tornavis/intern/itasc/Scene.cpp

637 lines
23 KiB
C++

/* SPDX-FileCopyrightText: 2009 Ruben Smits
*
* SPDX-License-Identifier: LGPL-2.1-or-later */
/** \file
* \ingroup intern_itasc
*/
#include "Scene.hpp"
#include "ControlledObject.hpp"
#include "kdl/utilities/svd_eigen_HH.hpp"
#include <cstdio>
namespace iTaSC {
class SceneLock : public ControlledObject::JointLockCallback {
private:
Scene *m_scene;
Range m_qrange;
public:
SceneLock(Scene *scene) : m_scene(scene), m_qrange(0, 0)
{
}
virtual ~SceneLock()
{
}
void setRange(Range &range)
{
m_qrange = range;
}
// lock a joint, no need to update output
virtual void lockJoint(unsigned int q_nr, unsigned int ndof)
{
q_nr += m_qrange.start;
project(m_scene->m_Wq, Range(q_nr, ndof), m_qrange).setZero();
}
// lock a joint and update output in view of reiteration
virtual void lockJoint(unsigned int q_nr, unsigned int ndof, double *qdot)
{
q_nr += m_qrange.start;
project(m_scene->m_Wq, Range(q_nr, ndof), m_qrange).setZero();
// update the output vector so that the movement of this joint will be
// taken into account and we can put the joint back in its initial position
// which means that the jacobian doesn't need to be changed
for (unsigned int i = 0; i < ndof; ++i, ++q_nr) {
m_scene->m_ydot -= m_scene->m_A.col(q_nr) * qdot[i];
}
}
};
Scene::Scene()
: m_A(),
m_B(),
m_Atemp(),
m_Wq(),
m_Jf(),
m_Jq(),
m_Ju(),
m_Cf(),
m_Cq(),
m_Jf_inv(),
m_Vf(),
m_Uf(),
m_Wy(),
m_ydot(),
m_qdot(),
m_xdot(),
m_Sf(),
m_tempf(),
m_ncTotal(0),
m_nqTotal(0),
m_nuTotal(0),
m_nsets(0),
m_solver(NULL),
m_cache(NULL)
{
m_minstep = 0.01;
m_maxstep = 0.06;
}
Scene::~Scene()
{
ConstraintMap::iterator constraint_it;
while ((constraint_it = constraints.begin()) != constraints.end()) {
delete constraint_it->second;
constraints.erase(constraint_it);
}
ObjectMap::iterator object_it;
while ((object_it = objects.begin()) != objects.end()) {
delete object_it->second;
objects.erase(object_it);
}
}
bool Scene::setParam(SceneParam paramId, double value)
{
switch (paramId) {
case MIN_TIMESTEP:
m_minstep = value;
break;
case MAX_TIMESTEP:
m_maxstep = value;
break;
default:
return false;
}
return true;
}
bool Scene::addObject(const std::string &name,
Object *object,
UncontrolledObject *base,
const std::string &baseFrame)
{
// finalize the object before adding
if (!object->finalize())
return false;
// Check if Object is controlled or uncontrolled.
