
"Camera Solver", /* name */
"bCameraSolverConstraint", /* struct name */
NULL, /* free data */
camerasolver_id_looper, /* id looper */
NULL, /* copy data */
camerasolver_new_data, /* new data */
NULL, /* get constraint targets */
NULL, /* flush constraint targets */
NULL, /* get target matrix */
camerasolver_evaluate /* evaluate */
};
/* ----------- Object Solver ------------- */
static void objectsolver_new_data(void *cdata)
{
bObjectSolverConstraint *data = (bObjectSolverConstraint *)cdata;
data->clip = NULL;
data->flag |= OBJECTSOLVER_ACTIVECLIP;
unit_m4(data->invmat);
}
static void objectsolver_id_looper(bConstraint *con, ConstraintIDFunc func, void *userdata)
{
bObjectSolverConstraint *data = con->data;
func(con, (ID **)&data->clip, false, userdata);
func(con, (ID **)&data->camera, false, userdata);
}
static void objectsolver_evaluate(bConstraint *con, bConstraintOb *cob, ListBase *UNUSED(targets))
{
Scene *scene = cob->scene;
bObjectSolverConstraint *data = con->data;
MovieClip *clip = data->clip;
Object *camob = data->camera ? data->camera : scene->camera;
if (data->flag & OBJECTSOLVER_ACTIVECLIP)
clip = scene->clip;
if (!camob || !clip)
return;
if (clip) {
MovieTracking *tracking = &clip->tracking;
MovieTrackingObject *object;
object = BKE_tracking_object_get_named(tracking, data->object);
if (object) {
float mat[4][4], obmat[4][4], imat[4][4], cammat[4][4], camimat[4][4], parmat[4][4];
int framenr = BKE_movieclip_remap_scene_to_clip_frame(clip, scene->r.cfra);
BKE_object_where_is_calc_mat4(scene, camob, cammat);
BKE_tracking_camera_get_reconstructed_interpolate(tracking, object, framenr, mat);
invert_m4_m4(camimat, cammat);
mul_m4_m4m4(parmat, cammat, data->invmat);
copy_m4_m4(cammat, camob->obmat);
copy_m4_m4(obmat, cob->matrix);
invert_m4_m4(imat, mat);
mul_serie_m4(cob->matrix, cammat, imat, camimat, parmat, obmat, NULL, NULL, NULL);
}
}
}
static bConstraintTypeInfo CTI_OBJECTSOLVER = {
CONSTRAINT_TYPE_OBJECTSOLVER, /* type */
sizeof(bObjectSolverConstraint), /* size */
"Object Solver", /* name */
"bObjectSolverConstraint", /* struct name */
NULL, /* free data */
objectsolver_id_looper, /* id looper */
NULL, /* copy data */
objectsolver_new_data, /* new data */
NULL, /* get constraint targets */
NULL, /* flush constraint targets */
NULL, /* get target matrix */
objectsolver_evaluate /* evaluate */
};
/* ************************* Constraints Type-Info *************************** */
/* All of the constraints api functions use bConstraintTypeInfo structs to carry out
* and operations that involve constraint specific code.
