tornavis/intern/cycles/scene/scene.cpp

1008 lines
28 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include <stdlib.h>
#include "bvh/bvh.h"
#include "device/device.h"
#include "scene/alembic.h"
#include "scene/background.h"
#include "scene/bake.h"
#include "scene/camera.h"
#include "scene/curves.h"
#include "scene/devicescene.h"
#include "scene/film.h"
#include "scene/integrator.h"
#include "scene/light.h"
#include "scene/mesh.h"
#include "scene/object.h"
#include "scene/osl.h"
#include "scene/particles.h"
#include "scene/pointcloud.h"
#include "scene/procedural.h"
#include "scene/scene.h"
#include "scene/shader.h"
#include "scene/svm.h"
#include "scene/tables.h"
#include "scene/volume.h"
#include "session/session.h"
#include "util/foreach.h"
#include "util/guarded_allocator.h"
#include "util/log.h"
#include "util/progress.h"
CCL_NAMESPACE_BEGIN
Scene::Scene(const SceneParams &params_, Device *device)
: name("Scene"),
bvh(NULL),
default_surface(NULL),
default_volume(NULL),
default_light(NULL),
default_background(NULL),
default_empty(NULL),
device(device),
dscene(device),
params(params_),
update_stats(NULL),
kernels_loaded(false),
/* TODO(sergey): Check if it's indeed optimal value for the split kernel. */
max_closure_global(1)
{
memset((void *)&dscene.data, 0, sizeof(dscene.data));
shader_manager = ShaderManager::create(
device->info.has_osl ? params.shadingsystem : SHADINGSYSTEM_SVM, device);
light_manager = new LightManager();
geometry_manager = new GeometryManager();
object_manager = new ObjectManager();
image_manager = new ImageManager(device->info);
particle_system_manager = new ParticleSystemManager();
bake_manager = new BakeManager();
procedural_manager = new ProceduralManager();
/* Create nodes after managers, since create_node() can tag the managers. */
camera = create_node<Camera>();
dicing_camera = create_node<Camera>();
lookup_tables = new LookupTables();
film = create_node<Film>();
background = create_node<Background>();
integrator = create_node<Integrator>();
film->add_default(this);
shader_manager->add_default(this);
}
Scene::~Scene()
{
free_memory(true);
}
void Scene::free_memory(bool final)
{
delete bvh;
bvh = NULL;
/* The order of deletion is important to make sure data is freed based on possible dependencies
* as the Nodes' reference counts are decremented in the destructors:
*
* - Procedurals can create and hold pointers to any other types.
* - Objects can hold pointers to Geometries and ParticleSystems
* - Lights and Geometries can hold pointers to Shaders.
*
* Similarly, we first delete all nodes and their associated device data, and then the managers
* and their associated device data.
*/
foreach (Procedural *p, procedurals)
delete p;
foreach (Object *o, objects)
delete o;
foreach (Geometry *g, geometry)
delete g;
foreach (ParticleSystem *p, particle_systems)
delete p;
foreach (Light *l, lights)
delete l;
foreach (Pass *p, passes)
delete p;
geometry.clear();
objects.clear();
lights.clear();
particle_systems.clear();
procedurals.clear();
passes.clear();
if (device) {
camera->device_free(device, &dscene, this);
film->device_free(device, &dscene, this);
background->device_free(device, &dscene);
integrator->device_free(device, &dscene, true);
}
if (final) {
delete camera;
delete dicing_camera;
delete film;
delete background;
delete integrator;
}
/* Delete Shaders after every other nodes to ensure that we do not try to decrement the reference
* count on some dangling pointer. */
foreach (Shader *s, shaders)
delete s;
shaders.clear();
/* Now that all nodes have been deleted, we can safely delete managers and device data. */
if (device) {
object_manager->device_free(device, &dscene, true);
geometry_manager->device_free(device, &dscene, true);
shader_manager->device_free(device, &dscene, this);
light_manager->device_free(device, &dscene);
particle_system_manager->device_free(device, &dscene);
bake_manager->device_free(device, &dscene);
if (final) {
image_manager->device_free(device);
}
else {
image_manager->device_free_builtin(device);
}
lookup_tables->device_free(device, &dscene);
}
if (final) {
delete lookup_tables;
delete object_manager;
delete geometry_manager;
delete shader_manager;
delete light_manager;
delete particle_system_manager;
delete image_manager;
delete bake_manager;
delete update_stats;
delete procedural_manager;
}
}
void Scene::device_update(Device *device_, Progress &progress)
{
if (!device) {
device = device_;
}
bool print_stats = need_data_update();
if (update_stats) {
update_stats->clear();
}
scoped_callback_timer timer([this, print_stats](double time) {
if (update_stats) {
update_stats->scene.times.add_entry({"device_update", time});
if (print_stats) {
printf("Update statistics:\n%s\n", update_stats->full_report().c_str());
}
}
});
/* The order of updates is important, because there's dependencies between
* the different managers, using data computed by previous managers.