if (object->getType() == Object::Controlled) {
int baseFrameIndex = base->addEndEffector(baseFrame);
if (baseFrameIndex < 0)
return false;
std::pair<ObjectMap::iterator, bool> result;
if (base->getNrOfCoordinates() == 0) {
// base is fixed object, no coordinate range
result = objects.insert(ObjectMap::value_type(
name,
new Object_struct(object,
base,
baseFrameIndex,
Range(m_nqTotal, object->getNrOfCoordinates()),
Range(m_ncTotal, ((ControlledObject *)object)->getNrOfConstraints()),
Range(0, 0))));
}
else {
// base is a moving object, must be in list already
ObjectMap::iterator base_it;
for (base_it = objects.begin(); base_it != objects.end(); base_it++) {
if (base_it->second->object == base)
break;
}
if (base_it == objects.end())
return false;
result = objects.insert(ObjectMap::value_type(
name,
new Object_struct(object,
base,
baseFrameIndex,
Range(m_nqTotal, object->getNrOfCoordinates()),
Range(m_ncTotal, ((ControlledObject *)object)->getNrOfConstraints()),
base_it->second->coordinaterange)));
}
if (!result.second) {
return false;
}
m_nqTotal += object->getNrOfCoordinates();
m_ncTotal += ((ControlledObject *)object)->getNrOfConstraints();
return true;
}
if (object->getType() == Object::UnControlled) {
if ((WorldObject *)base != &Object::world)
return false;
std::pair<ObjectMap::iterator, bool> result = objects.insert(
ObjectMap::value_type(name,
new Object_struct(object,
base,
0,
Range(0, 0),
Range(0, 0),
Range(m_nuTotal, object->getNrOfCoordinates()))));
if (!result.second)
return false;
m_nuTotal += object->getNrOfCoordinates();
return true;
}
return false;
}
bool Scene::addConstraintSet(const std::string &name,
ConstraintSet *task,
const std::string &object1,
const std::string &object2,
const std::string &ee1,
const std::string &ee2)
{
// Check if objects exist:
ObjectMap::iterator object1_it = objects.find(object1);
ObjectMap::iterator object2_it = objects.find(object2);
if (object1_it == objects.end() || object2_it == objects.end())
return false;
int ee1_index = object1_it->second->object->addEndEffector(ee1);
int ee2_index = object2_it->second->object->addEndEffector(ee2);
if (ee1_index < 0 || ee2_index < 0)
return false;
std::pair<ConstraintMap::iterator, bool> result = constraints.insert(ConstraintMap::value_type(
name,
new ConstraintSet_struct(task,
object1_it,
ee1_index,
object2_it,
ee2_index,
Range(m_ncTotal, task->getNrOfConstraints()),
Range(6 * m_nsets, 6))));
if (!result.second)
return false;
m_ncTotal += task->getNrOfConstraints();
m_nsets += 1;
return true;
}
bool Scene::addSolver(Solver *_solver)
{
if (m_solver == NULL) {
m_solver = _solver;
return true;
}
else
return false;
}
bool Scene::addCache(Cache *_cache)
{
if (m_cache == NULL) {
m_cache = _cache;
return true;
}
else
return false;
}
bool Scene::initialize()
{
// prepare all matrices:
if (m_ncTotal == 0 || m_nqTotal == 0 || m_nsets == 0)
return false;
m_A = e_zero_matrix(m_ncTotal, m_nqTotal);
if (m_nuTotal > 0) {
m_B = e_zero_matrix(m_ncTotal, m_nuTotal);
m_xdot = e_zero_vector(m_nuTotal);
m_Ju = e_zero_matrix(6 * m_nsets, m_nuTotal);
}
m_Atemp = e_zero_matrix(m_ncTotal, 6 * m_nsets);
m_ydot = e_zero_vector(m_ncTotal);
m_qdot = e_zero_vector(m_nqTotal);
m_Wq = e_zero_matrix(m_nqTotal, m_nqTotal);
m_Wy = e_zero_vector(m_ncTotal);
m_Jq = e_zero_matrix(6 * m_nsets, m_nqTotal);
m_Jf = e_zero_matrix(6 * m_nsets, 6 * m_nsets);
m_Jf_inv = m_Jf;
m_Cf = e_zero_matrix(m_ncTotal, m_Jf.rows());
m_Cq = e_zero_matrix(m_ncTotal, m_nqTotal);