*/
/* These globals only ever get directly accessed in this file */
static bConstraintTypeInfo *constraintsTypeInfo[NUM_CONSTRAINT_TYPES];
static short CTI_INIT = 1; /* when non-zero, the list needs to be updated */
/* This function only gets called when CTI_INIT is non-zero */
static void constraints_init_typeinfo(void)
{
constraintsTypeInfo[0] = NULL; /* 'Null' Constraint */
constraintsTypeInfo[1] = &CTI_CHILDOF; /* ChildOf Constraint */
constraintsTypeInfo[2] = &CTI_TRACKTO; /* TrackTo Constraint */
constraintsTypeInfo[3] = &CTI_KINEMATIC; /* IK Constraint */
constraintsTypeInfo[4] = &CTI_FOLLOWPATH; /* Follow-Path Constraint */
constraintsTypeInfo[5] = &CTI_ROTLIMIT; /* Limit Rotation Constraint */
constraintsTypeInfo[6] = &CTI_LOCLIMIT; /* Limit Location Constraint */
constraintsTypeInfo[7] = &CTI_SIZELIMIT; /* Limit Scale Constraint */
constraintsTypeInfo[8] = &CTI_ROTLIKE; /* Copy Rotation Constraint */
constraintsTypeInfo[9] = &CTI_LOCLIKE; /* Copy Location Constraint */
constraintsTypeInfo[10] = &CTI_SIZELIKE; /* Copy Scale Constraint */
constraintsTypeInfo[11] = &CTI_PYTHON; /* Python/Script Constraint */
constraintsTypeInfo[12] = &CTI_ACTION; /* Action Constraint */
constraintsTypeInfo[13] = &CTI_LOCKTRACK; /* Locked-Track Constraint */
constraintsTypeInfo[14] = &CTI_DISTLIMIT; /* Limit Distance Constraint */
constraintsTypeInfo[15] = &CTI_STRETCHTO; /* StretchTo Constaint */
constraintsTypeInfo[16] = &CTI_MINMAX; /* Floor Constraint */
constraintsTypeInfo[17] = &CTI_RIGIDBODYJOINT; /* RigidBody Constraint */
constraintsTypeInfo[18] = &CTI_CLAMPTO; /* ClampTo Constraint */
constraintsTypeInfo[19] = &CTI_TRANSFORM; /* Transformation Constraint */
constraintsTypeInfo[20] = &CTI_SHRINKWRAP; /* Shrinkwrap Constraint */
constraintsTypeInfo[21] = &CTI_DAMPTRACK; /* Damped TrackTo Constraint */
constraintsTypeInfo[22] = &CTI_SPLINEIK; /* Spline IK Constraint */
constraintsTypeInfo[23] = &CTI_TRANSLIKE; /* Copy Transforms Constraint */
constraintsTypeInfo[24] = &CTI_SAMEVOL; /* Maintain Volume Constraint */
constraintsTypeInfo[25] = &CTI_PIVOT; /* Pivot Constraint */
constraintsTypeInfo[26] = &CTI_FOLLOWTRACK; /* Follow Track Constraint */
constraintsTypeInfo[27] = &CTI_CAMERASOLVER; /* Camera Solver Constraint */
constraintsTypeInfo[28] = &CTI_OBJECTSOLVER; /* Object Solver Constraint */
}
/* This function should be used for getting the appropriate type-info when only
* a constraint type is known
*/
bConstraintTypeInfo *BKE_get_constraint_typeinfo(int type)
{
/* initialize the type-info list? */
if (CTI_INIT) {
constraints_init_typeinfo();
CTI_INIT = 0;
}
/* only return for valid types */
if ((type >= CONSTRAINT_TYPE_NULL) &&
(type < NUM_CONSTRAINT_TYPES))
{
/* there shouldn't be any segfaults here... */
return constraintsTypeInfo[type];
}
else {
printf("No valid constraint type-info data available. Type = %i\n", type);
}
return NULL;
}
/* This function should always be used to get the appropriate type-info, as it
* has checks which prevent segfaults in some weird cases.
*/
bConstraintTypeInfo *BKE_constraint_get_typeinfo(bConstraint *con)
{
/* only return typeinfo for valid constraints */
if (con)
return BKE_get_constraint_typeinfo(con->type);
else
return NULL;
}
/* ************************* General Constraints API ************************** */
/* The functions here are called by various parts of Blender. Very few (should be none if possible)
* constraint-specific code should occur here.
*/
/* ---------- Data Management ------- */
/* helper function for BKE_free_constraint_data() - unlinks references */
static void con_unlink_refs_cb(bConstraint *UNUSED(con), ID **idpoin, bool is_reference, void *UNUSED(userData))
{
if (*idpoin && is_reference)
id_us_min(*idpoin);
}
/* Free data of a specific constraint if it has any info.
* be sure to run BIK_clear_data() when freeing an IK constraint,
* unless DAG_relations_tag_update is called.