*
* - Image manager uploads images used by shaders.
* - Camera may be used for adaptive subdivision.
* - Displacement shader must have all shader data available.
* - Light manager needs lookup tables and final mesh data to compute emission CDF.
* - Lookup tables are done a second time to handle film tables
*/
if (film->update_lightgroups(this)) {
light_manager->tag_update(this, ccl::LightManager::LIGHT_MODIFIED);
object_manager->tag_update(this, ccl::ObjectManager::OBJECT_MODIFIED);
background->tag_modified();
}
if (film->exposure_is_modified()) {
integrator->tag_modified();
}
progress.set_status("Updating Shaders");
shader_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
procedural_manager->update(this, progress);
if (progress.get_cancel()) {
return;
}
progress.set_status("Updating Background");
background->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Camera");
camera->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
geometry_manager->device_update_preprocess(device, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Objects");
object_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Particle Systems");
particle_system_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Meshes");
geometry_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Objects Flags");
object_manager->device_update_flags(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Primitive Offsets");
object_manager->device_update_prim_offsets(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Images");
image_manager->device_update(device, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Camera Volume");
camera->device_update_volume(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Lookup Tables");
lookup_tables->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Lights");
light_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Integrator");
integrator->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Film");
film->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Lookup Tables");
lookup_tables->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Baking");
bake_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
if (device->have_error() == false) {
dscene.data.volume_stack_size = get_volume_stack_size();
progress.set_status("Updating Device", "Writing constant memory");
device->const_copy_to("data", &dscene.data, sizeof(dscene.data));
}
device->optimize_for_scene(this);
if (print_stats) {
size_t mem_used = util_guarded_get_mem_used();
size_t mem_peak = util_guarded_get_mem_peak();
VLOG_INFO << "System memory statistics after full device sync:\n"
<< " Usage: " << string_human_readable_number(mem_used) << " ("
<< string_human_readable_size(mem_used) << ")\n"
<< " Peak: " << string_human_readable_number(mem_peak) << " ("
<< string_human_readable_size(mem_peak) << ")";
}
}
Scene::MotionType Scene::need_motion() const
{
if (integrator->get_motion_blur()) {
return MOTION_BLUR;
}
else if (Pass::contains(passes, PASS_MOTION)) {
return MOTION_PASS;
}
else {
return MOTION_NONE;
}
}
float Scene::motion_shutter_time()
{
if (need_motion() == Scene::MOTION_PASS) {
return 2.0f;
}
else {
return camera->get_shuttertime();
}
}
bool Scene::need_global_attribute(AttributeStandard std)
{
if (std == ATTR_STD_UV) {
return Pass::contains(passes, PASS_UV);
}
else if (std == ATTR_STD_MOTION_VERTEX_POSITION) {
return need_motion() != MOTION_NONE;
}
else if (std == ATTR_STD_MOTION_VERTEX_NORMAL) {
return need_motion() == MOTION_BLUR;
}
else if (std == ATTR_STD_VOLUME_VELOCITY || std == ATTR_STD_VOLUME_VELOCITY_X ||
std == ATTR_STD_VOLUME_VELOCITY_Y || std == ATTR_STD_VOLUME_VELOCITY_Z)
{
return need_motion() != MOTION_NONE;
}
return false;
}
void Scene::need_global_attributes(AttributeRequestSet &attributes)
{
for (int std = ATTR_STD_NONE; std < ATTR_STD_NUM; std++) {
if (need_global_attribute((AttributeStandard)std)) {
attributes.add((AttributeStandard)std);
}
}
}
bool Scene::need_update()
{
return (need_reset() || film->is_modified());
}
bool Scene::need_data_update()
{