bool result = true;
// finalize all objects
for (ObjectMap::iterator it = objects.begin(); it != objects.end(); ++it) {
Object_struct *os = it->second;
os->object->initCache(m_cache);
if (os->constraintrange.count > 0)
project(m_Cq,
os->constraintrange,
os->jointrange) = (((ControlledObject *)(os->object))->getCq());
}
m_ytask.resize(m_ncTotal);
bool toggle = true;
int count = 0;
// Initialize all ConstraintSets:
for (ConstraintMap::iterator it = constraints.begin(); it != constraints.end(); ++it) {
// Calculate the external pose:
ConstraintSet_struct *cs = it->second;
Frame external_pose;
getConstraintPose(cs->task, cs, external_pose);
result &= cs->task->initialise(external_pose);
cs->task->initCache(m_cache);
for (int i = 0; i < cs->constraintrange.count; i++, count++) {
m_ytask[count] = toggle;
}
toggle = !toggle;
project(m_Cf, cs->constraintrange, cs->featurerange) = cs->task->getCf();
}
if (m_solver != NULL)
m_solver->init(m_nqTotal, m_ncTotal, m_ytask);
else
return false;
return result;
}
bool Scene::getConstraintPose(ConstraintSet *constraint, void *_param, KDL::Frame &_pose)
{
// function called from constraint when they need to get the external pose
ConstraintSet_struct *cs = (ConstraintSet_struct *)_param;
// verification, the pointer MUST match
assert(constraint == cs->task);
Object_struct *ob1 = cs->object1->second;
Object_struct *ob2 = cs->object2->second;
// Calculate the external pose:
_pose =
(ob1->base->getPose(ob1->baseFrameIndex) * ob1->object->getPose(cs->ee1index)).Inverse() *
(ob2->base->getPose(ob2->baseFrameIndex) * ob2->object->getPose(cs->ee2index));
return true;
}
bool Scene::update(double timestamp,
double timestep,
unsigned int numsubstep,
bool reiterate,
bool cache,
bool interpolate)
{
// we must have valid timestep and timestamp
if (timestamp < KDL::epsilon || timestep < 0.0)
return false;
Timestamp ts;
ts.realTimestamp = timestamp;
// initially we start with the full timestep to allow velocity estimation over the full interval
ts.realTimestep = timestep;
setCacheTimestamp(ts);
ts.substep = 0;
// for reiteration don't load cache
// reiteration=additional iteration with same timestamp if application finds the convergence not
// good enough
ts.reiterate = (reiterate) ? 1 : 0;
ts.interpolate = (interpolate) ? 1 : 0;
ts.cache = (cache) ? 1 : 0;
ts.update = 1;
ts.numstep = (numsubstep & 0xFF);
bool autosubstep = (numsubstep == 0) ? true : false;
if (numsubstep < 1)
numsubstep = 1;
double timesubstep = timestep / numsubstep;
double timeleft = timestep;
if (timeleft == 0.0) {
// this special case correspond to a request to cache data
for (ObjectMap::iterator it = objects.begin(); it != objects.end(); ++it) {
it->second->object->pushCache(ts);
}
// Update the Constraints
for (ConstraintMap::iterator it = constraints.begin(); it != constraints.end(); ++it) {
it->second->task->pushCache(ts);
}
return true;
}
// double maxqdot; // UNUSED
e_scalar nlcoef;
SceneLock lockCallback(this);
Frame external_pose;
bool locked;
// initially we keep timestep unchanged so that update function compute the velocity over
while (numsubstep > 0) {
// get objects
for (ObjectMap::iterator it = objects.begin(); it != objects.end(); ++it) {
Object_struct *os = it->second;
if (os->object->getType() == Object::Controlled) {
((ControlledObject *)(os->object))->updateControlOutput(ts);
if (os->constraintrange.count > 0) {
project(m_ydot,
os->constraintrange) = ((ControlledObject *)(os->object))->getControlOutput();