*/
void BKE_free_constraint_data(bConstraint *con)
{
if (con->data) {
bConstraintTypeInfo *cti = BKE_constraint_get_typeinfo(con);
if (cti) {
/* perform any special freeing constraint may have */
if (cti->free_data)
cti->free_data(con);
/* unlink the referenced resources it uses */
if (cti->id_looper)
cti->id_looper(con, con_unlink_refs_cb, NULL);
}
/* free constraint data now */
MEM_freeN(con->data);
}
}
/* Free all constraints from a constraint-stack */
void BKE_free_constraints(ListBase *list)
{
bConstraint *con;
/* Free constraint data and also any extra data */
for (con = list->first; con; con = con->next)
BKE_free_constraint_data(con);
/* Free the whole list */
BLI_freelistN(list);
}
/* Remove the specified constraint from the given constraint stack */
bool BKE_remove_constraint(ListBase *list, bConstraint *con)
{
if (con) {
BKE_free_constraint_data(con);
BLI_freelinkN(list, con);
return 1;
}
else
return 0;
}
/* Remove all the constraints of the specified type from the given constraint stack */
void BKE_remove_constraints_type(ListBase *list, short type, bool last_only)
{
bConstraint *con, *conp;
if (list == NULL)
return;
/* remove from the end of the list to make it faster to find the last instance */
for (con = list->last; con; con = conp) {
conp = con->prev;
if (con->type == type) {
BKE_remove_constraint(list, con);
if (last_only)
return;
}
}
}
/* ......... */
/* Creates a new constraint, initializes its data, and returns it */
static bConstraint *add_new_constraint_internal(const char *name, short type)
{
bConstraint *con = MEM_callocN(sizeof(bConstraint), "Constraint");
bConstraintTypeInfo *cti = BKE_get_constraint_typeinfo(type);
const char *newName;
/* Set up a generic constraint datablock */
con->type = type;
con->flag |= CONSTRAINT_EXPAND;
con->enforce = 1.0f;
/* Determine a basic name, and info */
if (cti) {
/* initialize constraint data */
con->data = MEM_callocN(cti->size, cti->structName);
/* only constraints that change any settings need this */
if (cti->new_data)
cti->new_data(con->data);
/* if no name is provided, use the type of the constraint as the name */
newName = (name && name[0]) ? name : DATA_(cti->name);
}
else {
/* if no name is provided, use the generic "Const" name */
/* NOTE: any constraint type that gets here really shouldn't get added... */
newName = (name && name[0]) ? name : DATA_("Const");
}
/* copy the name */
BLI_strncpy(con->name, newName, sizeof(con->name));
/* return the new constraint */
return con;
}
/* if pchan is not NULL then assume we're adding a pose constraint */
static bConstraint *add_new_constraint(Object *ob, bPoseChannel *pchan, const char *name, short type)
{
bConstraint *con;
ListBase *list;
/* add the constraint */
con = add_new_constraint_internal(name, type);
/* find the constraint stack - bone or object? */
list = (pchan) ? (&pchan->constraints) : (&ob->constraints);
if (list) {
/* add new constraint to end of list of constraints before ensuring that it has a unique name
* (otherwise unique-naming code will fail, since it assumes element exists in list)
*/
BLI_addtail(list, con);
BKE_unique_constraint_name(con, list);
/* if the target list is a list on some PoseChannel belonging to a proxy-protected
* Armature layer, we must tag newly added constraints with a flag which allows them
* to persist after proxy syncing has been done
*/
if (BKE_proxylocked_constraints_owner(ob, pchan))
con->flag |= CONSTRAINT_PROXY_LOCAL;
/* make this constraint the active one */
BKE_constraints_set_active(list, con);
}
/* set type+owner specific immutable settings */
/* TODO: does action constraint need anything here - i.e. spaceonce? */
switch (type) {
case CONSTRAINT_TYPE_CHILDOF:
{
/* if this constraint is being added to a posechannel, make sure
* the constraint gets evaluated in pose-space */
if (pchan) {
con->ownspace = CONSTRAINT_SPACE_POSE;
con->flag |= CONSTRAINT_SPACEONCE;
}
break;
}
}
return con;
}
/* ......... */
/* Add new constraint for the given bone */
bConstraint *BKE_add_pose_constraint(Object *ob, bPoseChannel *pchan, const char *name, short type)
{
if (pchan == NULL)
return NULL;
return add_new_constraint(ob, pchan, name, type);
}
/* Add new constraint for the given object */
bConstraint *BKE_add_ob_constraint(Object *ob, const char *name, short type)
{
return add_new_constraint(ob, NULL, name, type);
}
/* ......... */
/* helper for BKE_relink_constraints() - call ID_NEW() on every ID reference the constraint has */
static void con_relink_id_cb(bConstraint *UNUSED(con), ID **idpoin, bool UNUSED(is_reference), void *UNUSED(userdata))
{
/* ID_NEW() expects a struct with inline "id" member as first
* since we've got the actual ID block, let's just inline this
* code.