return (background->is_modified() || image_manager->need_update() ||
object_manager->need_update() || geometry_manager->need_update() ||
light_manager->need_update() || lookup_tables->need_update() ||
integrator->is_modified() || shader_manager->need_update() ||
particle_system_manager->need_update() || bake_manager->need_update() ||
film->is_modified() || procedural_manager->need_update());
}
bool Scene::need_reset(const bool check_camera)
{
return need_data_update() || (check_camera && camera->is_modified());
}
void Scene::reset()
{
shader_manager->reset(this);
shader_manager->add_default(this);
/* ensure all objects are updated */
camera->tag_modified();
dicing_camera->tag_modified();
film->tag_modified();
background->tag_modified();
background->tag_update(this);
integrator->tag_update(this, Integrator::UPDATE_ALL);
object_manager->tag_update(this, ObjectManager::UPDATE_ALL);
geometry_manager->tag_update(this, GeometryManager::UPDATE_ALL);
light_manager->tag_update(this, LightManager::UPDATE_ALL);
particle_system_manager->tag_update(this);
procedural_manager->tag_update();
}
void Scene::device_free()
{
free_memory(false);
}
void Scene::collect_statistics(RenderStats *stats)
{
geometry_manager->collect_statistics(this, stats);
image_manager->collect_statistics(stats);
}
void Scene::enable_update_stats()
{
if (!update_stats) {
update_stats = new SceneUpdateStats();
}
}
void Scene::update_kernel_features()
{
if (!need_update()) {
return;
}
thread_scoped_lock scene_lock(mutex);
/* These features are not being tweaked as often as shaders,
* so could be done selective magic for the viewport as well. */
uint kernel_features = shader_manager->get_kernel_features(this);
bool use_motion = need_motion() == Scene::MotionType::MOTION_BLUR;
kernel_features |= KERNEL_FEATURE_PATH_TRACING;
if (params.hair_shape == CURVE_THICK) {
kernel_features |= KERNEL_FEATURE_HAIR_THICK;
}
/* Figure out whether the scene will use shader ray-trace we need at least
* one caustic light, one caustic caster and one caustic receiver to use
* and enable the MNEE code path. */
bool has_caustics_receiver = false;
bool has_caustics_caster = false;
bool has_caustics_light = false;
foreach (Object *object, objects) {
if (object->get_is_caustics_caster()) {
has_caustics_caster = true;
}
else if (object->get_is_caustics_receiver()) {
has_caustics_receiver = true;
}
Geometry *geom = object->get_geometry();
if (use_motion) {
if (object->use_motion() || geom->get_use_motion_blur()) {
kernel_features |= KERNEL_FEATURE_OBJECT_MOTION;
}
}
if (object->get_is_shadow_catcher()) {
kernel_features |= KERNEL_FEATURE_SHADOW_CATCHER;
}
if (geom->is_mesh()) {
#ifdef WITH_OPENSUBDIV
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->get_subdivision_type() != Mesh::SUBDIVISION_NONE) {
kernel_features |= KERNEL_FEATURE_PATCH_EVALUATION;
}
#endif
}
else if (geom->is_hair()) {
kernel_features |= KERNEL_FEATURE_HAIR;
}
else if (geom->is_pointcloud()) {
kernel_features |= KERNEL_FEATURE_POINTCLOUD;
}
if (object->has_light_linking()) {
kernel_features |= KERNEL_FEATURE_LIGHT_LINKING;
}
if (object->has_shadow_linking()) {
kernel_features |= KERNEL_FEATURE_SHADOW_LINKING;
}
}
foreach (Light *light, lights) {
if (light->get_use_caustics()) {
has_caustics_light = true;
}
if (light->has_light_linking()) {
kernel_features |= KERNEL_FEATURE_LIGHT_LINKING;
}
if (light->has_shadow_linking()) {
kernel_features |= KERNEL_FEATURE_SHADOW_LINKING;
}
}
dscene.data.integrator.use_caustics = false;
if (has_caustics_caster && has_caustics_receiver && has_caustics_light) {
dscene.data.integrator.use_caustics = true;
kernel_features |= KERNEL_FEATURE_MNEE;
}
if (integrator->get_guiding_params(device).use) {
kernel_features |= KERNEL_FEATURE_PATH_GUIDING;
}
if (bake_manager->get_baking()) {
kernel_features |= KERNEL_FEATURE_BAKING;
}
kernel_features |= film->get_kernel_features(this);
kernel_features |= integrator->get_kernel_features();
dscene.data.kernel_features = kernel_features;
/* Currently viewport render is faster with higher max_closures, needs investigating. */