project(m_Wy, os->constraintrange) = ((ControlledObject *)(os->object))->getWy();
// project(m_Cq,os->constraintrange,os->jointrange) =
// (((ControlledObject*)(os->object))->getCq());
}
if (os->jointrange.count > 0) {
project(
m_Wq, os->jointrange, os->jointrange) = ((ControlledObject *)(os->object))->getWq();
}
}
if (os->object->getType() == Object::UnControlled &&
((UncontrolledObject *)os->object)->getNrOfCoordinates() != 0) {
((UncontrolledObject *)(os->object))->updateCoordinates(ts);
if (!ts.substep) {
// velocity of uncontrolled object remains constant during substepping
project(m_xdot, os->coordinaterange) = ((UncontrolledObject *)(os->object))->getXudot();
}
}
}
// get new Constraints values
for (ConstraintMap::iterator it = constraints.begin(); it != constraints.end(); ++it) {
ConstraintSet_struct *cs = it->second;
Object_struct *ob1 = cs->object1->second;
Object_struct *ob2 = cs->object2->second;
if (ob1->base->updated() || ob1->object->updated() || ob2->base->updated() ||
ob2->object->updated()) {
// the object from which the constraint depends have changed position
// recompute the constraint pose
getConstraintPose(cs->task, cs, external_pose);
cs->task->initialise(external_pose);
}
cs->task->updateControlOutput(ts);
project(m_ydot, cs->constraintrange) = cs->task->getControlOutput();
if (!ts.substep || cs->task->substep()) {
project(m_Wy, cs->constraintrange) = (cs->task)->getWy();
// project(m_Cf,cs->constraintrange,cs->featurerange)=cs->task->getCf();
}
project(m_Jf, cs->featurerange, cs->featurerange) = cs->task->getJf();
// std::cout << "Jf = " << Jf << std::endl;
// Transform the reference frame of this jacobian to the world reference frame
Eigen::Block<e_matrix> Jf_part = project(m_Jf, cs->featurerange, cs->featurerange);
changeBase(Jf_part,
ob1->base->getPose(ob1->baseFrameIndex) * ob1->object->getPose(cs->ee1index));
// std::cout << "Jf_w = " << Jf << std::endl;
// calculate the inverse of Jf
KDL::svd_eigen_HH(
project(m_Jf, cs->featurerange, cs->featurerange), m_Uf, m_Sf, m_Vf, m_tempf);
for (unsigned int i = 0; i < 6; ++i)
if (m_Sf(i) < KDL::epsilon)
m_Uf.col(i).setConstant(0.0);
else
m_Uf.col(i) *= (1 / m_Sf(i));
project(m_Jf_inv, cs->featurerange, cs->featurerange).noalias() = m_Vf * m_Uf.transpose();
// Get the robotjacobian associated with this constraintset
// Each jacobian is expressed in robot base frame => convert to world reference
// and negate second robot because it is taken reversed when closing the loop:
if (ob1->object->getType() == Object::Controlled) {
project(m_Jq,
cs->featurerange,
ob1->jointrange) = (((ControlledObject *)(ob1->object))->getJq(cs->ee1index));
// Transform the reference frame of this jacobian to the world reference frame:
Eigen::Block<e_matrix> Jq_part = project(m_Jq, cs->featurerange, ob1->jointrange);
changeBase(Jq_part, ob1->base->getPose(ob1->baseFrameIndex));
// if the base of this object is moving, get the Ju part
if (ob1->base->getNrOfCoordinates() != 0) {
// Ju is already computed for world reference frame
project(m_Ju, cs->featurerange, ob1->coordinaterange) = ob1->base->getJu(
ob1->baseFrameIndex);
}
}
else if (ob1->object->getType() == Object::UnControlled &&
((UncontrolledObject *)ob1->object)->getNrOfCoordinates() != 0) {
// object1 is uncontrolled moving object
project(m_Ju,
cs->featurerange,
ob1->coordinaterange) = ((UncontrolledObject *)ob1->object)->getJu(cs->ee1index);
}