*
* See ID_NEW(a) in DNA_ID.h
*/
if ((*idpoin) && (*idpoin)->newid)
(*idpoin) = (void *)(*idpoin)->newid;
}
/* Reassign links that constraints have to other data (called during file loading?) */
void BKE_relink_constraints(ListBase *conlist)
{
/* just a wrapper around ID-loop for just calling ID_NEW() on all ID refs */
BKE_id_loop_constraints(conlist, con_relink_id_cb, NULL);
}
/* Run the given callback on all ID-blocks in list of constraints */
void BKE_id_loop_constraints(ListBase *conlist, ConstraintIDFunc func, void *userdata)
{
bConstraint *con;
for (con = conlist->first; con; con = con->next) {
bConstraintTypeInfo *cti = BKE_constraint_get_typeinfo(con);
if (cti) {
if (cti->id_looper)
cti->id_looper(con, func, userdata);
}
}
}
/* ......... */
/* helper for BKE_copy_constraints(), to be used for making sure that ID's are valid */
static void con_extern_cb(bConstraint *UNUSED(con), ID **idpoin, bool UNUSED(is_reference), void *UNUSED(userData))
{
if (*idpoin && (*idpoin)->lib)
id_lib_extern(*idpoin);
}
/* helper for BKE_copy_constraints(), to be used for making sure that usercounts of copied ID's are fixed up */
static void con_fix_copied_refs_cb(bConstraint *UNUSED(con), ID **idpoin, bool is_reference, void *UNUSED(userData))
{
/* increment usercount if this is a reference type */
if ((*idpoin) && (is_reference))
id_us_plus(*idpoin);
}
/* duplicate all of the constraints in a constraint stack */
void BKE_copy_constraints(ListBase *dst, const ListBase *src, bool do_extern)
{
bConstraint *con, *srccon;
BLI_listbase_clear(dst);
BLI_duplicatelist(dst, src);
for (con = dst->first, srccon = src->first; con && srccon; srccon = srccon->next, con = con->next) {
bConstraintTypeInfo *cti = BKE_constraint_get_typeinfo(con);
/* make a new copy of the constraint's data */
con->data = MEM_dupallocN(con->data);
/* only do specific constraints if required */
if (cti) {
/* perform custom copying operations if needed */
if (cti->copy_data)
cti->copy_data(con, srccon);
/* fix usercounts for all referenced data in referenced data */
if (cti->id_looper)
cti->id_looper(con, con_fix_copied_refs_cb, NULL);
/* for proxies we don't want to make extern */
if (do_extern) {
/* go over used ID-links for this constraint to ensure that they are valid for proxies */
if (cti->id_looper)
cti->id_looper(con, con_extern_cb, NULL);
}
}
}
}
/* ......... */
bConstraint *BKE_constraints_findByName(ListBase *list, const char *name)
{
return BLI_findstring(list, name, offsetof(bConstraint, name));
}
/* finds the 'active' constraint in a constraint stack */
bConstraint *BKE_constraints_get_active(ListBase *list)
{
bConstraint *con;
/* search for the first constraint with the 'active' flag set */
if (list) {
for (con = list->first; con; con = con->next) {
if (con->flag & CONSTRAINT_ACTIVE)
return con;
}
}
/* no active constraint found */
return NULL;
}
/* Set the given constraint as the active one (clearing all the others) */
void BKE_constraints_set_active(ListBase *list, bConstraint *con)
{
bConstraint *c;
if (list) {
for (c = list->first; c; c = c->next) {
if (c == con)
c->flag |= CONSTRAINT_ACTIVE;
else
c->flag &= ~CONSTRAINT_ACTIVE;
}
}
}
/* -------- Constraints and Proxies ------- */
/* Rescue all constraints tagged as being CONSTRAINT_PROXY_LOCAL (i.e. added to bone that's proxy-synced in this file) */
void BKE_extract_proxylocal_constraints(ListBase *dst, ListBase *src)