const uint max_closures = (params.background) ? get_max_closure_count() : MAX_CLOSURE;
dscene.data.max_closures = max_closures;
dscene.data.max_shaders = shaders.size();
}
bool Scene::update(Progress &progress)
{
if (!need_update()) {
return false;
}
/* Upload scene data to the GPU. */
progress.set_status("Updating Scene");
MEM_GUARDED_CALL(&progress, device_update, device, progress);
return true;
}
static void log_kernel_features(const uint features)
{
VLOG_INFO << "Requested features:\n";
VLOG_INFO << "Use BSDF " << string_from_bool(features & KERNEL_FEATURE_NODE_BSDF) << "\n";
VLOG_INFO << "Use Emission " << string_from_bool(features & KERNEL_FEATURE_NODE_EMISSION)
<< "\n";
VLOG_INFO << "Use Volume " << string_from_bool(features & KERNEL_FEATURE_NODE_VOLUME) << "\n";
VLOG_INFO << "Use Bump " << string_from_bool(features & KERNEL_FEATURE_NODE_BUMP) << "\n";
VLOG_INFO << "Use Voronoi " << string_from_bool(features & KERNEL_FEATURE_NODE_VORONOI_EXTRA)
<< "\n";
VLOG_INFO << "Use Shader Raytrace " << string_from_bool(features & KERNEL_FEATURE_NODE_RAYTRACE)
<< "\n";
VLOG_INFO << "Use MNEE " << string_from_bool(features & KERNEL_FEATURE_MNEE) << "\n";
VLOG_INFO << "Use Transparent " << string_from_bool(features & KERNEL_FEATURE_TRANSPARENT)
<< "\n";
VLOG_INFO << "Use Denoising " << string_from_bool(features & KERNEL_FEATURE_DENOISING) << "\n";
VLOG_INFO << "Use Path Tracing " << string_from_bool(features & KERNEL_FEATURE_PATH_TRACING)
<< "\n";
VLOG_INFO << "Use Hair " << string_from_bool(features & KERNEL_FEATURE_HAIR) << "\n";
VLOG_INFO << "Use Pointclouds " << string_from_bool(features & KERNEL_FEATURE_POINTCLOUD)
<< "\n";
VLOG_INFO << "Use Object Motion " << string_from_bool(features & KERNEL_FEATURE_OBJECT_MOTION)
<< "\n";
VLOG_INFO << "Use Baking " << string_from_bool(features & KERNEL_FEATURE_BAKING) << "\n";
VLOG_INFO << "Use Subsurface " << string_from_bool(features & KERNEL_FEATURE_SUBSURFACE) << "\n";
VLOG_INFO << "Use Volume " << string_from_bool(features & KERNEL_FEATURE_VOLUME) << "\n";
VLOG_INFO << "Use Patch Evaluation "
<< string_from_bool(features & KERNEL_FEATURE_PATCH_EVALUATION) << "\n";
VLOG_INFO << "Use Shadow Catcher " << string_from_bool(features & KERNEL_FEATURE_SHADOW_CATCHER)
<< "\n";
}
bool Scene::load_kernels(Progress &progress)
{
update_kernel_features();
const uint kernel_features = dscene.data.kernel_features;
if (!kernels_loaded || loaded_kernel_features != kernel_features) {
progress.set_status("Loading render kernels (may take a few minutes the first time)");
scoped_timer timer;
log_kernel_features(kernel_features);
if (!device->load_kernels(kernel_features)) {
string message = device->error_message();
if (message.empty()) {
message = "Failed loading render kernel, see console for errors";
}
progress.set_error(message);
progress.set_status(message);
progress.set_update();
return false;
}
kernels_loaded = true;
loaded_kernel_features = kernel_features;
return true;
}
return false;
}
int Scene::get_max_closure_count()
{
if (shader_manager->use_osl()) {
/* OSL always needs the maximum as we can't predict the
* number of closures a shader might generate. */
return MAX_CLOSURE;
}
int max_closures = 0;
for (int i = 0; i < shaders.size(); i++) {
Shader *shader = shaders[i];
if (shader->reference_count()) {
int num_closures = shader->graph->get_num_closures();
max_closures = max(max_closures, num_closures);
}
}
max_closure_global = max(max_closure_global, max_closures);
if (max_closure_global > MAX_CLOSURE) {
/* This is usually harmless as more complex shader tend to get many
* closures discarded due to mixing or low weights. We need to limit
* to MAX_CLOSURE as this is hardcoded in CPU/mega kernels, and it
* avoids excessive memory usage for split kernels. */
VLOG_WARNING << "Maximum number of closures exceeded: " << max_closure_global << " > "
<< MAX_CLOSURE;
max_closure_global = MAX_CLOSURE;
}
return max_closure_global;
}
int Scene::get_volume_stack_size() const
{
int volume_stack_size = 0;
/* Space for background volume and terminator.