if (ob2->object->getType() == Object::Controlled) {
// Get the robotjacobian associated with this constraintset
// process a special case where object2 and object1 are equal but using different end
// effector
if (ob1->object == ob2->object) {
// we must create a temporary matrix
e_matrix JqTemp(((ControlledObject *)(ob2->object))->getJq(cs->ee2index));
// Transform the reference frame of this jacobian to the world reference frame:
changeBase(JqTemp, ob2->base->getPose(ob2->baseFrameIndex));
// subtract in place
project(m_Jq, cs->featurerange, ob2->jointrange) -= JqTemp;
}
else {
project(m_Jq, cs->featurerange, ob2->jointrange) = -(
((ControlledObject *)(ob2->object))->getJq(cs->ee2index));
// Transform the reference frame of this jacobian to the world reference frame:
Eigen::Block<e_matrix> Jq_part = project(m_Jq, cs->featurerange, ob2->jointrange);
changeBase(Jq_part, ob2->base->getPose(ob2->baseFrameIndex));
}
if (ob2->base->getNrOfCoordinates() != 0) {
// if base is the same as first object or first object base,
// that portion of m_Ju has been set already => subtract inplace
if (ob2->base == ob1->base || ob2->base == ob1->object) {
project(m_Ju, cs->featurerange, ob2->coordinaterange) -= ob2->base->getJu(
ob2->baseFrameIndex);
}
else {
project(m_Ju, cs->featurerange, ob2->coordinaterange) = -ob2->base->getJu(
ob2->baseFrameIndex);
}
}
}
else if (ob2->object->getType() == Object::UnControlled &&
((UncontrolledObject *)ob2->object)->getNrOfCoordinates() != 0) {
if (ob2->object == ob1->base || ob2->object == ob1->object) {
project(m_Ju, cs->featurerange, ob2->coordinaterange) -=
((UncontrolledObject *)ob2->object)->getJu(cs->ee2index);
}
else {
project(m_Ju, cs->featurerange, ob2->coordinaterange) =
-((UncontrolledObject *)ob2->object)->getJu(cs->ee2index);
}
}
}
// Calculate A
m_Atemp.noalias() = m_Cf * m_Jf_inv;
m_A.noalias() = m_Cq - (m_Atemp * m_Jq);
if (m_nuTotal > 0) {
m_B.noalias() = m_Atemp * m_Ju;
m_ydot.noalias() += m_B * m_xdot;
}
// Call the solver with A, Wq, Wy, ydot to solver qdot:
if (!m_solver->solve(m_A, m_Wy, m_ydot, m_Wq, m_qdot, nlcoef))
// this should never happen
return false;
// send result to the objects
for (ObjectMap::iterator it = objects.begin(); it != objects.end(); ++it) {
Object_struct *os = it->second;
if (os->object->getType() == Object::Controlled)
((ControlledObject *)(os->object))->setJointVelocity(project(m_qdot, os->jointrange));
}
// compute the constraint velocity
for (ConstraintMap::iterator it = constraints.begin(); it != constraints.end(); ++it) {
ConstraintSet_struct *cs = it->second;
Object_struct *ob1 = cs->object1->second;
Object_struct *ob2 = cs->object2->second;
// Calculate the twist of the world reference frame due to the robots (Jq*qdot+Ju*chiudot):
e_vector6 external_vel = e_zero_vector(6);
if (ob1->jointrange.count > 0)
external_vel.noalias() += (project(m_Jq, cs->featurerange, ob1->jointrange) *
project(m_qdot, ob1->jointrange));
if (ob2->jointrange.count > 0)
external_vel.noalias() += (project(m_Jq, cs->featurerange, ob2->jointrange) *
project(m_qdot, ob2->jointrange));
if (ob1->coordinaterange.count > 0)
external_vel.noalias() += (project(m_Ju, cs->featurerange, ob1->coordinaterange) *
project(m_xdot, ob1->coordinaterange));
if (ob2->coordinaterange.count > 0)
external_vel.noalias() += (project(m_Ju, cs->featurerange, ob2->coordinaterange) *
project(m_xdot, ob2->coordinaterange));
// the twist caused by the constraint must be opposite because of the closed loop