{
bConstraint *con, *next;
/* for each tagged constraint, remove from src and move to dst */
for (con = src->first; con; con = next) {
next = con->next;
/* check if tagged */
if (con->flag & CONSTRAINT_PROXY_LOCAL) {
BLI_remlink(src, con);
BLI_addtail(dst, con);
}
}
}
/* Returns if the owner of the constraint is proxy-protected */
bool BKE_proxylocked_constraints_owner(Object *ob, bPoseChannel *pchan)
{
/* Currently, constraints can only be on object or bone level */
if (ob && ob->proxy) {
if (ob->pose && pchan) {
bArmature *arm = ob->data;
/* On bone-level, check if bone is on proxy-protected layer */
if ((pchan->bone) && (pchan->bone->layer & arm->layer_protected))
return 1;
}
else {
/* FIXME: constraints on object-level are not handled well yet */
return 1;
}
}
return 0;
}
/* -------- Target-Matrix Stuff ------- */
/* This function is a relic from the prior implementations of the constraints system, when all
* constraints either had one or no targets. It used to be called during the main constraint solving
* loop, but is now only used for the remaining cases for a few constraints.
*
* None of the actual calculations of the matrices should be done here! Also, this function is
* not to be used by any new constraints, particularly any that have multiple targets.
*/
void BKE_get_constraint_target_matrix(Scene *scene, bConstraint *con, int index, short ownertype, void *ownerdata, float mat[4][4], float ctime)
{
bConstraintTypeInfo *cti = BKE_constraint_get_typeinfo(con);
ListBase targets = {NULL, NULL};
bConstraintOb *cob;
bConstraintTarget *ct;
if (cti && cti->get_constraint_targets) {
/* make 'constraint-ob' */
cob = MEM_callocN(sizeof(bConstraintOb), "tempConstraintOb");
cob->type = ownertype;
cob->scene = scene;
switch (ownertype) {
case CONSTRAINT_OBTYPE_OBJECT: /* it is usually this case */
{
cob->ob = (Object *)ownerdata;
cob->pchan = NULL;
if (cob->ob) {
copy_m4_m4(cob->matrix, cob->ob->obmat);
copy_m4_m4(cob->startmat, cob->matrix);
}
else {
unit_m4(cob->matrix);
unit_m4(cob->startmat);
}
break;
}
case CONSTRAINT_OBTYPE_BONE: /* this may occur in some cases */
{
cob->ob = NULL; /* this might not work at all :/ */
cob->pchan = (bPoseChannel *)ownerdata;
if (cob->pchan) {
copy_m4_m4(cob->matrix, cob->pchan->pose_mat);
copy_m4_m4(cob->startmat, cob->matrix);
}
else {
unit_m4(cob->matrix);
unit_m4(cob->startmat);
}
break;
}
}
/* get targets - we only need the first one though (and there should only be one) */
cti->get_constraint_targets(con, &targets);
/* only calculate the target matrix on the first target */
ct = (bConstraintTarget *)BLI_findlink(&targets, index);
if (ct) {
if (cti->get_target_matrix)
cti->get_target_matrix(con, cob, ct, ctime);
copy_m4_m4(mat, ct->matrix);
}
/* free targets + 'constraint-ob' */
if (cti->flush_constraint_targets)
cti->flush_constraint_targets(con, &targets, 1);
MEM_freeN(cob);
}
else {
/* invalid constraint - perhaps... */
unit_m4(mat);
}
}
/* Get the list of targets required for solving a constraint */
void BKE_get_constraint_targets_for_solving(bConstraint *con, bConstraintOb *cob, ListBase *targets, float ctime)
{
bConstraintTypeInfo *cti = BKE_constraint_get_typeinfo(con);
if (cti && cti->get_constraint_targets) {
bConstraintTarget *ct;
/* get targets
* - constraints should use ct->matrix, not directly accessing values
* - ct->matrix members have not yet been calculated here!