* Don't do optional here because camera ray initialization expects that there is space for
* at least those elements (avoiding extra condition to check if there is actual volume or not).
*/
volume_stack_size += 2;
/* Quick non-expensive check. Can over-estimate maximum possible nested level, but does not
* require expensive calculation during pre-processing. */
bool has_volume_object = false;
for (const Object *object : objects) {
if (!object->get_geometry()->has_volume) {
continue;
}
if (object->intersects_volume) {
/* Object intersects another volume, assume it's possible to go deeper in the stack. */
/* TODO(sergey): This might count nesting twice (A intersects B and B intersects A), but
* can't think of a computationally cheap algorithm. Dividing my 2 doesn't work because of
* Venn diagram example with 3 circles. */
++volume_stack_size;
}
else if (!has_volume_object) {
/* Allocate space for at least one volume object. */
++volume_stack_size;
}
has_volume_object = true;
if (volume_stack_size == MAX_VOLUME_STACK_SIZE) {
break;
}
}
volume_stack_size = min(volume_stack_size, MAX_VOLUME_STACK_SIZE);
VLOG_WORK << "Detected required volume stack size " << volume_stack_size;
return volume_stack_size;
}
bool Scene::has_shadow_catcher()
{
if (shadow_catcher_modified_) {
has_shadow_catcher_ = false;
for (Object *object : objects) {
if (object->get_is_shadow_catcher()) {
has_shadow_catcher_ = true;
break;
}
}
shadow_catcher_modified_ = false;
}
return has_shadow_catcher_;
}
void Scene::tag_shadow_catcher_modified()
{
shadow_catcher_modified_ = true;
}
template<> Light *Scene::create_node<Light>()
{
Light *node = new Light();
node->set_owner(this);
lights.push_back(node);
light_manager->tag_update(this, LightManager::LIGHT_ADDED);
return node;
}
template<> Mesh *Scene::create_node<Mesh>()
{
Mesh *node = new Mesh();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::MESH_ADDED);
return node;
}
template<> Hair *Scene::create_node<Hair>()
{
Hair *node = new Hair();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::HAIR_ADDED);
return node;
}
template<> Volume *Scene::create_node<Volume>()
{
Volume *node = new Volume();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::MESH_ADDED);
return node;
}
template<> PointCloud *Scene::create_node<PointCloud>()
{
PointCloud *node = new PointCloud();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::POINT_ADDED);
return node;
}
template<> Object *Scene::create_node<Object>()
{
Object *node = new Object();
node->set_owner(this);
objects.push_back(node);
object_manager->tag_update(this, ObjectManager::OBJECT_ADDED);
return node;
}
template<> ParticleSystem *Scene::create_node<ParticleSystem>()
{
ParticleSystem *node = new ParticleSystem();
node->set_owner(this);
particle_systems.push_back(node);
particle_system_manager->tag_update(this);
return node;
}
template<> Shader *Scene::create_node<Shader>()
{
Shader *node = new Shader();
node->set_owner(this);
shaders.push_back(node);
shader_manager->tag_update(this, ShaderManager::SHADER_ADDED);
return node;
}
template<> AlembicProcedural *Scene::create_node<AlembicProcedural>()
{
#ifdef WITH_ALEMBIC
AlembicProcedural *node = new AlembicProcedural();
node->set_owner(this);
procedurals.push_back(node);
procedural_manager->tag_update();
return node;
#else
return nullptr;
#endif
}
template<> Pass *Scene::create_node<Pass>()
{
Pass *node = new Pass();
node->set_owner(this);
passes.push_back(node);
film->tag_modified();
return node;
}
template<typename T> void delete_node_from_array(vector<T> &nodes, T node)
{
for (size_t i = 0; i < nodes.size(); ++i) {
if (nodes[i] == node) {