// estimate the velocity of the joints using the inverse jacobian
e_vector6 estimated_chidot = project(m_Jf_inv, cs->featurerange, cs->featurerange) *
(-external_vel);
cs->task->setJointVelocity(estimated_chidot);
}
if (autosubstep) {
// automatic computing of substep based on maximum joint change
// and joint limit gain variation
// We will pass the joint velocity to each object and they will recommend a maximum timestep
timesubstep = timeleft;
// get armature max joint velocity to estimate the maximum duration of integration
// maxqdot = m_qdot.cwise().abs().maxCoeff(); // UNUSED
double maxsubstep = nlcoef * m_maxstep;
if (maxsubstep < m_minstep)
maxsubstep = m_minstep;
if (timesubstep > maxsubstep)
timesubstep = maxsubstep;
for (ObjectMap::iterator it = objects.begin(); it != objects.end(); ++it) {
Object_struct *os = it->second;
if (os->object->getType() == Object::Controlled)
((ControlledObject *)(os->object))->getMaxTimestep(timesubstep);
}
for (ConstraintMap::iterator it = constraints.begin(); it != constraints.end(); ++it) {
ConstraintSet_struct *cs = it->second;
cs->task->getMaxTimestep(timesubstep);
}
// use substep that are even dividers of timestep for more regularity
maxsubstep = 2.0 * floor(timestep / 2.0 / timesubstep - 0.66666);
timesubstep = (maxsubstep < 0.0) ? timestep : timestep / (2.0 + maxsubstep);
if (timesubstep >= timeleft - (m_minstep / 2.0)) {
timesubstep = timeleft;
numsubstep = 1;
timeleft = 0.;
}
else {
numsubstep = 2;
timeleft -= timesubstep;
}
}
if (numsubstep > 1) {
ts.substep = 1;
}
else {
// set substep to false for last iteration so that controlled output
// can be updated in updateKinematics() and model_update)() before next call to
// Secne::update()
ts.substep = 0;
}
// change timestep so that integration is done correctly
ts.realTimestep = timesubstep;
do {
ObjectMap::iterator it;
Object_struct *os;
locked = false;
for (it = objects.begin(); it != objects.end(); ++it) {
os = it->second;
if (os->object->getType() == Object::Controlled) {
lockCallback.setRange(os->jointrange);
if (((ControlledObject *)os->object)->updateJoint(ts, lockCallback)) {
// this means one of the joint was locked and we must rerun
// the solver to update the remaining joints
locked = true;
break;
}
}
}
if (locked) {
// Some rows of m_Wq have been cleared so that the corresponding joint will not move
if (!m_solver->solve(m_A, m_Wy, m_ydot, m_Wq, m_qdot, nlcoef))
// this should never happen
return false;
// send result to the objects
for (it = objects.begin(); it != objects.end(); ++it) {
os = it->second;
if (os->object->getType() == Object::Controlled)
((ControlledObject *)(os->object))->setJointVelocity(project(m_qdot, os->jointrange));
}
}
} while (locked);
// Update the Objects
for (ObjectMap::iterator it = objects.begin(); it != objects.end(); ++it) {
it->second->object->updateKinematics(ts);
// mark this object not updated since the constraint will be updated anyway
// this flag is only useful to detect external updates
it->second->object->updated(false);
}
// Update the Constraints
for (ConstraintMap::iterator it = constraints.begin(); it != constraints.end(); ++it) {
ConstraintSet_struct *cs = it->second;
// Calculate the external pose:
getConstraintPose(cs->task, cs, external_pose);
cs->task->modelUpdate(external_pose, ts);
// update the constraint output and cache
cs->task->updateKinematics(ts);
}
numsubstep--;
}
return true;
}
} // namespace iTaSC