*/
cti->get_constraint_targets(con, targets);
/* set matrices
* - calculate if possible, otherwise just initialize as identity matrix
*/
if (cti->get_target_matrix) {
for (ct = targets->first; ct; ct = ct->next)
cti->get_target_matrix(con, cob, ct, ctime);
}
else {
for (ct = targets->first; ct; ct = ct->next)
unit_m4(ct->matrix);
}
}
}
/* ---------- Evaluation ----------- */
/* This function is called whenever constraints need to be evaluated. Currently, all
* constraints that can be evaluated are every time this gets run.
*
* BKE_constraints_make_evalob and BKE_constraints_clear_evalob should be called before and
* after running this function, to sort out cob
*/
void BKE_solve_constraints(ListBase *conlist, bConstraintOb *cob, float ctime)
{
bConstraint *con;
float oldmat[4][4];
float enf;
/* check that there is a valid constraint object to evaluate */
if (cob == NULL)
return;
/* loop over available constraints, solving and blending them */
for (con = conlist->first; con; con = con->next) {
bConstraintTypeInfo *cti = BKE_constraint_get_typeinfo(con);
ListBase targets = {NULL, NULL};
/* these we can skip completely (invalid constraints...) */
if (cti == NULL) continue;
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) continue;
/* these constraints can't be evaluated anyway */
if (cti->evaluate_constraint == NULL) continue;
/* influence == 0 should be ignored */
if (con->enforce == 0.0f) continue;
/* influence of constraint
* - value should have been set from animation data already
*/
enf = con->enforce;
/* make copy of worldspace matrix pre-constraint for use with blending later */
copy_m4_m4(oldmat, cob->matrix);
/* move owner matrix into right space */
BKE_constraint_mat_convertspace(cob->ob, cob->pchan, cob->matrix, CONSTRAINT_SPACE_WORLD, con->ownspace);
/* prepare targets for constraint solving */
BKE_get_constraint_targets_for_solving(con, cob, &targets, ctime);
/* Solve the constraint and put result in cob->matrix */
cti->evaluate_constraint(con, cob, &targets);
/* clear targets after use
* - this should free temp targets but no data should be copied back
* as constraints may have done some nasty things to it...
*/
if (cti->flush_constraint_targets) {
cti->flush_constraint_targets(con, &targets, 1);
}
/* move owner back into worldspace for next constraint/other business */
if ((con->flag & CONSTRAINT_SPACEONCE) == 0)
BKE_constraint_mat_convertspace(cob->ob, cob->pchan, cob->matrix, con->ownspace, CONSTRAINT_SPACE_WORLD);
/* Interpolate the enforcement, to blend result of constraint into final owner transform
* - all this happens in worldspace to prevent any weirdness creeping in ([#26014] and [#25725]),
* since some constraints may not convert the solution back to the input space before blending
* but all are guaranteed to end up in good "worldspace" result
*/
/* Note: all kind of stuff here before (caused trouble), much easier to just interpolate, or did I miss something? -jahka (r.32105) */
if (enf < 1.0f) {
float solution[4][4];
copy_m4_m4(solution, cob->matrix);
blend_m4_m4m4(cob->matrix, oldmat, solution, enf);
}
}
}