std::swap(nodes[i], nodes[nodes.size() - 1]);
break;
}
}
nodes.resize(nodes.size() - 1);
delete node;
}
template<> void Scene::delete_node_impl(Light *node)
{
delete_node_from_array(lights, node);
light_manager->tag_update(this, LightManager::LIGHT_REMOVED);
}
template<> void Scene::delete_node_impl(Mesh *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::MESH_REMOVED);
}
template<> void Scene::delete_node_impl(Hair *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::HAIR_REMOVED);
}
template<> void Scene::delete_node_impl(Volume *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::MESH_REMOVED);
}
template<> void Scene::delete_node_impl(PointCloud *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::POINT_REMOVED);
}
template<> void Scene::delete_node_impl(Geometry *node)
{
uint flag;
if (node->is_hair()) {
flag = GeometryManager::HAIR_REMOVED;
}
else {
flag = GeometryManager::MESH_REMOVED;
}
delete_node_from_array(geometry, node);
geometry_manager->tag_update(this, flag);
}
template<> void Scene::delete_node_impl(Object *node)
{
delete_node_from_array(objects, node);
object_manager->tag_update(this, ObjectManager::OBJECT_REMOVED);
}
template<> void Scene::delete_node_impl(ParticleSystem *node)
{
delete_node_from_array(particle_systems, node);
particle_system_manager->tag_update(this);
}
template<> void Scene::delete_node_impl(Shader *shader)
{
/* don't delete unused shaders, not supported */
shader->clear_reference_count();
}
template<> void Scene::delete_node_impl(Procedural *node)
{
delete_node_from_array(procedurals, node);
procedural_manager->tag_update();
}
template<> void Scene::delete_node_impl(AlembicProcedural *node)
{
#ifdef WITH_ALEMBIC
delete_node_impl(static_cast<Procedural *>(node));
#else
(void)node;
#endif
}
template<> void Scene::delete_node_impl(Pass *node)
{
delete_node_from_array(passes, node);
film->tag_modified();
}
template<typename T>
static void remove_nodes_in_set(const set<T *> &nodes_set,
vector<T *> &nodes_array,
const NodeOwner *owner)
{
size_t new_size = nodes_array.size();
for (size_t i = 0; i < new_size; ++i) {
T *node = nodes_array[i];
if (nodes_set.find(node) != nodes_set.end()) {
std::swap(nodes_array[i], nodes_array[new_size - 1]);
assert(node->get_owner() == owner);
delete node;
i -= 1;
new_size -= 1;
}
}
nodes_array.resize(new_size);
(void)owner;
}
template<> void Scene::delete_nodes(const set<Light *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, lights, owner);
light_manager->tag_update(this, LightManager::LIGHT_REMOVED);
}
template<> void Scene::delete_nodes(const set<Geometry *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, geometry, owner);
geometry_manager->tag_update(this, GeometryManager::GEOMETRY_REMOVED);
}
template<> void Scene::delete_nodes(const set<Object *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, objects, owner);
object_manager->tag_update(this, ObjectManager::OBJECT_REMOVED);
}
template<> void Scene::delete_nodes(const set<ParticleSystem *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, particle_systems, owner);
particle_system_manager->tag_update(this);
}
template<> void Scene::delete_nodes(const set<Shader *> &nodes, const NodeOwner * /*owner*/)
{
/* don't delete unused shaders, not supported */
for (Shader *shader : nodes) {
shader->clear_reference_count();
}
}
template<> void Scene::delete_nodes(const set<Procedural *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, procedurals, owner);
procedural_manager->tag_update();
}
template<> void Scene::delete_nodes(const set<Pass *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, passes, owner);
film->tag_modified();
}
CCL_NAMESPACE_END